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Abstract: The plane wave diffraction by a thin material strip is analyzed using the Wiener-Hopf technique together 
with approximate boundary conditions. An asymptotic solution is obtained under the condition that the 
thickness and the width of the strip are small and large compared with the wavelength, respectively. The 
scattered field is evaluated asymptotically based on the saddle point method and a far field expression is 
derived. Scattering characteristics of the strip are discussed via numerical results of the radar cross section. 

1 INTRODUCTION 

The analysis of the scattering by material strips is an 
important subject in electromagnetic theory and 
radar cross section (RCS) studies. Volakis (1988) 
analyzed the plane wave diffraction by a thin 
material strip using the dual integral equation 
approach (Clemmow, 1951) and the extended 
spectral ray method (Herman and Volakis, 1987) 
together with approximate boundary conditions 
(Senior and Volakis, 1995). In his 1988 paper, 
Volakis first solved rigorously the diffraction 
problem involving a single material half-plane, and 
subsequently obtained a high-frequency solution to 
the original strip problem by superposing the singly 
diffracted fields from the two independent half-
planes and the doubly/triply diffracted fields from 
the edges of the two half-planes. Therefore his 
analysis is mathematically not rigorous from the 
viewpoint of boundary value problems, and may not 
be applicable unless the strip width is relatively 
large compared with the wavelength. 

In this paper, we shall consider the same problem 
as in Volakis (1988), and analyze the plane wave 
diffraction by a thin material strip for both H and E 
polarizations with the aid of the Wiener-Hopf 
technique. Analytical details are presented only for 
the H-polarized case, but numerical results will be 
shown for both H and E polarizations. 

Introducing the Fourier transform of the scattered 
field and applying approximate boundary conditions 

in the transform domain, the problem is formulated 
in terms of the simultaneous Wiener-Hopf equations, 
which are solved exactly via the factorization and 
decomposition procedure. However, the solution is 
formal since branch-cut integrals with unknown 
integrands are involved. We shall further employ an 
asymptotic method established by Kobayashi (2013) 
to derive a high-frequency solution to the Wiener-
Hopf equations, which is expressed in terms of an 
infinite asymptotic series and accounts for all the 
higher order multiple diffraction effects rigorously. 
It is shown that the higher-order multiple diffraction 
is explicitly expressed in terms of the generalized 
gamma function introduced by Kobayashi (1991). 
Our solution is valid for large strip width and 
requires numerical inversion of an appropriate 
matrix equation. The scattered field in the real space 
is evaluated asymptotically by taking the Fourier 
inverse of the solution in the tranform domain and 
applying the saddle point method. It is to be noted 
that our final solution is uniformly valid in incidence 
and observation angles. Numerical examples of the 
RCS are presented for various physical parameters 
and far field scattering characteristics of the strip are 
discussed in detail. Some comparisons with Volakis 
(1988) are also given. The results presented in this 
paper provide an important extension of our earlier 
analysis of the same problem (Koshikawa and 
Kobayashi, 2000; Nagasaka and Kobayashi, 2013). 

The time factor is assumed to be ie tw- and 
suppressed throughout this paper. 
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2 FORMULATION OF THE 
PROBLEM 

We consider the diffraction of an H-polarized plane 
wave by a thin material strip as shown in Fig. 1, 
where the relative permittivity and permeability of 
the strip are denoted by re  and rm , respectively. Let 

the total magnetic field ( , )[ ( , )]t
yx z H x zf º  be 

 ( , ) ( , ) ( , ),t ix z x z x z     (1) 

where ( , )i x zf   is the incident field given by 

 i 0 0( sin cos )( , ) e k x zi x z      (2) 

for 00 / 2    with 1/2
0 0[ ( ) ]k     being the 

free-space wavenumber. The term ( , )x z  in (1) is 
the unknown scattered field and satisfies the two-
dimensional Helmholtz equation. 

If the strip thickness is small compared with the 
wavelength, the material strip can be replaced by a 
strip of zero thickness satisfying the second order 
impedance boundary conditions (Senior and Volakis, 
1995). Then the total electromagnetic field satisfies 
the approximate boundary conditions as given by 
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Figure 1: Geometry of the problem. 

with 0Z  and 0Y being the intrinsic impedance and 
admittance of free space, respectively. In the 
following, we shall assume that the medium is 
slightly lossy as in i1 2k kk   with 2 10 .k k   
The solution for real k  is obtained by letting 

2 0k    at the end of analysis.  
In view of the radiation condition, it follows that 

 2 0| |cos( , ) (e )k zx z O    (6) 

as .z ® ¥  We define the Fourier transform ( , )x aF  

of the scattered field ( , )x zf  with respect to z  as 

 i d1/2( , ) (2 ) ( , )e ,zx x z z  





    (7) 

where i iRe Im( ) .        Then we see 

that ( , )x   is regular in the strip 2 0cosk   of 
the  -plane. Introducing the Fourier integrals as 

 i d1/2 ( )( , ) (2 ) ( , )e ,z a

a
x x z z  




 
      (8) 
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it follows that ( , )x   and ( , )x   are regular in 

the half-planes 2 0cosk   and 2 0cos ,k   
respectively, whereas 1( , )x   is an entire function. 
In view of the notation as given by (8) and (9), 

( , )x   is expressed as follows: 

 

i
1

i

( , ) e ( , )

e ( , )

( , )

.

a

a

xx x

x





 







   

  (10) 
Taking the Fourier transform of the two-

dimensional Helmholtz equation, we find that 
  2 2 2d /d ( , ) 0x x     (11) 

for any   in | | 2 0cos ,k   where 2 2 1/2( ) .k  

Since   is a double-valued function of ,  we 
choose a proper branch of   such that   reduces to 

ik  when 0.   According to the choice of this 
branch, we can show that Re 0   for any   in the 

strip | | 2.k  Equation (11) is the transformed wave 
equation. Solving (11) and applying the boundary 
conditions, we derive, after some manipulations, that 
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Equations (12) and (13) are the Wiener-Hopf 
equations satisfied by unknown spectral functions, 
where ( )( )U   and ( )( )V   are regular in the upper 

half-plane 2 0cosk   except for a simple pole at 

0cos .k   

3 FACTORIZATION OF THE 
KERNEL FUNCTIONS 

The solutions of (12) and (13) require factorization 
of the kernel functions defined by (14) and (15) in 
the form 
 ( ) ( ) ( ) ( ) ( ),M M M M M           (24) 

 ( ) ( ) ( ) ( ) ( ).K K K K K           (25) 
In order to factorize (14) and (15), let us introduce 
the auxiliary functions ( )nN a  for 1,2,3n =  as 
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Substituting (26) into (14) and (15), it follows that 
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Applying the method developed by Noble (1958), 
( )nN   for 1,2,3n   are factorized as 
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From (29)-(31), we find that the split functions 
( )M   and ( )K   are expressed as follows: 
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4 FORMAL SOLUTION 

Multiplying both sides of (13) by ie / ( )a Ka a±
a

 and 
applying the decomposition procedure with the aid 
of the edge condition, we derive, after some 
manipulations, that 
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where c  is a constant such that 0 c 

2 0cos ,k   and 
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It is verified from (17), (33), and (35) that the 
singularities associated with the integral in (34) for 
Im c   are a simple pole at 0cosk   and a 
branch point at k  . We now choose a branch cut 
emanating from k   as a straight line that is 
parallel to the imaginary axis and goes to infinity in 

Third International Conference on Telecommunications and Remote Sensing

96



 

the upper half-plane. Evaluating the integral by 
enclosing the contour into the upper half-plane, we 
derive that 
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Equation (36) provides the exact solution to the 
Wiener-Hopf equation (13), but it is formal in the 
sense that the branch-cut integrals , ( )s dv  with 
unknown integrands are involved. 

Equation (12) can be solved in a similar manner, 
but the solution will not be discussed here. In the 
next section, we shall derive explicit high-frequency 
solutions to the Wiener-Hopf equations. 

5 HIGH-FREQUENCY 
ASYMPTOTIC SOLUTION 
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In (40), several quantities are defined by 
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In (46), 1( , · )·p  is the generalized gamma 

function (Kobayashi , 1991) defined by 
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for Re 0, 0, arg ,u v v    and positive integer 
.m  Applying the method established by Kobayashi 

(2013) to the integral in (36), we can obtain a high-
frequency asymptotic expansion of (36) with the 
result that 
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We can show that the unknowns ,vs vd
nf  for 0,n 

1,2,  in (48) satisfy the system of linear algebraic 
equations as in 
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for 0,1, ,2,m  
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Equation (48) together with the matrix equations 
(50) provides a high-frequency asymptotic solution 
of (40) for the strip width large compared with the 
wavelength. Making use of the above results and 
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carrying out further manipulations, we finally arrive 
at an explicit asymptotic solution to the Wiener-
Hopf equation with the result that 
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 (55) 

as .ka    It is to be noted that this solution 
rigorously takes into account the multiple diffraction 
between the edges of the strip. A similar procedure 
may also be applied to (12) for a high-frequency 
solution but the details will not be discussed here. 

6 SCATTERED FAR FIELD 

Using the boundary condition, the scattered field in 
the Fourier transform domain is expressed as 

 ( , ) ( )e ,
x

x
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The scattered field in the real space is obtained by 
taking the inverse Fourier transform of (56) 
according to the formula 
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where c  is constant such that 2 0cos .c k   We 

introduce the cylindrical coordinate ( ),   centered 
at the origin as 
 sin , cosx z      (59) 

for 0 .    Then a far field expression of (58) 
can be derived with the aid of the saddle point 
method, leading to 
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 (60) 

as .k    Equation (60) is uniformly valid for 
arbitrary incidence and observation angles. 

7 NUMERICAL RESULTS AND 
DISCUSSION 

We shall now present numerical results on the RCS 
for both H and E polarizations, and discuss far field 
scattering characteristics of the strip in detail. The 
normalized RCS per unit length is defined by 

 
2

/ lim / ik


   


    
 (61) 

with   being the free-space wavelength.  
Figures 2 shows the bistatic RCS as a function of 

observation angle , where the width and the 
thickness of the strip are taken as 2 2 ,7a   and 

5 ,0.0b   respectively. In numerical computation, 
we have chosen the ferrite with i2.5 1.25,r  

i1.6 0.8r    as an example of existing lossy 

materials. The incident angle 0  is fixed as 60 .  It is 
seen from the figure that the RCS shows noticeable 
peaks along the reflected ( 0 )12   and incident 

( 1 0 )2    shadow boundaries. We also notice 
that the RCS exhibits sharp oscillation with an 
increase of the strip width as can be expected. 
Comparing the RCS characteristics between H and E 
polarizations, we observe that the RCS level for H 
polarization is lower than that for E polarization in 
the reflection region 80 )1 0(    but the results 
for both polarizations show close features in the 
shadow region ( 180 0 ).     

Figure 3 shows the monostatic RCS versus 
incidence angle 0

,  where the same parameters as in 
Fig. 2 have been chosen for computation. We see 
from the figure that the RCS level for H polarization 
is lower than that for E polarization except in the 
neighbourhood of the specular reflection direction at 

0 90 .    Figure 4 shows comparison with the 
results obtained by Volakis (1988), where the strip 
dimension is 2 2 ,a  5 ,0.0b  and the material 
parameters are i01.5 .1,r   i4.0 0.4.r    It 
is seen from the figure that our results agree well 
with Volakis’s results over 0 9 ,045     but there 

are some discrepancies for 0 4 .50     These 
discrepancies are perhaps due to the fact that 
Volakis’s solution is constructed based on the 
solutions for the two independent half-planes and 
becomes less accurate at relatively low frequencies
(2 ).2a    
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(a) 2 2 .a   
 
 
 
 
 
 
 
 
 
 
 

(b) 2 7 .a   
Figure 2: Bistatic RCS versus observation angle for

i i0 0.05 2.560 , , 1.2 1.65, 0.8.r rb          
 
 
 
 
 
 
 
 
 
 
 
 

(a) 2 2 .a   
 
 
 
 
 
 
 
 
 
 
 

(b) 2 7 .a   
Figure 3: Monostatic RCS versus incidence angle for 

i i, 1.25,0.0 05 2.5 1. . .6 8r rb         

 
 
 
 
 
 
 
 
 

 
Figure 4: Monostatic RCS versus incidence angle for H 

polarization, 2 2 ,a  5 ,0.0b  i1.5 0.1,r   r 
i4.0 0.4  and its comparison with Volakis (1988). 

8 CONCLUSIONS 

In this paper, we have analyzed the plane wave 
diffraction by a thin material strip for both H and E 
polarizations using the Wiener-Hopf technique and 
approximate boundary conditions. Employing a 
rigorous asymptotics, a high-frequency solution for 
large strip width has been obtained. Illustrative 
numerical examples on the RCS are presented, and 
far field scattering characteristics of the strip have 
been discussed in detail. Some comparisons with the 
other existing method have also been provided. 
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