
 
ACKNOWLEDGEMENTS 
Author thanks organizations and scientists who are 
developing the IRI model, providing data of SPIDR, 
JPL,  CODE,  UPC,  ESA,  and  Dr  M.  Hoque  for 
detailed comments on the NGM model. 
REFERENCES 
Arikan, F., Erol C.B., Arikan O., Regularized estimation 
of  vertical  total  electron  content  from  Global 
Positioning System data. 2003. J. Geophys. Res., 108, 
A12, 1469, doi:10.1029/2002JA009605, 12p.  
Chen,  K.,  Gao  Y.  Real-time  precise  point  positioning 
using single frequency data. Proceedings of IONGNSS 
18
th
  International  Technical  Meeting  of  the  Satellite 
Division, Long Beach, CA, 2005, 1514-1523. 
Goodman,  J.M.,  2005.  Operational  communication 
systems and relationships to the ionosphere and space 
weather. Adv. Space Res., 36, 2241–2252. 
Gulyaeva,  T.L.,  2011.  Storm  time  behavior  of  topside 
scale  height  inferred  from  the  ionosphere-
plasmosphere model driven by the F2 layer peak and 
GPS-TEC observations. Adv. Space Res., 47, 913-920. 
Gulyaeva,  T.L.,  Arikan  F.,  Hernandez-Pajares  M., 
Stanislawska I. 2013. GIM-TEC adaptive ionospheric 
weather  assessment  and  forecast  system.  J.  Atm. 
Solar-Terr. Phys., 102, 329-340.  
Gulyaeva,  T.L.,  Bilitza  D., 2011. Towards  ISO  standard 
Earth ionosphere and plasmasphere model. In: Larsen, 
R.J. (Ed.), New developments in the standard model. 
NOVA Publishers, USA, 11–64. 
Gulyaeva,  T.L.,  Stanislawska,  I.,  2008.  Derivation  of  a 
planetary ionospheric storm index. Ann. Geophys., 26, 
2645–2648. 
Hajj,  G.A.,  Romans  L.J.,  1998.  Ionospheric  electron 
density profiles obtained with the Global Positioning 
System: results from the GPS/MET experiment. Radio 
Sci., 33, 175–190. 
Hernandez-Pajares, M., Juan, J. M., Orus, R., Garcia-Rigo, 
A.,  Feltens,  J.,  Komjathy,  A.,  Schaer,  S.  C.,  and 
Krankowski,  A.:  The  IGS  VTEC  maps:  a  reliable 
source  of  ionospheric  information  since  1998.  J. 
Geod., 2009, 83, 263–275. 
Hernandez-Pajares, M., Juan, J.M., Sanz, J., 1997. High-
resolution  TEC  monitoring  method  using  permanent 
ground GPS receivers, Geophys. Res. Lett., 24, 1643-
1646.  
Hoque, M.M., Jakowski N., 2011. A new global empirical 
NmF2  model  for  operational  use  in  radio  systems. 
Radio Sci., 46, RS6015, 1-13. 
Hoque, M.M., Jakowski N., 2012. A new global model for 
the  ionospheric  F2  peak  height  for  radio  wave 
propagation. Ann. Geophys., 30, 797-809. 
Houminer,  Z.,  Soicher  H.,  1996.  Improved  short  –term 
predictions  of  foF2  using  GPS  time  delay 
measurements. Radio Sci., 31(5), 1099-1108. 
Ivanov, V.B., Gefan G.D., Gorbachev O.A., 2011. Global 
empirical modeling of the total electron content of the 
ionosphere  for  satellite  radio  navigation  systems.  J. 
Atm. Solar-Terr. Phys., 73, 1703–1708.  
Jakowski, N., Hoque M.M., Mayer C. A new global TEC 
model  for  estimating  transionospheric  radio  wave 
propagation errors, Journal of Geodesy, 2011, 85(12), 
965-974. 
Jakowski, N., Sardon E., Engler E., Jungstand A., Klahn 
D.,  1996.  Relationships  between  GPS-signal 
propagation  errors  and  EISCAT  observations.  Ann. 
Geophys., 14, 1429-1436. 
Jakowski,  N.,  Stankov  S.M.,  Schlueter  S.,  Klaehn  D., 
2006. On developing a  new  ionospheric  perturbation 
index for space weather operations. Adv. Space Res., 
38, 2596-2600. 
Kakinami,  Y.,  Chen  C.H.,  Liu  J.Y.,  Oyama  K.-I.,  Yang 
W.H.,  Abe  S.,  2009.  Empirical  models  of  total 
electron  content  based  on  functional  fitting  over 
Taiwan  during  geomagnetic  quiet  condition.  Ann. 
Geophys., 27, 3321-3333. 
Klobuchar,  J.A.,  1987.  Ionospheric  time-delay  algorithm 
for single-frequency GPS users. IEEE Transactions on 
aerospace  and  electronic  systems.  1987AES-23(3), 
325-331. 
Lastovicka, J. Are trends in total electron content (TEC) 
really  positive?  J.  Geophys.  Res.:  Space  Physics, 
2013, 118, 3831–3835, doi:10.1002/jgra.50261. 
Lean,  J.,  Emmert  J.T.,  Picone  J.M.,  Meier R.  R.  Global 
and regional trends in ionospheric electron content. J. 
Geophys.  Res.,  2011,  116,  A00H04,  doi:10.1029 
/2010JA016378. 
Maltseva, О.A., Mozhaeva N.S, Zhbankov G.A., 2012a. A 
new model of the International Reference Ionosphere 
IRI  for  telecommunication  and  navigation  systems. 
Proceedings of the First International Conference on 
Telecommunications  and  Remote  Sensing,  Sofia, 
Bulgaria  29-30  August  2012,  129-138, 
http://www.math.bas.bg/ursi/ICTRS2012 
proceedings.pdf 
Maltseva, О.A., Mozhaeva N.S, Poltavsky O.S., Zhbankov 
G.A.,  2012b.  Use  of  TEC  global  maps  and  the  IRI 
model  to  study  ionospheric  response  to  geomagnetic 
disturbances. Adv. Space Res., 49, 1076-1087. 
Maltseva, O. A., Zhbankov G. A., Mozhaeva N.S., 2013a. 
Advantages  of  the  new  model  of  IRI  (IRI-Plas)  to 
study  ionospheric  environment.  Adv.  Radio  Sci.,  11, 
907–911, doi:10.5194/ars-11-1-2013. 
Maltseva,  О.A.,  Mozhaeva  N.S,  T.V.  Nikitenko,  2013b. 
Validation of the Neustrelitz Global Model according 
to  the  low  latitude  ionosphere.  Adv.  Space  Res., 
http://dx.doi.org/10.1016/j.asr.2013.11.005. 
Maltseva, O., Mozhaeva N., Vinnik E., 2013c. Validation 
of two new empirical ionospheric models IRI-Plas and 
NGM describing conditions of radio wave propagation 
in  space.  Proceedings  of  Second  International 
Conference  on  Telecommunications  and  Remote 
Sensing,  Noordwijkerhout,  The  Netherlands,  11-12 
July, 109-118. 
Mukhtarov,  P.,  Pancheva  D.,  Andonov  B.,  Pashova  L., 
2013a.  Global  TEC  maps  based  on  GNSS  data:  1. 
Third International Conference on Telecommunications and Remote Sensing