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Abstract: We outline a blueprint for the development of new computer science approaches for the management and
analysis of big data problems for biodiversity science. Such problems are characterized by a combination of
different data sources each of which owns at least one of the typical characteristics of big data (volume, variety,
velocity, or veracity). For these problems, we envision a solution that covers different aspects of integrating
data sources and algorithms for their analysis on one of the following three layers: At the data layer, there
are various data archives of heterogeneous, unstructured,and uncertain data. At the functional layer, the data
are analyzed for each archive individually. At the meta-layer, multiple functional archives are combined for
complex analysis.

1 BIG DATA IN BIODIVERSITY

What is the benefit of biological diversity? What are
the follow-up costs of the disappearance of certain
species? How much diversity is needed in an ecosys-
tem to maintain its function in the long term? What
benefits provides an ecosystem for us humans? What
actions must be taken for ecosystem services to guar-
antee stable provisioning of food or drinking water on
a continuing basis? What impact do climate change
and land use have on biodiversity? What does it cost
us today to take measures for biodiversity protection?
What does it cost us tomorrow if we do not do it to-
day?

These and similar questions are increasingly
brought into the light of public consciousness due to
their enormous socio-economic and social relevance.
Given the potential impact of climate change on bio-
diversity, the evaluation of biodiversity and ecosystem
services is of central importance to society. To more
effectively protect biodiversity from overexploitation
and destruction, it is indispensable to understand the

variability of living organisms, their interactions, and
their ecological function. Biodiversity research estab-
lishes the foundations for the description and model-
ing of diversity on different scales and thus for the
understanding of ecosystem functioning as one of the
ultimate goals. To this end, a wealth of data cap-
turing different aspects of diversity is collected and
maintained in various large and heterogeneous data
archives.

In the ongoing and lively discussion on big data,
biodiversity data and their huge potential for the fu-
ture of mankind have so far been largely neglected
within the computer science community (Manyika
et al., 2011). This is particularly surprising because
biodiversity data hasall of the standard properties of
big data—in particular, volume, variety, velocity, and
veracity. Moreover, biodiversity data with its cover-
age of multiple scales and its high complexity are a
big challenge for algorithm and software development
in the big data field (Hampton et al., 2013; Marx,
2013; Goff et al., 2011).

The big data problems in biodiversity science are
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defined not only by their sheer size and extreme het-
erogeneity, but also by their complex interaction on
different scales. Hence, in this position paper, we ar-
gue that it is necessary to develop a new meta-layer
of data analysis as a novel methodological aspect
of computer science. This meta-layer offers a wide
scope of applicability beyond the area of biodiversity
research. Similar big data problems arise from the
life sciences, economics, and decision support. New
innovative techniques for data analysis need to be de-
veloped on the meta-layer. In addition, the plausibil-
ity of these analyses needs to be evaluated. In particu-
lar, the credibility of the individual data sources needs
to be assessed carefully. We believe this to be the only
way to ensure that complex solutions to complex big
data problems are comprehensible for scientists, pol-
icy makers, and other stakeholders.

The structure of this position paper is as follows.
In Sect. 2, we outline a target application scenario
for the meta-layer of data analysis. By summariz-
ing related work in Sect. 3, we give a sketch of the
current state of scientific knowledge in this area. In
Sect. 4, we draw a blueprint for data analysis of het-
erogeneous, unstructured, and uncertain data that are
typical for biodiversity science and, finally, we draw
conclusions in Sect. 5.

2 APPLICATION SCENARIO

Due to global warming, more and more species that
live in southern Europe, Asia Minor, and Africa arrive
in Germany. Take mosquito species as an illustrating
example. Some mosquito species carry diseases from
one part of the world to another part where they cur-
rently do not occur. How large is the risk that these
species and their diseases become established in Ger-
many? Which roles do the existing mosquito species
in facilitating or preventing the spread of these dis-
eases? Can we expect that predation will take care of
the problem or do we have to find a technical solution,
such as developing vaccines?

The answers to these questions are of high social
and economic interest. From a computer science per-
spective, they ask for a solution that is also applicable
to other complex big data problems.

Biodiversity data sources available to answer
these questions are in transition: They are comple-
mented with data arising from ongoing digitization
processes of museum collections. This also includes
data originally collected for a different purpose, such
as mobile phone photos taken by citizens being pub-
licly available in social networks (“Citizen Science”).
Climate data are another part of complex and con-

stantly changing data relevant for biodiversity re-
search. The degree of this change can have a signif-
icant impact on the methods used to handle the data.
Returning to the above example, linking genome data
and climate data with current data collected from so-
cial networks on cumulative occurrences of disease-
carrying mosquitoes, e.g., by geo-referenced photos
from mobile phones combined with automatic de-
termination software (if applicable), may allow bet-
ter decisions on overarching questions (Graham et al.,
2011). Ideally, this is done by a complete quantita-
tive integration of different sets of heterogeneous data
and different sets of algorithms for their analysis. The
underlying mathematical methods such as hierarchi-
cal Bayesian modeling are evolving rapidly. At the
same time, algorithms and hardware are now suffi-
ciently developed to make a quantitative integration
possible.

A long-term goal of biodiversity research is to
bring together a plethora of different big data sources.
The data differ in terms of their spatial scale, ranging
from the molecular scale such as genomic data to the
global scale such as remote sensing data. Different
time scales are also relevant such as femtoseconds for
molecular dynamics and decades for CO2 concentra-
tions, or even centuries for changing species distri-
butions or evolutionary processes. In addition, bio-
diversity data differ in terms of biological structures.
They range from relatively homogeneous, uniformly-
structured data such as genomic or remote sensing
data to very heterogeneous, semi-structured data.

We envision a software infrastructure that allows
us to exploratively analyze such complex data dis-
tributed over multiple data sources. This architec-
ture must (1) weigh different data sources according
to their relative reliability and (2) connect them as re-
quired for the question of interest. An important re-
quirement is to enable a fast solution of biodiversity
problems when the underlying data change dynami-
cally. To this end, we suggest scientific workflows
that, once defined for the solution of a particular bio-
diversity problem, may be (semi-)automatically re-
executed when data are updated or new data sources
become available.

Furthermore, a simple adaptation of this workflow
allows a seamless integration of new data analysis
methods. This functionality is crucial to ensure that
decision makers always find support on the basis of
current facts and data analysis methods and that no
recommendations are given based on outdated data or
methods. From a computer science perspective, the
challenge is to enable solutions that are independent
of the data sources and the evaluation methods. This
way, we envision an architecture that is also applica-
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ble to similar application domains beyond biodiver-
sity science.

3 RELATED WORK

Due to its interdisciplinary nature, the problem is rel-
evant to both computer science and biodiversity sci-
ence. In computer science, there is numerous pre-
vious work that considers the problem more or less
independent from the application domain. Here, se-
mantic web services and in particular semantic an-
notations are important. However, to date, these
approaches perform unsatisfactorily when scaling to
larger problems sizes and therefore have not yet
gained any important practical significance.

The connection between computer science and
the application domain biodiversity science is estab-
lished by a subdiscipline called biodiversity infor-
matics. This field is concerned with the applica-
tion of information technologies to improve the man-
agement of biodiversity data. In particular, it fa-
cilitates the access to biodiversity data archives and
performs relevant data analyses. In recent years,
this discipline has intensively dealt with the sup-
port, integration, and combination of biodiversity data
(Hardisty et al., 2013). Due to the high level of dif-
ficulty, which results from the previously described
data heterogeneity, this integration process is not yet
sufficiently advanced. Today, the combination of
data in most cases “only” applies to spatial informa-
tion. Examples include the Global Biodiversity Infor-
mation Facility (GBIF, www.gbif.de), Species 2000
(www.sp2000.org), and the European Biodiversity
Observation Network (EU BON, eubon.eu). GBIF is
a portal with 400 million entries on the occurrence
of species, Species 2000 plans to build an integrated
species list, and the EU project EU BON seeks to in-
crease the interoperability of electronic biodiversity
platforms.

Recently, much effort has been made in biodiver-
sity informatics to formalize established functional
relationships. This way, several Knowledge Organi-
zation Systems (KOS) (Catapano et al., 2011) have
emerged. Their aim is to make the semantic rela-
tionship between data machine-readable. Unfortu-
nately, these systems are currently not mutually com-
patible. Information systems in biodiversity research
increasingly consider alternative subsequent usages
of the data in the collection phase (Nadrowski et al.,
2013). However, the list of projects that follow an
integrated approach to data analysis is less exten-
sive. Here, the Map of Life project (Jetz et al.,
2012), which brought together a variety of different

data types and data analyses, has played a pioneering
role. For plant research, there is the iPlant Collabo-
rative (iPlant) (Goff et al., 2011), a virtual organiza-
tion that provides a platform for storing and analyz-
ing large data sets collaboratively. There are also nu-
merous tools for processing individual big data types,
such as Trinity (http://trinityrnaseq.sourceforge.net),
Velvet (Zerbino and Birne, 2008), segemehl (Hoff-
mann et al., 2009; Otto et al., 2012), Jstacs (Grau
et al., 2012), or NGS read trimming (Hedtke et al.,
2014). Further, text mining tools are useful to process
text documents of scientific publications that describe
generation, collection, reliability and scope of data
in biodiversity. Such text-mining tools include im-
plementations for particular tasks of natural language
processing (OpenNLP, 2008; Manning et al., 2014),
document clustering and topic modeling (McCallum
and Mimno, 2002; Gohr et al., 2009; Blei, 2012).

Existing initiatives from biodiversity informatics
typically focus on the mere application of informa-
tion technology techniques, not on their development.
Thus, they lack a dedicated focus on fundamental is-
sues of computer science. In the future, however,
computer science can be expected to become a driving
force for the development of new methods that enable
data integration and data analysis in the first place.
We believe that the following areas will play a crucial
role in the solution of big data problems from biodi-
versity science: algorithm engineering, bioinformat-
ics, biosystems analysis, data mining, data manage-
ment, high performance computing, image and signal
processing, knowledge representation, machine learn-
ing, parallel processing, software engineering, and vi-
sualization.

On the political side, there is a great need for di-
rect support in decision processes, as formulated by
the Intergovernmental Platform on Biodiversity and
Ecosystem Services (IPBES) (Secretary of IPBES,
2012):

“However, biodiversity and ecosystem
services are declining at an unprecedented
rate, and in order to address this challenge, ad-
equate local, national and international poli-
cies need to be adopted and implemented.
To achieve this, decision makers need sci-
entifically credible and independent informa-
tion that takes into account the complex re-
lationships between biodiversity, ecosystem
services, and people. They also need effec-
tive methods to interpret this scientific infor-
mation in order to make informed decisions.
The scientific community also needs to un-
derstand the needs of decision makers better
in order to provide them with the relevant in-
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formation. In essence, the dialogue between
the scientific community, governments, and
other stakeholders on biodiversity and ecosys-
tem services needs to be strengthened.”

Since there are no such techniques available today, we
argue that a blueprint for data analysis as suggested
in the following section needs to be implemented ur-
gently.

4 DATA ANALYSIS BLUEPRINT

Our main objective is the development of domain-
independent techniques from computer science to
improve the support of complex big data solutions
and their application to biodiversity research. The
blueprint that we sketch in this position paper is bi-
ased by our own previous work. Of course, there are
other options for fulfilling this goal. Our approach is
based on a three-layer architecture as shown in Fig. 1.

On the (green) data layer, different data sources
are arranged along spatial and biological scales. Tech-
niques of data selection and analysis for an individual
big data source can be applied from the (yellow) func-
tional layer. The blue arrows from the data layer to
the functional layer identify these requests to a single
big data source. The (red) meta-layer, the question
answering layer, then allows the combination of dif-
ferent big data sources. It is this layer where higher-
level questions are asked and solutions to these prob-
lems are returned. The arrows between the func-
tional layer and the question answering layer sym-
bolize these multiple requests that serve to gain com-
bined knowledge from different big data sources or to
confirm, refute, or even invent hypotheses.

All requests must be translated into scientific
workflows that answer these requests. Partial results
from various big data sources can lead to contradic-
tions although the evaluation algorithms operate cor-
rectly. To respond to an overall problem, these con-
tradictions must be detected and weighted in a suit-
able manner on the meta-layer. For this purpose, tools
and methods must be developed that support complex,
multi-scale research processes on the basis of spa-
tially distributed, heterogeneous, and unstructured big
data sources. To the best of our knowledge, there is
no other approach that uses this three-layer approach
in biodiversity research or in the general field of big
data.

An intensive interdisciplinary collaboration be-
tween computer scientists and scientists from appli-
cation domains is essential to consider the three lay-
ers in an integrated way. The task of the applied sci-
ences is the formulation of an actual problem, the de-

velopment of domain-specific solutions, and the eval-
uation of proof-of-concept implementations. The task
of computer science is the generalization of the prob-
lems from a specific application science, the develop-
ment of domain-independent solutions, and the real-
ization of proof-of-concept implementations. In this
interdisciplinary collaboration, the following contri-
butions are necessary on the three layers.

4.1 Meta-layer

On the meta-layer, domain-specific languages are
used to formulate a higher-level problem without de-
tailed knowledge of computer science. At the same
time an efficient implementation of the question an-
swering layer needs to be developed. Implementa-
tions will not only involve model-driven code genera-
tion, but rather compiler technology, which is com-
monly considered to be more powerful (Berg and
Zimmermann, 2014). Given our current understand-
ing of application domains of similar complexity as
biodiversity science, workflow engines are required
that support (i) nested workflows and (ii) packaging
of single workflow steps into larger groups that can
be automatically combined to build entire families of
related analysis software packages.

Solid explanations or justifications of a result in-
clude answers to questions like the following: How
was the result or a part of it produced? Which data and
information were used and how were they used? Why
were certain data classified as relevant or irrelevant
and therefore explicitly excluded from the analysis?
Which assumptions were based on the process and
at which point? Typical questions for more complex
processes are: How were the results of sub-processes
combined to those of the overall process? How well-
founded is the result and how does it depend on sec-
ondary decision-making processes? How sensitive is
a result with respect to a variation of its input param-
eters? Where and when does a slight change to the
input yield a qualitatively different result?

Evaluation methods and data sources may change
over time. Whenever this happens, it is necessary
to re-evaluate results that were produced before the
change. Given that the decision-making process is en-
coded as a scientific workflow, processes on the meta-
layer can (semi-)automatically analyze which parts of
the process are effected by the change. On the one
hand this allows to generate updated results for big
data problems efficiently. On the other hand it is then
possible to algorithmically document, visualize, and
explain the impact of this change to human decision-
makers in a comprehensible way.

Without any doubt, some questions asked on the
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Figure 1: Schema of a three-layer architecture for explorative analysis of heterogeneous, unstructured, and uncertain data
from biodiversity science. Data layer contains originallydata and quality information. Existing and novel programs transform
extracted knowledge to useable units in the functional layer. A workflow combines a subset of knowledge units to answer a
overarching question in the meta-layer.

meta-layer will not be answerable with the data at
hand, or only with unacceptable large error margins.
One aim of the meta-layer will then be gap identifica-
tion, informing the functional layer, which type and
combination of data would be required to solve the
problem at hand. Such identified gaps would then ei-
ther result in data mining strategies to fill in the re-
quired information, or more probably, instigate the
collection of new biological primary data.

4.2 Functional Layer

Scientific workflows on the meta-layer can only be
executed efficiently if the functional layer provides
results from necessary tools for data analysis and also
a sufficient annotation of these tools. The data layer
consists of a variety of big data sources whose char-
acteristics may vary dramatically. Therefore, there
is a need to investigate to what extent known algo-
rithms for small problem sizes are also applicable to
large problem sizes. Are there convergence problems
with iterative numerical algorithms when increasing
the problem size? Is it sufficient to use existing al-
gorithms with an increased number of digits used in
floating-point arithmetic, or are completely new algo-
rithms necessary? Which algorithms do not scale to a
high number of processors or are inadequate for high-

latency networks?
Thus, specific programs are needed to extract

knowledge that is then transferred to the meta-layer.
In Fig. 1, this transfer from the data layer to the func-
tional layer is represented by blue arrows. These pro-
grams might be existing software tools with specific
parameters, but we also need novel techniques ad-
dressing scalability and reliability (Fortmeier et al.,
2013), in particular for algorithms for the identi-
fication and calculation of relevant data (Freytag
et al., 2012; Hoffmann et al., 2012; Spüler et al.,
2012). These techniques are to be developed using
modern methods of algorithm engineering (Müller-
Hannemann and Schirra, 2010). From these studies
one can expect to find generalized results for classes
of algorithms. At the interface between the functional
and the meta-layer, the formal description of the algo-
rithms and their properties plays a crucial role. Only
when algorithms are adequately described, automated
reasoning on the meta-layer is possible at all.

4.3 Data Layer

An equally important task is the annotation of the
characteristics of data sources and individual data at
the data layer. Here, it is necessary to cover both
the meaning of data, e.g., by mapping to existing tax-
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onomies, as well as the quality of data sources, e.g.,
its coverage and error rate. It is essential to make
use of extensive expertise in the areas of informa-
tion management for biodiversity data (Lotz et al.,
2012), semantic web (Nadrowski et al., 2013), and
user-generated annotations (Gohr et al., 2010; Gohr
et al., 2011). Due to the sheer size of many data
sources it will only be possible to evaluate them ef-
ficiently if the evaluating programs are brought to the
locations of the data (function shipping) rather than,
as usual, copying the data to the respective process-
ing locations. This could be achieved using declar-
ative data description and transformation languages.
Examples of such languages are SQL, SparQL, Dat-
aLog and Map-Reduce. We envision scientific work-
flows that compose large data queries and transfor-
mation jobs. Using todays database infrastructure,
this would result into jobs consisting of multiple de-
pendent SQL queries or Map-Reduce jobs. In the
text-mining domain, such architectures are used in
the TopicExplorer-System (Hinneburg et al., 2012).
For biodiversity science, the spectrum ranges from
molecular biological data such as genome, transcrip-
tome, proteome, and metabolome data, to observed
data (species, traits, habitats etc.), remote sensing,
and climate data.

4.4 Combining the Layers

The building blocks to be developed at the three lay-
ers are to be merged into a software architecture that
supports scientists in the whole process of knowl-
edge discovery and that records the analysis and the
decision-making processes as follows. First, the sys-
tem searches for the appropriate data, programs, and
its parameters. This is followed by finding a suitable
combination of multiple data sources and by solving
the big data problem. Finally, the system selects a
suitable way to visualize the results. During this pro-
cedure, all the steps are documented and stored so that
they can finally be visualized graphically. This way,
the origin of the data and the results are reproducible.
The results can be exported for further processing or
archiving using different ways. In addition, it is possi-
ble to repeat an explorative analysis with minimal hu-
man effort and to easily integrate new scientific work-
flows. Note that explorative visual analysis goes be-
yond mere result presentation. It allows interactive
explanations and justifications of results. Therefore,
fast and easy design and composition of visualization
views are necessary to provide interfaces to users that
allow them to explore analysis results, relate them to
observed data and understand their impact.

5 CONCLUDING REMARKS

Biodiversity research has a high societal and eco-
nomic relevance. Many key questions of this disci-
pline can only be answered using big data. However,
up to now, support of big data in this field is limited.
Existing approaches address individual aspects, but
not the problem as a whole. We believe that an in-
novative computer science approach is needed here.
For this purpose, we proposed a three-layer architec-
ture connecting data sources and function implemen-
tations to scientific workflows supporting domain-
specific problem solving.
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