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Abstract:  This paper studies the multi-objective dynamic vehicle routing and scheduling problem by using an 
evolutionary method. In this model, all data and information required to the routing process are not known 
before planning and they revealed dynamically during the routing process and the execution of the routes. 
Moreover, the model tries to characterize the customers’ satisfaction and the service level issues by 
applying the concept of fuzzy time windows. The proposed model is considered as a multi-objective 
problem where the overall travelling distance, fleet size and waiting time imposed on vehicles are 
minimized and the customers’ satisfaction or the service level of the supplier to customers is maximized. To 
solve this multi-objective model, an evolutionary algorithm is developed to obtain the Pareto solutions and 
its performance is analyzed on various test problems in the literature. The computational experiments on 
data sets represent the efficiency and effectiveness of the proposed approach. 

1 INTRODUCTION 

One of the most important combinatorial 
optimization problems is the vehicle routing 
problem with time windows (VRPTW) which is 
seeking to service a number of customers with a 
fleet of vehicles and pre-defined time windows. . In 
this paper, the dynamic version of the VRP with 
hard time windows and customers' satisfaction level 
is considered. In this problem, customer orders for 
service are called over time in a given planning 
horizon and their location, size, and time window 
become known only after they arrive. Obviously, 
this type of problem is more challenging and 
sophisticated than the conventional static VRPTW. 
The literature of the VRPTW is rich in exact and 
heuristic solution approaches. Applying meta-
heuristics (e.g., simulated annealing (SA), tabu 
search (TS) and ant colony system) to solve the 
VRPTW can be found in (Baños et al. 2013, 
Cordeau and Maischberger 2012, Blaseiro et al. 
2011). There are many papers used evolutionary 
algorithms for the VRPTW (Ombuki et al. 2006, 
Salhi and Petch 2007, Tan et al. 2006, Ghoseiri and 
Ghannadpour 2010, and Ghannadpour et al. 2014). 
In this regard, Tang et al. (2009) proposed and 
solved a VRP with fuzzy time windows. Other very 

good techniques and applications of the VRPTW 
and its developments can be found in (Lei et al. 
2011, Negata et al. 2010, Blaseiro et al. 2011, 
Ghannadpour and Noori 2012). In the using of 
dynamic approach of routing problems, many 
authors developed different solution approaches 
categorized in two major classes. One class of 
methods, called a-priori optimization-based method, 
is based on probabilistic information on future 
events for service, customers demands, travel times, 
etc. (Bent and Van Hentenryck 2004, Larsen et al. 
2004). The other class of methods, called the real-
time optimization method, plans the routes solely 
based on known information without looking into 
the uncertain future (Chen and Xu 2006, Lorini et al. 
2011, and Haghani and Jung 2005). 

Not many studies can be found in the literature 
on multi-objective VRPTW. In this area Tan et al. 
(2006) and Ombuki et al. (2006) and Ghoseiri and 
Ghannadpour (2010) proposed a hybrid multi-
objective evolutionary algorithm with the concept of 
Pareto’s optimality. Najera and Bullinaria (2011) 
proposed and analyzed a novel MOEA, which 
incorporates methods for measuring the similarity of 
solutions. The remainder of this paper is organized 
as follows. Section 2 defines the model. The solution 
technique is discussed in Section 3. Section 4 
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describes the computational experiments. Section 5 
provides the concluding remarks. 

2 PROPOSED DYNAMIC MODEL 

In dynamic VRPTW all data and information 
required to the routing process are not known before 
planning and they revealed dynamically during the 
routing process and the execution of the routes. So, 
the planner encounters with the information of the 
limited number of customers at the beginning of the 
planning. During the routing process, new requests 
can arrive in the system. Thus, the dynamic VRPTW 
is strongly related to the static VRPTW. The 
DVRPTW can be consequently modelled as a 
sequence of the static VRPTW-like instances. In 
particular, each static VRPTW will contain all the 
customers known at that time, but not yet served. 
The most important data for the re-optimization 
stage are relevant to information regarding real time 
requests and dispatched vehicles. The information 
required for new customers is identified when they 
call in for services to a dispatch center. However, the 
vehicular information is determined by constant 
communication between vehicles and the depot. In 
addition, when the dispatching center knows the last 
state of a vehicle at any time, it will have to re-
optimize the routing plan with new information. In 
practice, transportation often characterizes the service 
level issues and involves routing vehicles according to 
customer-specific time windows, which are highly 
relevant to the customers’ satisfaction level. In these 
many realistic applications, the concept of classical 
time windows does not model the preference of 
customers very well. Even though customers provide 
a fixed time window for service, they really hope to 
be served at a desired time if possible. This 
preference information of customers can be 
represented as a convex fuzzy number with respect 
to the satisfaction for service time. This concept 
changes the classical hard time window [ei, li] to the 
triple [ei, ui, li]. The membership function of 
customer i or ( )i it , which represents the grade of 

satisfaction when the start of service time is ti 
defined by triangular membership function. The start 
of service time is ݐ௜ିଵ ൅ ௜݂ିଵ ൅ ௜ܶିଵ,௜ where fi is the 
service time of customer i and Ti-1,i is the travel time 
between customer i-1 and customer i. when ݐ௜ିଵ ൅
௜݂ିଵ ൅ ௜ܶିଵ,௜ ൑ ݁௜ the start of service time is 

considered ݁௜ and the vehicles undergo a waiting 
time.   

Moreover, the proposed model is considered as a

multi-objective problem where the overall travelling 
distance, fleet size and waiting time imposed on 
vehicles are minimized and the customers’ 
satisfaction or the service level of the supplier to 
customers is maximized. These objectives are 
(Min					 ଵ݂ ൌ 	∑ ∑ ∑ .௜௝ܦ ௜௝ݔ

௞
௞∈௄௝∈ே,௝ஷ௜௜∈ே ሻ and 

ሺMin					 ଶ݂ ൌ 	∑ ∑ ଴௝ݔ
௞

௞∈௄௝∈ே,௝ஷ଴ ሻ, where N and K are 
the set of customers and vehicles, respectively. For 
simplicity, the depot is denoted as customer 0. The 
travel distance between customers i and j is denoted 
as	ܦ௜௝. Moreover, the decision variable ݔ௜௝

௞  is equal 
to 1 if vehicle k drives from customer i to customer 
j, and 0 otherwise. Moreover, the model tries to 
serve all the customers such that the summation of 
their satisfaction rates is maximized as	 ሺMax					 ଷ݂ ൌ
	∑ ௜ሻ௜∈ேݐ௜ሺߤ 	ሻ. When the arrival time of vehicles is 
before ei, they undergo a waiting time that is 
desirable and affects more vehicle and labour costs, 
The summation of this waiting time, should be 
minimized according to ሺMin					 ସ݂ ൌ 	∑ ௜௜∈ேݓ 	), where 
the waiting time imposed on each vehicle for 
customer i is calculated by w୧ ൌ 	 t୧ െ 	ሺt୧ିଵ ൅ f୧ିଵ ൅
T୧ିଵ,୧ሻ. Eventually, the multi-objective problem 
(MOP) studied in this paper is stated by: 

 (1) ൜ F
ሺxሬԦሻ ൌ ሼfଵି, fଶ

ି, fଷ
ା, fସିሽ				

s. t. xሬԦ ∈ D 																
 

Where xሬԦ is the decision variable vector, D is 
space, and FሺxሬԦሻ is the objective vector. The solution 
to a MOP is the set of non-dominated solutions, 
called the Pareto set (PS). Eventually, this paper 
uses a posteriori approach, in which a set of 
potentially non-dominated solutions is first 
generated, and then the decision-maker chooses 
among those solutions 

3 SOLUTION PROCEDURE 

A solution procedure consisting of three basic 
modules is developed to solve the proposed model: 
management module, strategy module and 
optimization module.   

3.1 Management Module 

The management module tries to check the state of 
the system including information of vehicles and 
customers each time. The customers’ information 
includes geographical location (ݔ௜,  ௜), the on-siteݕ
service time, the demand (ݍ௜ሻ and time window of 
each customer. Initially, at time ݐ ൌ 0, the pool of 
the customers’ information may consist of all 
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determined request customers who are remained 
from the previous working day and they should be 
served today. As time elapses (ݐ ൐ 0), this pool of 
request is enlarged if a new customer for service is 
received and reduced whenever the service of a 
request or customer is ended. Thus, the management 
module tries to control the customers' information as 

௜ܲ ൌ ሼܿݐ௜, ,௜ݔ ,௜ݕ ,௜ݍ ௜݂ , ݁௜, ,௜ݑ ݈௜ሽ, where ܿݐ௜  is the call 
time of customer (i) with the central dispatching 
center and it is considered 0 for the determined 
customers. It should be noted that the planning 
horizon is considered asሾ0,  ሿ. Initially all vehiclesܪ
are located at depot and all required information is 
available. As time elapses (ݐ ൐ 0), the management 
module should control the state of dispatched 
vehicles and update their information continually for 
subsequent planning. The information, which should 
be checked by a dispatcher, includes the 
geographical locations, the residual capacity, the 
state of vehicle (i.e., driving, servicing, and waiting), 
and the like.   

3.2 Strategy Module 

The strategy module tries to organize the 
information reported by management module and 
construct an efficient structure for solving in the 
subsequent phase (optimization module). Therefore, 
the K discrete time periods are considered in each 
working day as ݐଵ, ,ଶݐ … , ଵݐ ,௞ whereݐ ൌ 0 ൏ ଶݐ ൏ ⋯ ൏
௞ݐ ൏  Moreover, each time slice represents a .ܪ
partial static VRP with fuzzy time windows and is 
defined as ݐ௜ ൌ ሺ݅ െ 1ሻ ൈ ∆ where, ݅ ൌ 1,… ,  ∆ and ܭ
(∆൐ 0) is the time interval between two consecutive 
steps. It should be noted that ∆ depends on the 
degree of system dynamism. The designed 
procedure is illustrated in Figure 1. 

 

Figure 1: Dynamic structure for the proposed model. 

According to this figure, in each time step t୧, a 
certain amount of times (δ) as adjusting time should 
be spent to construct the static model. This model is 
solved within ሾݐ௜ ൅ ,ߜ  ,௜ାଵሿ to find the solution ௜ܵାଵݐ
which should be implemented in the next time slice 

and within ሾݐ௜ାଵ, ௜ݐ ௜ାଶሿ. Moreover, in time stepݐ , 
solution ௜ܵ found in the previous time step (ሾݐ௜ିଵ ൅
,ߜ ,௜ݐ௜ሿ) is implemented within ሾݐ  ௜ାଵሿ. The requiredݐ
information for constructing the partial static model 
in time step ݐ௜ is relevant to information of 
customers and vehicles reported by management 
module. The set of vehicles information that should 
be considered in time slice ݐ௜, is as ܭ௜ ൌ ௜ܷ ∪
ሼ݂݅݊݅݊݅ݕ݈݁ݐ	ݕ݊ܽ݉	ݏ݈݄݁ܿ݅݁ݒ	݀݁ݐܽܿ݋݈	ݐܽ	ݐ݋݌݁݀ሽ, where, 
௜ܷ is the set of vehicles en routes until ݐ௜ାଵ with the 

information of their status, residual capacity and 
geographical location. The dispatching time of new 
vehicles solution ௜ܵାଵ is ݐ௜ାଵ and their horizon of 
planning is set as ሾݐ௜ାଵ,  ሿ. Moreover, the set ofܪ
customers’ information, which is necessary for 
finding the solution ௜ܵାଵ within ሾݐ௜ ൅ ,ߜ  ௜ାଵሿ, is asݐ
௜ܰ ൌ ሺ ௜ܰିଵ\ ෡ܰ௜ିଵሻ ∪ ௜ܱିଵ, where ௜ܰିଵ is the set of 

customers considered in previous time slice ݐ௜ିଵ and 
෡ܰ௜ିଵ is the set of customers which are served within 
ሾݐ௜,  ,௜ାଵሿ by implementing of solution ௜ܵ. Moreoverݐ
௜ܱିଵ is the set of new customers, which called in for 

service within ሾݐ௜ିଵ,   .௜ሿݐ

3.3 Optimization Module 

The optimization module solves each static model of 
time slice ݐ௜  within ሾݐ௜ ൅ ,ߜ  ௜ାଵሿ and passes the newݐ
solution vector on to the management and strategy 
modules for updating and implementing. Naturally, 
changes can only be made to the unvisited parts of 
the routes. As mentioned earlier, the modified GA, 
which was developed in our recent research 
(Ghoseiri and Ghannadpour 2010) is used here.  

3.3.1 Representation 

A solution of the model in time slice ݐଵ, which no 
vehicles have been commissioned yet, is represented 
by an integer string of length ݊଴, where ݊଴ is the 
number of determined requests remained from the 
previous working day. On the subsequence time 
slices ݐ௜  (݅ ൐ 1), some customers are visited during 
the previous slices and some others are waiting for 
services. The solution representation of these time 
slices is a variable length chromosome 
representation as depicted in Figure 2. 

 

Figure 2: Chromosome representation of step t୧(i ൐ 1). 
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Two types of nodes are used in this representation, 
namely positive and negative nodes. The positive 
nodes represent the unvisited and new customers 
that have been added to this day’s schedule 
duringሾݐ௜ିଵ,  ௜ሿ. The negative nodes represent theݐ
group of clustered customers that have already been 
visited by the dispatched vehicles during the 
previous time slices. So these negative nodes are the 
indices of dispatched vehicles as a place holder and 
include the information of their partial routes and 
previously visited customers. When this 
chromosome is decoded, new customers can be 
added to these pre-existing routes if they still satisfy 
the feasibility conditions.  

3.3.2 Pareto Ranking Procedure 

The Pareto ranking procedure (Ghoseiri and 
Ghannadpour 2010) which tries to rank the solutions 
to find the non-dominated solutions is used for 
evaluation of each chromosome. In this approach, 
chromosomes assigned rank 1 are non-dominated, 
and inductively, those of rank i +1 are dominated by 
all chromosomes of ranks 1 through i.  

3.3.3 Recombination 

The best cost -best route crossover (BCBRC) and 
sequenced based mutation (SBM) are used as 
recombination operators (Ghoseiri and Ghannadpour 
2010). This paper uses the modified best cost-best 
rout crossover (BCBRC), which selects a best route 
from each parent and then for a given parent, the 
customers in the chosen route from the opposite 
parent are removed. The final step is to locate the 
best possible locations for the removed customers in 
the corresponding children. 

3.3.4 Local Search 

This paper uses a ߣ-interchange mechanism as local 
search method that moves customers between routes 
to generate neighborhood solution for the proposed. 
In one version of the algorithm called GB (global 
best), the whole neighborhood is explored and the 
best move with lower rank is selected. In another 
version, FB (first best), the first admissible 
improving move is selected if exists; otherwise the 
best admissible move is implemented.  

3.3.5 Satisfaction Improvement Operator 

The satisfaction improvement operator (SIO) is used 
to improve the satisfaction rate of each customer 
without increasing the waiting time and by pushing 

the waiting time of vehicles on each customer along 
the routes. This push will increase the total degree of 
satisfaction along the route without violating the 
feasibility conditions. In general, the SIO operator is 
applied on the chromosomes with the following 
characteristics: 1- the solutions has at least one 
vehicle with non-zero waiting time, 2- If a vehicle 
incurs more than one ݓ௝  along a route, the route 
should be devided into some sections (each section 
is named “path”) according to the number of 
vehicles waiting time and 3- All the derivative terms 
of the customers or the slope of satisfaction function 
at time ݐ௜ for customers ݅ is larger than zero. then a 
possible forward push will cause the increase of total 
grade of satisfaction. The feasible forward push in 
each step is as ݄ܲݏݑ ൌ ݉݅݊	ሺ߂௜, ሻ, where Δ௜ݓ ൌ ௜ݑ െ
,	௜ݐ if			݁௜ ൏ ௜ݐ ൏ ௜ and Δ௜ݑ ൌ ݈௜ െ ,	௜ݐ if			ݑ௜ ൏ ௜ݐ ൏ ݈௜. 
After applying this push, the part of the path from 
the Customer* to end is considered again and the 
above characteristics are checked. The Customer* is 
the customer that the previous minimum push has 
been found on it.  This procedure is repeated until 
the new feasible forward push cannot be found. 

4 COMPUTATIONAL ANALYSIS 

At the beginning, the proposed model is considered 
in static conditions with two objectives that 
minimize the total distance travelled and the total 
number of vehicles, which are the most common 
objectives used by other researchers alternatively. 
After that two another defined objective functions, 
are added and the developed model is considered in 
dynamic conditions. The experimental results use 
the standard Solomon’s VRPTW benchmark 
problem instances that are available in (Solomon 
1987). The proposed algorithm is coded and run on a 
PC with Core 2 Duo CPU (3.00 GHz) and 2.9 GB of 
RAM. Moreover, the model is implemented under 
parameters of Population size = 100, Generation 
number = 1000, Crossover rate = 0.80, Mutation rate 
= 0.40, Improve the solution by 2-interchange (GB) 
and 1-interchange (FB) operators, Selection rate of 
improvement operators = 0.5 and Repetition for 
experiments = 5. Table 1 presents a summary of 
results. The average number of vehicles (upper 
figure) and the average travel distance (lower figure) 
of the best known results (Blaseiro et al. 2011) and 
Ghoseiri and Ghannadpour 2010) and the proposed 
method are presented in this Table. Additionally, the 
last row presents, the total number of vehicles and 
total travel distance for all 56 instances. Moreover, 
two series of results are presented in this table for 
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proposed method, one corresponding to the solutions 
with smallest number of vehicles (min V) among the 
non-dominated solutions and the other regarding 
solutions with the shortest travel distance (min D).  

According to this table, the proposed method 
obtained the very good results for sets C1 and C2. 
On the other hand, for the remaining categories, 
solutions from the proposed method are between 
1.79% and 5.27% larger in distance cost than the 
best results, and consider 3.25% and 5.74% more 
vehicles (for category R1 and RC1).   

Table 1: Average results of proposed method and the best 
known solutions. 

Pro. 
Best 

known 
Proposed
(Min V) 

Proposed 
(Min D) 

%  
diff. V

% diff. 
D 

C1 
10.00 
828.38 

10.00 
828.38 

10.00 
828.38 

0.00 0.00 

C2 
3.00 

589.77 
3.00 

591.49 
3.00 

591.49 
0.00 0.29 

R1 
12.50 

1195.15 
12.92 

1228.60 
13.50 

1217.03 
3.25 1.79 

R2 
3.36 

905.60 
3.27 

1066.15 
4.00 

956.08 
-

2.75 
5.27 

RC
1 

12.13 
1361.86 

12.87 
1390.06 

13.25 
1384.30 

5.74 1.62 

RC
2 

4.00 
1052.84 

3.75 
1114.19 

4.00 
1109.20 

-
6.66 

5.08 

total 
430 

55794.58 
438 

58692.32
458 

57256.65 
1.82 2.55 

But for categories R2 and RC2 the better number 
of vehicles is obtained in average of 2.75% and 
6.66% than the best known respectively. Moreover, 
the difference between the results of proposed 
method and best known solutions for all 56 instances 
is only 1.82% and 2.55% for the number of vehicles 
and travelled distance respectively. The average 
computational time for classes C1, R1 and RC1 
varies between 2 and 3 hours with 1000 generations 
and is between 5 and 7 hours for classes C2, R2 and 
RC2. The second classes require a larger CPU time 
due to the longer time windows, which allow a more 
flexible arrangement in the routing construction 
process. Moreover, an operator deletion- retrieval 
strategy is executed to probe the efficiency of the 
inner working of the proposed method. According to 
this strategy, genetic operators are eliminated one at 
a time and each time, algorithm is put into run and 
convergence behaviour is studied and compared 
with the operator retrieved. The results of instance 
C203 with respect to the shortest travel distance is 
represented as Figure 3. According to this figure, all 
the inner components of the genetic algorithm work 
properly and indicate good behaviour of 
convergence toward the best solutions. Among these 

operators, the Hill-climbing operator works highly 
efficient to convergence toward the best solution.  

Now the fuzzy time windows are considered 
instead of classical time windows and the proposed 
model should be implemented with four defined 
objective functions in a multi-objective manner and 
in static conditions. It should be noted that in some 
experiments there are more than 50 or 60 non-
dominated solutions. 

 

Figure 3: Inner working of proposed method for C203. 

In general, the relationship between defined 
objectives in a routing problem is unknown until the 
problem is solved in a proper multi-objective 
manner. These objectives may be positively 
correlated with each other or they may be conflicting 
to each other. Based on the results, all instances in 
the category C have the positively correlating 
objectives when the first two objectives are 
considered. In general, it can be expressed that the 
multi-objective manner is not required for the C 
category due to have the correlating objectives. But 
the conflicting behaviours are more in R and RC 
categories and most of these instances have the 
conflicting objectives in a population distribution of 
them. For instance the behaviour of instance R103 is 
shown in (Figure 4 a, b, c), which is the population 
distribution with respect to the distance cost, total 
satisfaction rate and waiting cost. 

According to Figure 4-a, the customers' 
satisfaction rate is improved as the total travelling 
distance cost is deteriorated. Figure 4-b illustrates 
the population distribution of this problem with 
respect to the distance and waiting cost. Moreover, 
the relationship of the waiting cost and customers' 
satisfaction rate for problem R103 is illustrated in 
Fig. 4-c. In spite of the designed algorithm and 
operators (SIO) trying to improve the satisfaction 
rate of customers by using the current waiting time, 
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these two objectives are independent of each other. 
This is due to the nature of the first categories of the 
Solomon's instances that have much lower waiting 
time than the second classes in general. For 
example, in problem R204 the summation of the 
customers' satisfaction rate is increased by more 
waiting cost.  

 

 

 

Figure 4: Comparison of non-dominated solutions of 
problem R103. 

For more appropriate comparison, the 
performance of proposed evolutionary method is 
also compared with standard NSGA-II. The 
principals and the concept of this method could be 
found in Deb (2002). Table 2 presents the average 
results of the non-dominated solutions found by 
these methods. It should be noted that the 

comparisons are done on whole data sets of Class R 
and some of which are reported in this Table for the 
sake of brevity. Moreover, the deviation between the 
average results of each method on whole data sets of 
Class R is listed in the last rows.   

Table 2: Comparison between the proposed evolutionary 
method and NSGA-II. 

Pro. 
Proposed Method – Average Results 

Distance 
Cost 

Vehicle # 
Customers' 
satisfaction 

Waiting 
Cost 

R103     
R108     
R203     
R204     

Pro. 
NSGA-II – Average Results 

Distance 
Cost 

Vehicle # 
Customers' 
satisfaction 

Waiting 
Cost 

R103     
R108     
R203     
R204     

Data 
Sets 

Deviation (%) of proposed method from 
NSGA-II 

Distance 
Cost 

Vehicle # 
Customers' 
satisfaction 

Waiting 
Cost 

Class 
R 

- 4.8 -1.1 -6.1 -15.9 

Based on our analysis the computational efforts 
of proposed method are near to NSGA-II. Moreover 
the average results found by the proposed method 
represents the competitive improvements according 
to Table 2. The deviations are also calculated based 
on the findings and the negative values represent the 
improvement occurred by the proposed method in 
comparison with NSGA-II. According to this table 
the average difference between the proposed method 
and NSGA-II illustrates the improvement of 4.8% in 
the first objective, 1.1% in the second, 6.1% in the 
third, and 15.9% in the fourth objective. The 
significant improvement on the last two functions is 
due to use of Satisfaction Improvement Operator 
(SIO) that tries to increase satisfactions without 
increasing the waiting time.  

Now, the proposed model should be checked in 
a dynamic structure. As observed before, at the end 
of each stage ݐ௜ , a set of non-dominated solutions 
are generated. By the displaced ideal method 
considering the LP metric, one solution is chosen 
from all non-dominated solutions ( ௜ܵାଵ ) to 
implement in the next time slice and 
withinሾݐ௜ାଵ,  ௜ାଶሿ. Moreover, the call-in time forݐ
each customer is uniformly distributed in the 
following interval: 
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 (2) 
௜ݐܿ ൌ ሾ0.5 ∗ minሺ݁௜, ሾ݈௜ െ ଴௜ݐ െ 2∆ሿሻ,	 

min	ሺ݁௜, ሾ݈௜ െ ଴௜ݐ െ 2∆ሿ)] 

Where, ݐ଴௜ is the travelling time from the depot 
to customer i, and ∆ is the time between two 
consecutive decision stages. It should be noted that 
all the requests or customers with non-positive call-
in time are considered as determined requests. 

The results are reported in Table 3. According 
to this Table, each instance is solved in two different 
cases. In the first case, the planning horizon is 
divided into three decision stages (∆ൌ 3), and in the 
other case it is divided into five decision stages 
(∆ൌ 5). Obviously, the time between two 
consecutive decision stages (∆) of the first case is 
less than that in the second case.   

Table 3: Testing results of the Solomon's instances for the 
multi-objective dynamic VRPFTW. 

Pro. 
∆ൌ 3 

Distance 
Cost 

Vehicle # 
Customers' 
satisfaction 

Waiting 
Cost 

R103 1833.12 20 36 608.12 
R108 1231.8 13 50.7 355.1 
R203 1820 9 46.6 2011 
R204 1001.5 6 47.1 1520.01 
RC101 2219.1 21 36.1 788.5 
RC105 2010.5 20 42.5 720.5 

Pro. 
∆ൌ 5 

Distance 
Cost 

Vehicle # 
Customers' 
satisfaction 

Waiting 
Cost 

R103 1854.32 20 36.5 622.71 
R108 1596.4 15 52 374.2 
R203 1801.2 9 47 1987 
R204 986.82 6 48 1486.8 
RC101 2275.4 22 36.3 743.32 
RC105 2096.1 20 43 714.2 

According to this Table, the quality of the 
solutions in the dynamic environment is generally 
lower than solutions in a static environment. 
Moreover, this quality is strongly dependent on the 
method by which customers entering and calling to 
the decision system. Moreover, according to this 
table, the quality of the solutions is also dependent 
on the amount of time between two consecutive 
decision stages (∆) too. This quality is improved 
whenever this stage is longer, because the algorithm 
has more time to solve the partial static model. 
Therefore, in the systems with a high degree of 
dynamism, the reaction time for services to real-time 
requests is very short, and thus therefore the cost of 
finding a new solution is increased. In this situation, 
when ∆ is very small, the simple heuristics (e.g., 
insertion methods) can be used. 

 

5 CASE STUDY 

The proposed model is under implementation for 
locomotives routing and assignment for railway 
transportation division of MAPNA Group. In this 
paper the results obtained on this real application for 
the routes of Tehran – Mashhad are reported briefly. 
This route is one of the most critical and important 
routes and the two main and the largest cities of 
country are connected by this railway route. In this 
model the trains are considered as customers and 
they are made up at different stations of network and 
they need to receive locomotive based on the time 
table of train scheduling. Moreover, the locomotives 
are located at some central depots and they depart 
toward the trains to move them from their origins to 
their destinations based on the train scheduling 
tables. The train scheduling plan of Tehran – 
Mashhad railway routes is illustrated in Figure 5. By 
this plan all the fuzzy time windows for trains could 
be identified. 

 

Figure 5: train scheduling plan of Tehran - Mashhad. 

In this case, the trains with low priorities are 
considered to be having the classical time windows. 
Moreover, the trains with highly priority have the 
fuzzy time windows and the desired time is nearest 
to the earliest dispatching time of each train. The 
dynamic trains which they made up out if pre-
defined plan use the narrow fuzzy time windows, 
which indicate the willingness of these requests in 
order to receive their services as soon as possible. At 
present, 185 trains with different priorities are in 
Tehran – Mashhad railway routes and more than 126 
locomotives are required to serve them. The 
proposed approach is applied on this route when the 
two dynamic trains with different priorities are made 
up every day. Moreover the model is implemented 
for a week by the proposed dynamic structure and 
detailed schedules of required locomotives are 
planned. Based on the results, only 78 locomotives 
are required to serve the whole trains of this route 
and the total operational costs related to locomotives 
is significantly decreased. The waiting time of 

Multi-objective�Evolutionary�Method�for�Dynamic�Vehicle�Routing�and�Scheduling�Problem�with�Customers'�Satisfaction
Level

97



locomotives is totally decreased by 35% and it has a 
significant impact on reducing costs as well. 
Moreover, the detailed schedule of each locomotive 
including the departure time, trains in its 
commitments, planned routes, waiting times and etc 
is corresponding to the routes found by the proposed 
VRPTW and they are identified for this route.    

6 CONCLUSIONS 

In this paper, a new multi-objective dynamic vehicle 
routing and scheduling problem has been presented 
and solved. To solve this multi-objective model, an 
evolutionary algorithm has been and its performance 
has been analyzed on various test problems. The 
results show the efficiency and effectively of 
proposed method. Finally, the real case study has 
been considered by the proposed model as well and 
it has been analyzed. 
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