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Abstract: Research in two-player perfect information games have been one of the focus of computer-game related studies
in the domain of artificial intelligence. However, focus on an effective search program is insufficient to give
the “taste” of actual entertainment in the gaming industry. Instead of focusing on effective search algorithm,
we dedicate our study in realizing the possibility of applying speculative play. However, quantifying and
determining this possibility is the main challenge imposed in this study. For this purpose, the Conspiracy
Number Search algorithm is considered where the maximum and minimum conspiracy numbers are recorded
in the test bed of a simple Tic-Tac-Toe game application. We analyze these numbers as the measures of
critical position identifier which determines the right moment for possibility of applying speculative play
through operators formally defined in this articlefadsctic and/ tactic. Interesting results are obtained with
convincing evidences but further works are still needed in order to prove our hypothesis.

1 INTRODUCTION ample research efforts towards creating a computer
program that dominates the games against their oppo-
In the domain of speculative play, understanding the nents with better strength and performance (Schaeffer
the game or mastering the game intricacy is the mostand van den Herikb, 2002), as well as overcoming the
important aspect for achieving successful outcome time complexity limitation of the tree search (Kishi-
in the respective competitive combat (van den Herik moto et al., 2012). In order to better understand the
et al., 2005). However, the main challenge in the nature of any computer-game, studying the progress
domain of speculative play is to identify a (criti- of the games is important for improving the game’s
cal) position for applying a speculative play. The value as a form of entertainment.
opponent-model search (lida et al., 1993; Carmeland  When progressing on the board game, different
Markovitch, 1993; lida et al., 1994) is such a specu- positions made by a player throughout the game’s
lative play, but without the knowledge of when is the time horizon can effect the outcome of the endgame.
most optimum position to apply it during a game. In Usually, playing well throughout the game when
other words, determining when one should change hiscompeting against top human players is not enough
strategy from minimax to any speculative way is the but playing optimally during the endgame (or certain
puzzling issue. parts of the games) is very important (Jansen, 1992;
The mechanics of computer-games in two-player Donkers, 2003). Focusing on a certain stage of the
perfect information games or two-player games in game is essential in order to apply different specula-
short, such as board games (e.g. tic-tac-toe, othello,tive play to boost itsexcitement However, the out-
checkers, chess, etc.), involve using a tree searchingcome of the computer-games (lose, win, or draw) is
algorithm to evaluate and decide the possible movesunclear until the game ends. Predicting this outcome
to take. However, even in the best known search al- during the progress of computer-games is mainly de-
gorithms, the search space possesses exponential timpendent on the likeliness of a position to result in ei-
complexity with the growing depth of the tree (Lorenz ther winning, losing, or draw. This situation is for-
et al., 1995). Innovative search algorithms, search en-mally defined ascritical position, where at a cer-
hancements, and learning ideas have been applied byain point of the game progress, the game outcome
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is measurable and eventually becomes certain and in-the position is going to be disadvantageous position)

evitable. should be very important in the context of speculative
Identifying critical position of a progressing com- play.

puter game involve comprehending the computer

players tendency of changing its strategy during a par-

ticular moment of the game play. In other words, 2 CONSPIRACY-NUMBER

knowing the right moment of based on this critical SEARCH

position at a certain state of the game enables the pos-

sibility of applying speculative play which essentially

producesinterestingoutcome of the game (Ramon In the minimax tree framework, the first player tries

et al., 2002). Thus, identifying this critical position to maximize his c_)r.h(.ar advantage, while the second
player tries to minimize it (Neumann and Morgen-

is highly dependent on the quantifying capabilities of .
the indicator. Therefore, a suitable search algorithm stern, 1947; Shannon, 1950). CNS searches the wree

that acts as an indicator during the games progress is{qna\?e rtrc')agr?aerr] tg?rt] ;‘: dlgf‘g zh;nOfetPhi Igg;;i'#i the
necessary in order to identify its critical position. 9 g

i _ root (Lorenz et al.,; 1995). Intuitively, when expand-
A well-known search indicators studied by sev- jng a minimax tree further, the accuracy and stabil-
eral researchers in the late-80s is the Conspwacy—ity of the root value depend on how much it changes.
Number Search (CNS). Introduced by McAllester najor changes on the root value make it unreliable
(.MCAIIester, 1985_; McAIIeste_r,.1988), CNS is a best- (McAllester, 1988). Therefore, the conceptain-
f|rs_t search a.Igorlthm for minimax tree framework, spiracyis used to measure the root value’s stability
which determines the cardinality of the smallest set of 514 its likelihood to change by narrowing the range
leaf nodes which have to “conspire” to change their of the plausible values of the root (Schaeffer, 1989).
values in order to change the minimax value of the The |ikelihood of the root taking a particular value is
root. This present a suitable opportunity for determin- reflected in that value’s associated conspiracy num-
ing the moments for applying speculative play (€.9. per. This conspiracy number measures the size of the
opponent model), thus acts as the motivating factor of «cgpspirators” needed to bring about a certain change
selecting CNS for this study. One of the ideas under- i, root value; the more conspirators needed for a given
lying CNS is that the distribution of the values over change, the less likely the change (McAllester, 1988).
the leaf nodes of the tree, and the shape of the tree,This is done by keeping track so the number of leaf
should influence the selection of the next node to be odes whose value must be changed (when searched
investigated (Kishimoto et al., 2012). However, fo- geeper) to change the root's node value by a certain
cus on CNS as a search algorithm in computer-gamesamount or taking on that new value. A change in the
research was faced with discouraging results (Lorenz,,gjye of a certain set of leaf nodes is called conspiracy
et al., 1995; Schaeffer, 1989; Elkan, 1989; Schaef- phanween those leaf nodes.
fer, 1990; van der Meulen, 1990). Later, Alks al. The algorithm is a probabilistic search in nature
(Allis et al., 1994) derived and specialized CNS con- \yhere there is no guarantee that the correct solution
cepts to the AND/OR tree framework where the study || pe found when it terminates, but the most likely
matured into Proof-Number Search (PNS). Although gne instead. The conceptual framework behind the
CNS is different compared to PNS, CNS'’s conceptual cNs s to grow search trees for which one has con-
frameworks bear certain correlation to PNS. fidence by measuring the number of value through
This study concerns a matter of critical position the conspiracy numbers. The search is guided in a
identification, not a matter of program strength im- best first manner, where the tree searched so far is
provementin games (See some approaches, e.g., donkept in memory. An example is probably the best
by Jonathan Schaeffer). Hence, we have chosen away to illustrate the function of a conspiracy number.
game as simple as possible in order to clearly explain The following is taken from (Schaeffer, 1989; Lorenz
the proposed idea. Further investigation would be, aset al., 1995): Assume that the branching factor is 2,
suggested, to implement the proposed idea in morethe range of values are from 1 to 6, the root node is
complicated games such as chess. To our best knowlthe MAX node, inside the nodes are their names and
edge, no other research has been done with CNs totheir minimax values, and the simple tabular for stor-
identify critical positions instead of using as game- ing conspiracy numbers of the root. From Fig. 1, it
tree search heuristics (stability of the root node’s min- can be observed that the leaves or terminal node have
imax value). In this paper, any part of speculative play to at least change their value to cause the value of the
is not described. However, the relation between CN root to become 1, 2, 4, 5, or 6. For example, only
and strategic change at critical position (in case where leaf E has to change its value to 5 in order for the root
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Root| A=3 value cn conspirators
1 2 (D or E) and (F or G)
2 1 ForG
3 0
. 4 1 EorF
Interior Node e 5 1 E
6 2 (D and E) or (F and G

Terminal Node| D=5 E=2 F=3 G=4

Figure 1: lllustration of a minimax tree adopting CNS algjomi.

value to become 5. is used and search bound is provided. The conspiracy
As described by Schaeffer (Schaeffer, 1989), there number vectors are compressed into 3-tuples, allow-
is a simple method of computing the conspiracy num- ing the CCNS to be independent of the granularity of
bers. At the terminal node the conspiracy number the evaluation function (e.g. positional play in chess).
associated with nodevalue is 0 and for all other val-
ues is 1. For the interior node, if the valueof a
MAX node is to be increased tJ > x, only one of
the successor nodes need to change its valué tib 3 CONSPIRACY-NUMBER
is clear that the conspiracy number foris the mini- SEARCH AS CRITICAL
mum amongst all other successors. Thisis denotedas  PQS|TION IDENTIFIER
1 needed If the valuex is to be decreased 16 < X,
all successors with values greater ttkdmust change
their value to one lower thax'. That is the reason
why the number of conspirators for these nodes are
summed. This is denoted aseeded The rules of
calculating conspiracy numbers are given as the fo
lowing (v is the associated conspiracy number of the
node andnis the minimax value of the node):

Determining critical position is vitals due to the fol-
lowing reasons: First, the specific outcome of the
game can be estimated in advance (eggignation)

I- and this estimation can be utilized for game outcome
prediction. Second, the critical positions are expected
to expose the possibilities of tactic changes, denoted
as1 tacticsor | tactics respectively. The tactics

CN(v) =0, ifv=m, implies that the computer player tries to force a draw
At MAX node: when it's losing, while| tacticsimplies that the com-
puter player tries to force a draw when achieving a
CN(v)= 5 Ineedeqv), forallv<m, win is impossible. Third, critical positions can be
all sonsi used to estimate the moment for computer player to
CN(v) = min 1 neededv), forallv>m. apply speculative play and change the outcome of the
all sonsi game.
ALMIN node: However, why do we use CNS instead of the po-
CN(v) = min | neededv), forallv<m, sitional scoring (evaluation function) alone during the
all sons game’s progression? The positional scoring act as a
CN(v) = z 1 neededv), forallv>m. guiding function for an individual player to determine
all sonsi his/her state in the game’s progress (Buro, 1999). Al-
Since its introduction, variants of CNS have though it might be suitable for identifying critical po-
been proposed by several researcheus- 3 Con- sitions, it still lack of the probabilistic element in ab-

spiracy Search proposed by McAllester and Yuret stracting the player’s decision to determine the next
(McAllester and Yuret, 1993) establishes lower and game state. Basically, positional scoring shows how
upper bound of the search. The MAX strategy estab- the game progresses (i.e. which player is leading the
lishes a lower bound and the MIN strategy establishes game) but the CN-values potentially show its prob-
an upper bound. Thus, the conspiracy numbers canable changes. Thus, the goal of critical position is
be used to measure the “safety” of these two strate-to determine the possibility of improving or deteri-
gies. Lorenzet al. (Lorenz et al., 1995) proposed orating the positional score value of a move (evalu-
a Controlled-Conspiracy Number Search where in- ate for probable impact of next moves), while posi-
stead of variable depth, am— 3 quiescence search tional scoring makes use of trevaluation features
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of a move (evaluate for probable gain of next moves) Table 1: Maximum Conspiracy numbers of player X against

(Buro, 1999). player O with depth variations.
. Maximum Conspiracy Numbers
3.1 E_xperlrr_uental Results and Depth Game Progress
Discussion ®lLp2 1 2 3 4 5 6 7 8 9
. . 2,2 8 7 6 5 4
CNS requires two types of conspiracy numbers 2.3 8 22 6 '8 4
needed to maintairf,needecand| needed We con- 2,4 8 62 6 16 4
sider this as a scalar measures in the computer-game’s 2.5 8 128 6 17 4
search progress to analyze and justify the rationale of 2.6 8 K5 6 mol ¢
the hypothesis mentioned earlier. A simple Tic-Tac- 3,2 56 | 7 26 5 10

Toe game is used as the test bed of our study. gi gg gg gg 186 ig

This experiment is tested with fixed-depth mini- 35 56 128 26 17 10
max algorithm applying CNS as a scalar measuresfor 3,6 56 288 26 | 17 10
recording the conspiracy numbers of the root values ~ 4,5~ 136 = 7% g9 5 17
for each game moves. For every player X with search 43 136 22 89 I8 17
depthi there is an opposing player O with search 44 136 62 89 16 17
depthj, where 2<i < 6 and 2< j < 6. Therefore, j:'g igg %gg gg g g
there are 25 total game sets (both player X and player i
O have five depths). Player X is assumed to be the 52 360 =7 206 =5 17
first player to start the game in every case, since if 3 360 WSS 206 R 17

Y , . 54 360 62, 206,16, 17
player O starts the results will be just the reverse. The 55 360 128 206 17 17

rules of the games are as follows: 56 360 288 206 17 17
e For player O, the score is negative. For player X, 62 648 17 29515 17
the score is positive. 6,3 648 22 295 8 17

¢ Player X tries to maximize the score, while player 64 648 62 295116 17

6,5 648 | 128 295 17 17
6,6 648 288 295 17 17

pl = player X, p2 = player O

WWWWW | WWWWW|[WWWWW| oo w| MDD AW
NMRRRN RN N| RN NN NDNNNDN
e e e el I e e e e e N e e N e e e e e e B N N L
RPRRRR [ PRRPRRPRRE | PRRRPRR|RPRRRR(RPRRRR

O tries to minimize the score.
e For each row, if there are both X and O, then the
score for the row is 0.

o If the whole row is empty, then the score is 1. (e.g. moves). The value of MaxCN implies insta-

e Ifthereis only one X, then the score is 10. If there bility and changes in the root value is more likely. In
is only one O, then the score is -10. other words, possibility of losing or winning is high

o If there are two X, then the score is 100. If there since the likeliness of the root value to change is high.
are two O, then the score is -100. However, the fact that the outcome is inevitable (ei-

o If there are 3 X, then the score is 1000. If there ther win or lose) but not known, this stage simulates
are three O, then the score is -1000. thecritical positionwhich is highly recommended for
Table 1 and Table 2 shows the recorded maximum applying speculative play.

conspiracy numberdfaxCN) and minimum conspir- For MinCN, however, a different interpretation is

acy numbersMInCN) for every game sets, respec- needed. The abruptly decreased MIinCN utilizes the
tively. The odd and even numbers (highlightedin light same rule as MaxCN: The MinCN of current player
gray) of the game’s progress are relevant to player X p is considered abruptly decreasedMinCNy,_, —
and player O, respectively. In all cases of game sets,MinCNy,| > |MinCN,,,|, where i equals to the
the game outcomes is a draw. To counter this, we con-game’s progress (e.g. moves). This situation is
sider the final score of any player as win, lose, or draw the critical position for tactic changes(tactic or
as final score of 100, -100, and 0, respectively. Table | tactic). In the case of abrupt inclining of MaxCN,
3 shows the final scores of every game of player X the root value stabilizes and tactic change of the cur-
versus player O. rent player from better to worst (from winning to a
Observing Table 1 and Table 2, the MaxCN of draw or a draw to losing) is more likely. This particu-
player X decreases steadily (in most cases) while thelar situation is when th¢ tacticoccurs. In the case of
MaxCN for player O decreases abruptly. To sim- abruptinclining of MinCN, the root value is limited to
plify the results interpretation, the following rules are the available MinCN value only. Thus, this situation
adopted: The MaxCN of current playpris consid- implies the likelihood of identifying the tactic change
ered abruptly decreasedMaxCN,_ , — MaxCNy | > of the current player from worst to better (from losing
IMaxCN,,,|, wherei equals to the game progress to a draw or from a draw to winning). This particular
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Table 2: Minimum Conspiracy numbers of player X against Player X with search depth 2

player O with depth variations. | | |

Minimum Conspiracy Numbers

Depth Game Progress N
®lp2) 1 2 3 4 5 6 7 8 9 |
22 1016 14 118 0/0 O
23 1 4 1 4 1 1 0.0 O h
2,4 1 13 1.8 1.0 0 0 O 2 |
2,5 113 1.5 1.0 0 0 O 1 |_| 1
26 1 .23 1.1 1 0 0.0 O Izl L0
32 616 44 0/0 0/0 O 3 4 5
33 6 4 4 4 0 0 0 0 O Moves
34 6 13 4 8 0 0 0.0 0
35 6 13 4 5 0 0 0 0 O
36 6 23 4 1 0 0 0/0 O
Player O with search depth 3
42 416 34 1183 010 O | | | |
43 4 .4 3 4 1.1 0.0 O
44 4 13 3 8 1.0 o0l0 O 2
45 4 13 3 5 1 0 0!0 O —
46 4 23 3 1.1 0 0 0 O 200 1 )
52 1316 54 0.3 0/0 O
5,3 | Ex3" Mk Cs: 1 ol B "0 BeEl—0
54 1313 5 8 0 0 0.0 O 10 i
55 13 13 5 5 0 0 0 0 0 4
56 13 23 5 1 0 0 0 0 O . 19
6,2 1396 574103 00 O ‘ ‘
63 13 4 5 4 0 1 0 0 O 3 4
64 13 13 5.8 0. 0 0 0 O Moves
65 13 13 55 0 0 0 0 O ,
66 13 23 5 00 00 O

1
pl = player X, p2 = player O

Figure 2: MaxCN and MinCN for player X with search
depth 2 against player O with search depth 3.
Table 3: Final scores based on depths of player X against

player O. and currently possess MaxCN and MinCN of 22 and
Player O 4 respectively. Consequently, player X chose the up-
Final Score 2 3 2 5 p per middle side of the board, which effects MaxCN
to decrease steadily, while MinCN remain the same.
2 0 0 0 0 0 Next, player O chooses the lower middle of the board
30 0 0 0 0 ; ) .
Player X 4 -100 -100 -100 -100 -100 Wr_uch abruptlly reduces player Og. Ma_GCN to 8 while
5 -100 -100 -100 -100 -100 MInCN remains the same. This situation imposes that
6 -100 -100 -100 -100 -100 player O is in acritical position, even if its intent is

to prevent player X from winning. Therefore, player
situation is when thé tacticoccurred. O is in the state of tactic and is advised to apply
For instance, consider player X with search depth different tactic. In the next move, player X chooses
2 against player O with search depth 3. Generally, the lower left corner of the board which has forced
player O can be regarded to outperform player X player O into another bad position. During the con-
due to lookahead superiority. Figure 2 and Figure sequent move, player O's MaxCN reduces steadily
4(a) simulates the mentioned game’s progress situ-While MinCN is abruptly reduced to 1, which implies
ation. During the first move, player X chooses the that player O has appliefitactic where, instead of
middle position of the board leaving player O with losing, it tries to force player X into a draw. Thus, the
limited options. The MaxCN and MinCN of player final outcome of the game is a draw.
X is currently 8 and 1 respectively. After consid- Another example is the case of player X with
ering the vertical, diagonal, and horizontal spaces, search depth 5 against player O with search depth 4
player O chooses the upper left corner of the board which is given in Figure 3 and Figure 4(b). During
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Player X with search depth 5 o Player X Player X
! | | | | - MaxCN: 8 X MaxCN: 360 X
s MinCN: 1 MinCN: 4
400 360 8
] [ O Player O O Player O
3~ X MaxCN: 22 X MaxCN: 62
200 i 206 = MinCN: 4 MinCN: 13
] Player X O X Player X O X
3. MaxCN: 6 X MaxCN: 206 X
17 = MinCN: 1 MinCN: 3
0 20 10
0 == T T o (@] B3 Player O OlX Player O
3 4 5 3« X MaxCN: 8 X MaxCN: 16
Moves = 0 MinCN: 4 O MinCN: 5
[| O0Max 480 Min °>J Player X O X Player X O X
§ n MaxCN: 4 X MaxCN: 17 [X]X
Player O with search depth 4 MinCN: 11O MinCN: 1 O
‘ ‘ ‘ B () O X O Player O O X Player O
3w X MaxCN: 4 XIXIO| Maxcn: 3
i = X0 MinCN: 0 [@) MinCN: 0
J (a) A (b)
Figure 4: Simulation of Tic-Tac-Toe games.
=] 8 3 | sider to apply a kind of speculative strategy such as
_ i =0 10 opponent-model search in order to change the situa-
1 2‘ 3‘ 4“ tion: from behind to even or better. Another chal-

lenge in GM-level man-machine matches is to iden-

tify (no more promising) positions to resign. There-

fore, the experiments suggested in this study provide
the main foundation for identifying the critical posi-

Figure 3: MaxCN and MIinCN for player X with search tjons, although further investigation is expected.
depth 5 against player O with search depth 4.

Moves

the first move, player X chooses the middle position

of the board leaving player O with limited options. 4 CNS CORRELATIONS TO PNS

The MaxCN and MIinCN of player X is currently 360

and 4 respectively. The high value of MaxCN is be- Application of PNS in the previous work such as

cause of the deeper search depths. In the next move(Ishitobi et al., 2013) raised questions whether any

player O chooses the upper left corner of the board correlations exists in the application of CNS as a criti-

and obtains a MaxCN and MIinCN of 62 and 13 re- cal position identifier. Theoretically, experimental re-

spectively. Consequently, player X chooses the uppersults obtained from the previous section empowered

middle side of the board, making MaxCN and MinCN  the possibility of correlation between CNS and PNS

decreases steadily. During the rest of the moves, theas indicators in their respective tree search frame-

evolution of MaxCN of both player X and player O work. This section attempts to identify that correla-

abruptly reduces, forcing both players into “dilem- tion and give a better picture on the importance of

mas” where both tacticandt tacticoccur. This situ- these two indicators. The following section will give

ation can be hypothetically defined as the state wherea short description on the basis of PNS.

both players are able to apply different tactics. On the

other hand, observing the MinCN of both player X 4.1 The Basis of PNS

and player O during fifth and sixth moves implies that

both player adopted thetactic. However, player O's ~ PNS, like its ancestor CNS, is a best-first search al-

leading score plays its part and forces player X to lose gorithm in which the tree searched so far is stored

the game (assumed final score is winning). in memory. The main difference is that PNS aims
The challenge in the study of speculative play is at proving the true value of root, where the interim

to identify critical positions at which one should con- minimax values are not considered (Allis etal., 1994).
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The PNS heuristic determines the most promising leaf (Ishitobi et al., 2013).

by selecting amost-proving nod®r most-promising

node(MPN), which can contribute to either a proof 4.2 General Correlation of the Elements

or a disproof of the root if a leaf node is solved. The of CNS and PNS

MPN can be formally defined as the node which, with

the least possible effort, potentially contributes most ¢ qescribed by Ishitokgt al. (Ishitobi et al., 2013),

to the establishment of the minimax value of the root. pn is related to the difficulty, which relates to the
The MPN can be found by manipulating two criteria  inimum number of unsolved nodes that need to be
of the search tree: (1) its shape (determined by the ;| ed. S0 maximunpn shows the complexity to
branching factor of every intemal node), and (2) the ¢, ye these’unsolved nodes. On the other hamd,
yalues O.f the leaves. The basic and un-enhanced P_Nqs related to the minimum number of unsolved nodes
is an uninformed search method that does not require;, -+ need to be disproved. Therefore, maximam

any game-specific knowledge beyond its rules (Kishi- g6\ the complexity to disprove. In other word, both
moto etal., 2012). the maximumpn and maximumdn are an effective
The PNS produces two special values for each measures of difficulty to solve nodes as soon as pos-
noden in order to find MPN. First, the proof num- sible for the AND/OR tree framework.
ber (denoted agn(n) wherepn is the proof number The MaxCN and MinCN show a correlation to
of noden) which is the smallest number of leaf nodes maximumpn and maximunmdn in the minimax tree
in the subtree starting with that have to be proven  framework. In the CNS context, MaxCN and MinCN
in order to prove that is a win. Second, the disproof ' identify the critical position in the game’s progress
number (denoted agn(n) wheredn is the disproof  for an expected outcome. MaxCN indicates the un-
number of node) which is the minimum number of = likeliness of root value in achieving a value. There-
leaf nodes that have to be disproved in order to prove fore, high value of MaxCN implies the high likeliness
thatnis a loss. of winning or losing. MIinCN indicates that the like-
Calculating the values ginanddnfor each node  liness of root value to achieve a value is limited to
in the tree is performed in a bottom-up manner. Usu- the value of MinCN. So, high value of MinCN im-
ally, In a terminal nodd, the game-theoretic value plies the possibility of target change of the possible

is known or the corresponding position has no legal estimated outcome. Considering the relation to max-
moves. Ift is a win, thenpn(t) = 0 anddn(t) = 1. imum pn and maximurrdn, we find that high values

If tis a loss, thepn(t) = 1 anddn(t) = 0. If t is un- of MaxCN and MInCN are an effective measures of
known, therpn(t) = dn(t) = 1. In this case, the termi- difficulty of a particular value to be likely. Figure 5
nal nodet is called a temporary terminal node. For the depicts the correlation of CNS and PNS.

internal MAX node, it is sufficient to have one child

that proves the value of The pnof a MAX node is e MaximuMaximum h

equal to the minimum of then of its children. For AND/OR :

dn, the only way to disprove is to disprovev for all tree

its children. So, thelnfor MAX node is equal to the framework

sum of thedn of all its children. It is the reverse for \\

the internal MIN node. - 1 ~
However, PNS is famously known for searching 4 N agﬁf{écfétﬁlf;iﬁiss’/ R

the AND/OR tree framework instead of the minimax

tree framework. The AND/OR tree is a type of tree Minimax _

where the nodes have only three possible values: true, tree ‘ N

false, and unknown (Ishitobi etal., 2013). Using PNS, | mamewerk Imo — Stabity o

the pn for an AND/OR tree represents the minimum Lose <,I: Critical Win

(Resignation) Positions (Surrender/
number of unsolved leaf nodes that need to be solved L Resusnng)j

in order to win in the root. Similarly, then for an

AND/OR tree represents the minimum number of un-
solved leaf nodes that need to be solved in order to
lose in the root. The PNS always considers the MPN

Figure 5: Correlation between CNS and PNS.

in which the internal nodes can be decided recursively 5 CONCLUDING REMARKS

if the terminal node value was decided. Thus, PNS

can be used to decide the value of the root node by In this article, we presented two main contributions:
deciding values of other nodes as soon as possible
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