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Abstract. Presented in this paper numeric experiments on random, relative 
large travelling salesman problems, show that the passive neural networks can 
be used as an efficient, dynamic optimization tool for combinatorial 
programming. Moreover, the passive neural networks, when implemented in 
VLSI technology, could be a basis for structure of bio-inspired processors, for 
real-time optimizations.  

1 Introduction 

Optimization programming and in particular combinatorial optimization, is an 
essential tool for engineering design. It is well known that a standard for 
combinatorial optimization is Traveling Salesman Problem (TSP), classified as  
NP-hard. 

Methods of TSP solving could be divided into two groups. The first group 
consists of algorithmic methods, among which special attention is given to heuristic 
algorithms – as evolutionary (EA) and ant. The second group is based on the energy 
minimization principle. In that group of methods special attention is focused on 
Hopfield neural networks, whose second use – beside implementations of 
autoassociative memories – are optimization tasks. According to our knowledge 
Hopfield neural networks have not been commercially implemented as physical 
objects, being primarily a mathematical model. A physical implementation of the 
energy minimization system is so-called “commercial quantum computer” − D-Wave. 
Currently the available D-Wave computers are able to solve TSP for 6 cities [1]. 

The purpose of this paper is to point out how passive neural networks used as 
energy minimizers set up a new structure for combinatorial optimization problems 
solving. Using the model of the passive neural network as an energy minimizer is not 
new [2]. The considerations presented in this paper are modified version of the above 
mentioned research and can be seen as a justification for current search for power 
efficient processors with computational efficiency unattainable by traditional 
computers.  

2 D-Wave Quantum Computers – Energy Minimizer 

It seemed that the quantum computer concept, due to physical principles and 
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technological limitations, would remain only a theoretical model. No ability of 
quantum computers implementation was claimed by one of the leading physicists in 
the following [3] “No quantum computer can ever be built that can outperform a 
classical computer if the latter would have its components and processing speed 
scaled to Planck units”. 

The general premise for such a statement is unavoidable presence of decoherence 
phenomena for temperature T > 0. Meanwhile,  past few years the concept of quantum 
computers has been turned into a physical system, which is nowadays known as the 
D-Wave system. Such a system, regardless of doubts to its truly quantum nature is 
currently available on the market. The basic property of the D-Wave system is 
optimization problems solving which can be defined as Ising-like objective function. 
Thus the D-wave system, treated as a physical network of coupled qubits, solves 
optimization problems by achieving the state of minimum energy. The introductory 
description of the numerical experiments done by D-Wave computers can be found in 
[1] paper. 

3 Ising’s Models 

Ising’s models are known in statistical mechanics as a simplified description of 
ferromagnetism. One considers system of N nodes with the assigned values +1 or –1 
(spin-up or spin-down, respectively) to the spin variables si, i = 1,…, N. The set of 
numbers {si} determines a configuration of the entire system and its energy as 
follows: 
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where <i, j> is a pair of the closest neighboring spins, <i, j> = <j, i>, B is an external 
magnetic field (energy constant) and ij is the interaction energy. 

In the case of the D-Wave computer, its quantum processor is created by the 
coupled qubits network, so the Hamiltonian of such a network is given as follows: 
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where (i,j) are pairs of coupled qubits, Si is an initial state of the i-th qubit (0 or 1), Jij 
is an interaction energy and hi is  i-th qubit bias energy. 

By so called adiabatic quantum annealing, the network is aiming at the energy 
minimum described by Jij and hi constants. It is easy to find out, that the minimum of 
the objective function for such a model is given as 
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Hence all the optimization problems, for which formulas (2) and (3) could be used, 
are implementable by D-Wave computer. 

70



Thus, TSP optimization problem given by the objective function and constraints as 
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can be transformed into the form of the D-Wave Hamiltonian (2). The constants dij 
denote the known distances between cities. The variable yij is equal to 1 when a 
salesman moves directly from the city i to the city j, otherwise it is equal to 0. The 
objective function (4) achieves the minimum value for all n-cycles representing the 
salesman routes. The constraint (6) means that the i-th city occurs only once on the 
salesman path. The constraint (5) excludes a possibility of simultaneous occurrence of 
two or more cities at j-th position in n-cycle. 

The standard formulation of optimization programming for the objective function 
(4) subject to the constraints (5) and (6), is to create appropriate Lagrange function, 
i.e. obtained by summing objective function and the penalties function with the 
appropriate weights. 

The Hamiltonian, given by formula (2) can be obtained by implementation of the 
stable dynamic system, whose elements (e.g. qubits) are related to the interactions 
matrix {Jij}. Thus the matrix {Jij} is a square symmetric matrix, whose non-diagonal 
elements describe qubits interaction energy and diagonal elements describe qubits 
own energy. It is easy to note, that in  case of TSP, the interaction matrix consists of 
distances dij, modified by constraints. This type of matrix has been proposed by 
Hopfield and Tank, where interaction matrix takes the form of the weight matrix 
(connections) between neurons with step activation functions {0,1} [4]. 

4 TSP Solutions obtained by Using Passive Neural Networks 

A passive n-neuron network is a dynamic system, described by the state-space 
equation [5] 

ሶܠ ൌ ሻܠሺߠ܅ ൅ ۷۰ ൅  (7) , ܠെ߱଴܌
 

where x = [x1,…,xn]
T is a state vector, W is a weight matrix, θ(x) = [θ(x1), …, θ(xn)]

T 
is a neuron activation functions vector, IB is a bias vector of the network, d is an input 
data vector, 0 > 0 – integrator losses. Activation functions are passive, fulfilling 
condition μ1 ≤ θ(xi) / xi ≤ μ1; μ1, μ1 ∈ ሾ0,∞ሿ. In particular, activation functions could 
be unity step functions. 

A special feature of such a neural network is the following weight matrix  

sa WWW  , (8) 
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where Wa is an antisymmetric component, Ws is a symmetric component and 
ߝ ൌ ݐݏ݊݋ܿ ∈ ܴ. 

The primary usage of the passive neural network is an associative memory 
implementation 

ۻ ൌ ሼܕଵ,ܕଶ,…  ௞ሽ, (9)ܕ,

where vectors mi for i = 1,…,k are points of equilibrium. The essence of such an 
implementation is the following learning mechanism: 

1. for  = 0 (equation (8)) network weight matrix is antisymmetric. Vectors mi 
(equation (9)) are becoming isolated points of equilibrium. 

2. for  ≠ 0 the symmetric component Ws secures the compensation of the 
network losses and as a result one obtains the state bifurcations to equilibrium points 
୧ܕ ∈   .୧ are becoming the centres of attractionܕ This means that the selected .ۻ	

The above learning mechanism refers to genetic mechanisms such as 
recombination – antisymmetric component, and selection – symmetric component. 

It is worth noting that the key problem of this paper can be formulated, as follows: 
By application of passive neural networks with the connection matrix (8), it is 

possible to separate the realization of the objective function (4) and constraints (5) 
and (6). Hence the formulation of TSP solution by the passive neural network 
structure is as follows: 

Given n cities localizations and distances dij between cities, then in Eq.(4) 
variables ݕ௜௝ ∈ ሼ0,1ሽ, ݅, ݆ ൌ 1,… , ݊  describe i-th city at j-th position in n cycle, 
respectively. Assigning to each city, neural subnetwork containing n output neurons 
with activation step functions ߠሺ∙ሻ ∈ ሼ0,1ሽ and denoting neurons outputs  
௜௝ሺ∙ሻߠ ≡ ,	௜௝ݕ ݅, ݆ ൌ 1,… , ݊, one obtains the following statement 1. 

Statement 1. Given memory matrix M, where dim M = [(n+2) × n]: 
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(10) 

then it can be implemented by using a lossless (ω0 = 0), autonomous (d = 0) neural 
subnetwork with weight matrix Wi[(n + 2) × (n + 2)] 
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(11) 

 

under conditions of a bias vector, as follows: 
۷۰ ൌ ሾ0, ଵݓ,0…0 െ ଵݓ଴,െሺݓ െ ଴ሻݓ ൅ ∆ሿ். (12) 

Indeed ܑ܅ ∙ ܑܕ ൅ ۷۰ ൌ ૙, where ܑܕ ∈  .ۻ
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It is easy to notice that only one of the outputs ij(·) of the output neurons can be 
in the high state (+1). 

Statement 2. By compatible connections of n-subnets described in statement 1, 
one obtains a neural network consisting of n2 – output neurons and 2n – hidden 
neurons. The main property of such a network is a high state (+1) of only one neuron 
in a group of n-neurons representing the i-th city. Hence, such a network fulfils the 
constraint (6) for TSP. 

It should be noted that the same mechanism of generation of the vectors {0,1} can 
also be used to enforce a high state (+1) at the output of any group of neurons. Thus, 
it is possible to implement the constraints (5) for TSP, too. Since for the physical 
network 0 > 0 in Eq.(7), the lossy term must be compensated for. Hence one obtains: 

Statement 3. The autonomous neural network (i.e. d ≡ 0 in equation (7)), 
described by the state-space equation 

ሶܠ ൌ ሺܖ܅ ൅ ݀݅ܽ݃ሾߛ௜ሿሻߠሺܠሻ ൅ ۷۰ െ ߱଴ܠ , 
(13) 

where Wn is the weight matrix [(n2+4n) × (n2+4n)], structured accordingly to 
statement 1 and statement 2, IB is the bias vector, γi > 0 is compensation of network 
losses, 0 – integrator losses,  
is a generator of vectors {0,1}, fulfilling constraints (5) and (6) of the TSP 
optimization problem. 

For n = 2 the structure of the weight matrix Wn is as follows: 
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۷஻ ൌ ሾ0,0,0,0, ,ܤ െܤ ൅ ∆, ܤെ,ܤ ൅ ∆, ܤെ,ܤ ൅ ∆, ܤെ,ܤ ൅ ∆ሿ், 

where B = w1 − w0 > 0,  > 0. 
 

Matrix Wn retains the structure of W2 for any n (n – number of cities). 
Note 1 
It should be noted that neural network described in statement 3 is lossless with 

equilibria, given by vectors {0,1} fulfilling TSP constraints, and with coexisting limit 
cycles. 

As mentioned above, the Hamiltonian given by equation (2) can be obtained by 
implementation of the stable dynamic system. Hence for TSP the square symmetric 
matrix Ws={[dij]}, i, j = 1,…,n is formed wherein elements describe interactions 
energy of the output neurons. 

Submatrices [dij] are (n×n) blocks of the matrix Ws, wherein [dii] = [0]. The 
matrix Ws contains n2 of such submatrices. Hence one obtains: 

Statement 4. The autonomous neural network described by the state-space 
equation 
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ሶܠ ൌ ሺ܅୬ ൅ ݀݅ܽ݃ሾߛ௜ሿ ൅ ሻܠሺߠୱ଴ሻ܅ߝ ൅ ۷۰െ߱଴(14) , ܠ 
 

where Ws0 is a symmetric matrix containing matrix Ws supplemented by zeroes 
elements to the dimension [(n2 + 4n) × (n2 + 4n)] (remaining components of equation 
(14) are the same as in equation (13)), is asymptotically stable for  < 0. 

Global equilibrium point of such a network is determined by the minimum of the 
energy dissipated by the network.  

An example of the Ws0 matrix structure, for three cities (n = 3) is as follows: 
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for n = 3, dimWs0 = (9 + 12) × (9 + 12). 
Statement 5. According to the Note1, the total energy E(t), t > 0, dissipated in the 

network is given as follows: 
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where E(t) is the energy of output neurons interactions and  < 0. 
Since dE / dt < 0, the system described by equation (14) is asymptotically stable. 

The minimum of energy E(t) is determined by 

min܅்ߠ௦଴ߠ ൌ min ෍ ݀௜௝ݕ௜௝ , ௜௝ߠ ൌ ௜௝ݕ

௡

௜,௝ୀଵ

, 
 

(16) 

which means that the minimum of the objective function for TSP has been reached. 

5 Example of the TSP Solution 

In further research of the network properties, TSP for n = 30 cities was verified. The 
cities location is presented in Fig. 1. 
 

For solving above issue of the TSP, a network model described by equations (13) and 
(14), with the following parameters, has been used: 

 

ሶܠ ൌ 100൫ሺ܅୬ ൅ ݀݅ܽ݃ሾߛ௜ሿ ൅ ߝ ∙ ሻ൅۷୆൯ܠሺߠ௦଴ሻ܅ െ ,ܠ1000 (17) 
 

where Wnൌ ሼ0,ݓ଴, ,ଵݓ ∆ሽ	, ଴ݓ ൌ ଵݓ,7 ൌ 14	, ∆ൌ 5.25, 

௜ߛ ൌ 0.625		for	݅ ൌ 1,… , ݊ଶ	, ߛ௜ ൌ 1.5		for		݅ ൌ ݊ଶ ൅ 1,… , ݊ଶ ൅ ߝ	 ,4݊ ൌ െ1, 

Ws0 is the matrix of distances between cities, wherein cities are deployed at square 
with an edge length equal to 1. 
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a)       b)  

Fig. 1. TSP test cities map with a) the optimal path, b) the shortest found path, const. 

The number of all possible routes is equal to 29! / 2 = 4.4 × 1030. The optimal 
solution seems to be the path shown in Fig. 1a, the length of which is 3.89. During the 
experiment of the above thousand tests, a number of correct paths were found. Fig. 2 
shows a histogram of the found path lengths. 
 

 
Fig. 2. Histogram of path lengths found by the neural network: average length = 4.75, standard 
deviation = 0.26, min = 3.98, max = 5.67. 

The shortest found path – length 3.98 – is shown in Fig. 1b. This path is longer by 2% 
in comparison to the optimal solution (Fig. 1a). The path from Fig. 1b can be 
improved by the city inversions of 3 pairs of cities (6, 16), (12, 24) and (3, 23). Such 
city inversion on the path can be detected and corrected by implementation of a 
simple algorithm.  

The results were compared to the results described by Hopfield and Tank [4] 
where the shortest found path length was 15% longer than the optimal route. 
According to the histogram shown in Fig. 2 the TSP solution found by the passive 
neural network are feasible and stable – non feasible solutions are unstable and not 
observable. The number of local equilibria depends on the value of parameter . 
Hence, it is worth noting that there exists a possibility to minimize the number of 
local equilibria by the procedure of variable values for . Thus, starting the state of the 
neural network from i ≤ 0, i = 1,…, n2 + 4n and stepwise increasing these values 
during integration, one obtains feasible solutions with fewer number of local 
equilibria. The histogram of the found path lengths for the cities map from Fig.1 is 
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shown in Fig. 3. 
 

 
Fig.3. Histogram of path lengths found with increasing : average length = 4.34, standard 
deviation = 0.26, min = 3.89.  

 
Fig. 4. Histogram of path lengths found with increasing for 100 cities: average length = 9.29, 
standard deviation = 0.40, min = 8.30. 

 
Fig. 5. The shortest found path for 100 cities, length = 8.30. 

It should be noted, that similar mechanism for optimization of Hopfield neural 
networks was used by Abe and Gee [6]. 
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Using the above mentioned variable  mechanism, the passive neural network 
finds also feasible solutions of the TSP for n > 100 cities, in a few minutes of 
integrations (on a standard PC). The histogram of feasible TSP solutions for n = 100 
cities and an example of solution are shown in Fig. 4 and Fig. 5, respectively. 

It is easy to notice that the path from Fig. 5 can be improved by the city 
inversions, namely (78, 11) into (78, 20) and (11, 20) into (11, 41). 

6 Conclusions 

Presented in this paper numeric experiments on random, relative large travelling 
salesman problems, show that the passive neural networks can be used as an efficient, 
dynamic optimization tool for combinatorial programming. Moreover, the passive 
neural network, when implemented in VLSI technology could be a basis for structure 
of bio-inspired processor, for real-time optimization. Contrary to the sceptical opinion 
on physical implementation of Hopfield-type neural networks [7,8], we claim that the 
passive neural networks are implementable in VLSI technology as very large scale 
networks and applicable as analogue processors to solve in real time some 
challenging problems.  
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