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Abstract: A query-answering problem (QA problem) is concerned with finding all ground instances of a query atomic

formula that are logical consequences of a given logical formula describing the background knowledge of the
problem. A method for solving QA problems on full first-order logic has been invented based on the equivalent
transformation (ET) principle, where a given QA problem on first-order logic is converted into a QA problem

on extended clauses and is then further transformed repeatedly and equivalently into simpler forms until its
answer set can be readily obtained. In this paper, such a clause-based solution is extended by proposing

a new method for effectively utilizing a universally quantified if-and-only-if statement defining a predicate,
which is called anff-formula. The background knowledge of a given QA problem is separated into two parts:
(i) a conjunction of iff-formulas and (ii) other types of knowledge. Special ET rules for manipulating iff-
formulas are introduced. The new solution method deals with both iff-knowledge in first-order logic and a set
of extended clauses. Application of this solution method is illustrated.

1 INTRODUCTION for the direct translation of natural language sentences
and for natural language understanding. For this rea-

Query-answering problems (QA problems) form an Son, we take full first-order logic with the standard
important class of problems, which has attracted in- Seémantics for QA problems.
creasing interest recently. In contrast to proof prob- A method for solving QA problems on full first-
lems, which are “yes/no” problems, a QA problem order logic has been discussed in (Akama and Nan-
is characteristically an “all-answers finding” problem, tajeewarawat, 2013b; Akama and Nantajeewarawat,
i.e., it is concerned with finding all ground instances 2014), and as far as we know, it provides the only ex-
of a query atomic formula that follow logically from isting general approach that deals with QA problems
a given logical formula representing the background on full first-order logic with standard semantics. This
knowledge of the problem. solution method is based on the equivalent transfor-
Subclasses of QA problems have been consideredmation (ET) principle. A given QA problem is suc-
in the Semantic Web community (Horrocks et al., cessively transformed equivalently into simpler forms
2005; Motik et al., 2005; Motk and Rosati, 2010) until its answer set can be readily obtained.
and in logic programming and deductive databases To enable the ET-based strategy, meaning-
(Lloyd, 1987; Minker, 1988). These subclasses are preserving Skolemization has been developed in
however relatively small compared to the class of QA (Akama and Nantajeewarawat, 2011) together with a
problems considered by human beings in natural lan- new extended space, called the EGLspace, over
guage sentences. The class of all QA problems onthe set of all first-order formulas. This extended
full first-order logic is very important for natural lan-  space includes function variables, which are variables
guage understanding and human problem solving. A ranging over function constants. Since function con-
large number of studies have been carried out in logic stants are mappings from tuples of ground terms to
programming based on specific semantics, such as theground terms, atomic formulas (atoms) with func-
well-founded semantics and the stable model seman-tion variables are regarded as “second-order” atoms.
tics. Specific semantics for sets of clauses (possibly For problem transformation on the extended space,
with negation as failure), which can be useful for pro- many ET rules have been devised in (Akama and Nan-
gramming, are however not so expressive and naturaltajeewarawat, 2013c; Akama and Nantajeewarawat,
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2013b; Akama and Nantajeewarawat, 2014), includ-
ing ET rules for unfolding, for removing useless def-
inite clauses, for resolution, for factoring, for dealing
with atoms with function variables, and for erasing
independent satisfiable atoms.

In this paper, we extend the ET-based proce-
dure in (Akama and Nantajeewarawat, 2013b; Akama
and Nantajeewarawat, 2014) by introducing a method
for effectively utilizing if-and-only-if formulas (iff-
formulas, for short) in given background knowl-
edge. Iff-formulas are often used for defining con-
cepts in a knowledge base. Compared to unfold-
ing using clauses obtained from given iff-formulas,
the iff-formulas themselves allow clause transforma-
tion with unrestricted applicability for simplification
of QA problems. Iff-formulas are thus useful for ef-
fective and efficient computation.

To begin with, Section 2 formalizes QA prob-
lems on first-order logic, introduces the EGL$pace
and meaning-preserving Skolemization, and identi-
fies the main objective of this paper. Section 3 de-
fines iff-formulas and a quadruple form for represent-
ing a QA problem with iff-formulas, and presents the
extended ET-based procedure. Section 4 gives
rules for clause transformation using iff-formulas and
for removal of useless iff-formulas. Section 5 com-
pares transformation using iff-formulas with unfold-
ing. Section 6 illustrates application of our method.
Section 7 provides conclusions.

2 QA PROBLEMS ON AN
EXTENDED SPACE

2.1 QA Problems

A query-answering problerQA problem on first-
order logicis a paitK, g), whereK is a first-order for-
mula, representing background knowledge, grid

can be equivalently defined as

answefK,q) = ((|ModelgK))nrep(q), (1)

whereModel§K) denotes the set of all models Kf
andrep(q) the set of all ground instances aqf

The main features of the ET-based method for
solving QA problems on first-order logic with stan-
dard semantics (Akama and Nantajeewarawat, 2013b;
Akama and Nantajeewarawat, 2014) include: (i) the
use of a new extended space, which is an exten-
sion of first-order logic by incorporation of function
variables; (ii) the use of meaning-preserving Skol-
emization (Akama and Nantajeewarawat, 2011), in
place of the conventional Skolemization (Chang and
Lee, 1973), for converting a first-order formula into a
clause set in the extended space; and (iii) the use of
equivalent transformation on the extended space for
computation of solutions. They are described below
along with the primary objective of this paper.

2.2 The Extended Space ECLS

A usual function symbol in first-order logic denotes
an unevaluated function; it is used for constructing

Ttrom existing terms a syntactically new term with-

out evaluating the obtained term. A different class
of functions, calledfunction constantsis used in
the extended space. A function constant is an ac-
tual mathematical function, safy, on ground terms;
when it takes ground terms, s&y...,t,, as input,
f(t1,...,tn) is evaluated for determining an output
term. Variables of a new type, calldédnction vari-
ables are introduced; they can be instantiated into
function constants or function variables, but not into
usual terms.

Given anyn-ary function constant on-ary func-
tion variablef, an expressiofund f,ty,...,th,tht1),
where thd; are usual terms, is considered as an atom
of a new type, called &unc-atom Whenf is a func-
tion constant and thig are all ground, the truth value
of this atom is true ifff (t1,...,tn) = thy1.

In addition to usual atoms arfdncatoms, con-

a usual atomic formula (atom), representing a query. Straint atoms may be used in a clause. While the truth
When no confusion is caused, the qualification “on Value of a ground usual atom depends on an inter-
first-order logic” is often dropped. The standard se- pretation, the truth value of a ground constraint atom
mantics for first-order formulas is used, in the sense is determined in advance independently of any inter-
that all models of a given first-order formula are con- Pretation. Examples of constraint atoms e, t2),
sidered instead of restricting models to be consid- Neqta,t2), le(ty,t2), andge(ts, tz), wheret; andt; are
ered using specific semantics. Interpretations andterms. Wher, andt; are ground termsq(ta, t2) and
models are sets of ground atoms, which are simi- Nedty,t2) are true ifft; =tz andty # ta, respectively.

lar to Herbrand interpretations and Herbrand mod- Whents andt, are numberde(t;,t2) andge(ty, tz) are
els. The answer to a QA problefiK,q), denoted  trueiffty <t; andt; > tp, respectively.

by answefK,q), is the set of all ground instances of A clause Cin the extended space is a formula of
g that are logical consequenceskf As shown in the form

(Akama and Nantajeewarawat, 2013@swe(K,q) ai,...,am< ba,...,bn,f1,...,fo,
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where (i)ay,...,am are usual atoms, (ii) each obf,
...,bnis ausual atom or a constraint atom, and {iii)
...,fo arefuncatoms. The setéay,...,am} and{bs,
...,bn,f1,...,fo} are called théeft-hand sideand the
right-hand siderespectively, of the clausg denoted
by Ihs(C) andrhs(C), respectively. Whem =0, C
is called anegative clauseWhenm =1, C is called
adefinite clausgethe only atom ifhs(C) is called the
headof C, denoted byheadC), and the seths(C) is
also called théodyof C, denoted byodyC). When
m> 1,C is called amulti-head clauseAll usual vari-
ables in a clause are universally quantified and their
scope is restricted to the clause itself.

The set of all clause sets in the extended space

is called the ECLE space. Function variables in a
clause set in ECLiSare all existentially quantified
and their scope covers entirely all clauses in the set.
Given a clause sefsin ECLS:, let ModelCs) de-
note the set of all models @s.

2.3 Meaning-Preserving Skolemization

In the conventional proof theory, a first-order formula
is usually converted into a conjunctive normal form
in the usual first-order formula space. The conver-
sion involves removal of existential quantifications by
Skolemization, i.e., by replacement of an existentially
guantified variable with a Skolem term determined by
its relevant quantification structure. The conventional
Skolemization, however, does not generally preserve
the logical meaning of a formula (Chang and Lee,
1973); as a result, it causes difficulties in solving QA
problems by equivalent transformation.

In order to transform a first-order formula equiv-
alently into a set of clauses, meaning-preserving
Skolemization was invented in (Akama and Nan-
tajeewarawat, 2008; Akama and Nantajeewarawat,
2011). Let MP$K) denote the result of meaning-
preserving Skolemization of a given first-order for-
mulaK. MPS(K) is obtained fronK by repeated sub-
formula transformation and conversion to a clausal
form. For subformula transformation, say model-
preserving transformation is used. For example,
T(—=(-E)) =E andT(-(E1 VE2)) = (-E1) A (-E).
Although the forms of these transformations are simi-
lar to those in the conventional Skolemization, they
are totally different in the sense that the formu-
las E, E;, and E; may containfuncatoms, func-
tion variables, and function constants. Whi€n=
(VX1Vx2---V¥Xa3Jy : E), the transformatiorl intro-
duces a new function variable and a nkwcatom,
i.e., T(K) is the formula

FhVx VX2 - - - X VY @ (E V —funah, X1, X2, ..., Xn,Y)),
whereh is ann-ary function variable. For example,

T (Vx3y : motherOfy, X))
= Jhvxvy: (motherOfy,x) vV ~funah,x,y)),

which is further converted into the extended clause
(motherOfy,x) <+ fundh,x,y)). The transformation
rules used in (Akama and Nantajeewarawat, 2011) for
meaning-preserving Skolemization are given in the
appendix.

It was shown in (Akama and Nantajeewarawat,
2008) that:

Theorem 1. ModelgK) = Model§MP S(K)) for any
first-order formuleK. O

2.4 A Triple Form and Equivalent
Transformation (ET)

A triple form of a QA problem is introduced in
(Akama and Nantajeewarawat, 2014) for flexible rep-
resentation and transformation. Ldtbe the set of
all usual atoms and for any atome 4, let rep(a)
denote the set of all ground instancesaofA triple
form of a QA problem on ECLSis a tuple(Cs g, 10,
whereCsis a clause set in ECLiSepresenting back-
ground knowledgeq is a usual atom representing
a query, andm is a partial mapping from4 to 4
such that the range af contains all instances af.
The answer to the QA problefCs g, ), denoted by
answe(Cs g, ), is defined by

T(((|ModelgCs)) Nrep(q)). (2)

An ET-based procedure for solving QA problems
is a state-transition procedure consisting of three main
phases:

1. A QA problem (K,q) on first-order logic is
first converted into a QA problenCs q,id) on
ECLS:, whereCs= MPS(K) andid is the iden-
tity mapping. By Theorem lanswe(K,q) =
answe(Cs q,id).

2. The QA problemCs, q,id) is transformed by suc-
cessive application of various ET rules. In gen-
eral, each application of an ET rule transforms a
given QA problem(Cs §, 1) into (Cs,§, 1) pre-
serving the answer set, i.eanswe(Cs §,71) =
answe(Cs g, T1).

From the resulting simplified QA problem, the an-
swer set of the original QA problem is derived.

Each transition step preserves the answer set of a
given input QA problem and therefore the correctness
of this procedure is guaranteed.

answe(Cs q,)

3.
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2.5 The Primary Objective of This
Paper

Given a QA problemK,qg) on first-order logic, the
first-order formulaK often includes a universally
quantified closed formula of the forrd(a < F),
whereais a usual atom anfd is a first-order formula.
This form of knowledge is referred to hereinikand-
only-if knowledgéfor short,iff-knowledgé. It is very

useful since it enables direct transformation of a QA where {y1,...,yx} = var(conj) — var(a).

problem by replacement of an instanceaofith its
corresponding instance &f. However, the transfor-
mation to a clausal form in the previous triple-form

method (Section 2.4) does not utilize this advantage

(see Section 5).

The primary purpose of the paper is to develop

a new method for effectively utilizing iff-knowledge.

More precisely, we divide the background knowledge

of a QA problem into two parts: (i) a conjunction
of iff-knowledge and (ii) other types of knowledge.
We introduce special ET rules for manipulating iff-

headof the iff-formulal, denoted byheadl). When
emphasis is given to its head, an iff-formula whose
head is an atora is often referred to aiff(a).

Let | = (a <« (conj Vv ---Vconk)) be an iff-
formula. For each € {1,...,n}, conj corresponds
to the the existentially quantified atom conjunction
FoL(conj,a) given by

FoL(conj,a) = 3y1---3yk: /\{b|be conj},

The iff-
formula | corresponds to the universally quantified
formula

V(a+« (FoL(conj,a)V---V FoL(conj,a))),

which'is denoted by &L(1).
An iff-formula (a s (conj V---Vconj)) isin a
standard forniff foranyi,j € {1,...,n},if i # j, then
(var(conj) —var(a)) N (var(conjj) —var(a)) = @.

An iff-formula | can always be converted into a stan-
dard form, with its meaning given bydt (1) being

knowledge. For ease of transformation, we assumepreserved, through variable renaming. It is assumed

in this paper that the form of the formuka in iff-
knowledgeV(a «+» F) is a disjunction of atom con-
junctions.

3 SOLVING QA PROBLEMS
WITH IFF-FORMULAS

The class of iff-formulas considered in this paper is
formally defined in Section 3.1 along with related no-

that all iff-formulas considered henceforth are in stan-
dard forms.

Assume that is an iff-formula. The if-part and the
only-if-part of FoL(l) are denoted by &L (1) and
FOLonyit (1), respectively. Let#(l), oNLYIF(I), and
Cus(I) be the clause sets defined as follows:

o IF(1) = MPS(FoL(1)).
e ONLYIF(l) = MPS(FOLoniyit(1)).
e CLs(l) =IF(I)UONLYIF(I).

tation. In order to make a clear separation between ifi- Note that @s(I) can be equivalently defined as
formulas and knowledge of other types, a quadruple MPS(FOL(1)), i.e., it is the clause set obtained by

form of a QA problem is introduced in Section 3.2.
An ET-based procedure for solving QA problems
with iff-formulas is presented in Section 3.3.

In the rest of this paper, le1 be the set of all usual
atoms and for any atom € 4, letrep(a) denote the
set of all ground instances af

3.1 If-and-Only-If Formulas

(Iff-Formulas)

Given an atom or a constraint atamlet var(a) de-
note the set of all variables occurringan Given a
setA of atoms and/or constraint atoms, \&tr(A) =
U{var(a) | ac A}.

An if-and-only-if formula(for short,iff-formula) |
on 4 is a formula of the form

a< (conpV---vcong),

wherea € 4 and each of theonj is a set of atoms in
4 and/or constraint atoms. The atams called the
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converting POL(I) into a conjunctive normal form by
meaning-preserving Skolemization.

Example 1. Suppose thdtis an iff-formula

p(x.y) < ({a(xy,2),r(2)} v {edx,w),s(x,y,w)}),
wherew, x, y, andz are usual variables. Then

FoL(l) =Vvxvy: p(xy) < ((3z: q(x,y,2) Ar(2)) vV
(Iw: eqx,w) AS(X,Y,W))),

IF(1) ={(p(X,y) - a(x,y,2),r(2)),
(P(XY) <= eqx,w),s(x,y;w))},
ONLYIF(I)
= {(C](X, Y, Z)v GCXX, W) — p(X7 y)vfun(( f07y7 X, Z)v
fundfy,y,x,w)),
(Q(Xa Y, Z)7S(X7 Y, W) <~ p(X, y)afuanmya X, 2)7
fund f1,y,x,w)),
(r(z), GCXX, W) < p(X7 y)vfun(( f07y7 X, 2)7
fund f2,y,x,w)),
(r(z),s(x, Y, W) — p(X7 Y)vfun(( f07y7 X, Z),

fuanZ'/y'/XaW))}' u
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Two iff-formulasl andl’ on 2 are said to belis-
joint iff rep(headl)) andrep(headl’)) are disjoint.

following steps:
1. Transform(K,q) into a quadruple(Cs E,q,id)

Let E be a set of mutually disjoint iff-formulas of.
E corresponds to the conjunctigp{ FoL(l) || € E},
which is denoted by 6L(E). Let IF(E) = U{IF(l) |
| € E}, oNLYIF(E) = U{oNLYIF(l) | | € E}, and
CLs(E) = IF(E) UONLYIF(E).

A ground substitutionfor an iff-formula (a +
(conj V---Vconj)) is a substitutio® such thag®,
conjh,...,conj,0 are all ground.

3.2 Quadruples for Transformation of
QA Problems

3.2.1 A Quadruple Form

In order to clearly separate iff-formulas from clauses
in background knowledge, we extend a QA problem
on ECL& into a quadrupléCs E, g, ) on A4, where

(i) Csis a clause setinthe ECESpace such that each
usual atom appearing i@s belongs to4, (ii) E is a
set of mutually disjoint iff-formulas orf, (iii)) g€ 4,
and (iv)Ttis a partial mapping fronf to 4 such that
the domain offt contains all ground instances aof
The answer to the QA problefCs E, g, ), denoted
by answe(Cs E, g, ), is defined by

answe(Cs E, g, M)
=T1(([ \Model§CsU CLS(E))) Nrep(q)).  (3)

3.2.2 Transformation into Quadruples

A QA problem (K,qg) on first-order logic is trans-
formed into a quadruple form on ECE&s follows:

1. FromK, identify a first-order formul&k’ and a
setE of mutually disjoint iff-formulas such that
K =K' AFOL(E).

2. ConverK’ by meaning-preserving Skolemization
into a clause setsin the ECLS space, i.eCs=
MPS(K").

3. Construct{Cs E,q,id), whereid is the identity
mapping, as the resulting quadruple.

using the transformation given in Section 3.2.

2. Successively transform the quadruplesE,q,

id) in the ECL$ space using the following ET
rules: Assume thafCs E, g, 1) is a QA problem.

(@) If E contains an iff-formulaiff(a) and Csis
obtained fromCs by replacement usinif(a),
then transform{Cs E, §, ) into (Cs E, §, 10),

(b) If E contains an iff-formulaff(a) and for each
atomb that occurs irCsor E — {iff(a)}, aand
b are not unifiable, then transfor(€s E, g, m
into (Cs E — {iff(a)},q, m.

(c) Transform(Cs E,§, ) by transformation o€s

and/ortt using ET rules on ECLS including

the ET rules for unfolding (MF) and definite-
clause removal (RD) in Section 5.2, and
the ET rules given in (Akama and Nantajee-
warawat, 2014) for

side-change transformation (8%

resolution (REsO),

elimination of isolateduncatoms (EIF),

elimination of subsumed clauses (&S,

elimination of valid clauses (EAD),

erasing independent satisfiable atoms (EIS),

and

e elimination of satisfiable independent clauses
(ESI).

(d) Transform(Cs E,§,m) using ET rules for con-

straints, e.g., ET rules for equality constraints.

3. Assume that the transformation yields a quadruple

(CS,E’,d,). Then:
(@) If CS is not satisfiable, then outprp(@(q))
as the answer set.
(b) If C< is a set of unit clauses the head of which
are instances af, then output the answer set

Ucecs rep(@(headC))).
(c) Otherwise stop with failure.

The obtained answer set is always correct since all
transformation steps in the procedure are answer-
preserving.

Finding a nonempty se of iff-formulas for con-
vertingK into K’ A FOL(E) is useful for solving QA
problems since iff-formulas increase the possibility of
transforming QA problems with less cost (see Sec-
tion 5). As the number of iff-formulas in the skt
increases, such possibility is higher.

4 ET RULES IN THE PRESENCE

. OF IFF-FORMULAS
3.3 A Procedure for Solving QA

Problems with Iff-Formulas Next, the replacement operation using an iff-formula

is defined. It is followed by ET rules for replace-
Assume that a QA probleri,q) on first-order logic ment using iff-formulas and for removing useless iff-
is given. To solve this problem using ET, perform the formulas.
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4.1 Replacement Using Iff-Formulas

Assume that (iCsis a set of clauses, (iQccis an
occurrence of an atoimin a clauseC € Cs, (iii) iff(a)
is an iff-formula(a <+ (conj V---Vconj)), (iv) pis

a renaming substitution for usual variables such that answetCs, E, g, ).

C andiff(a)p have no usual variable in common, and
(v) Bis the most general matcherag into b (i.e., the
most general substitution such ttzg = b). Then:

e Let RePL(C,ocqiff(a),p,0) denote the first-
order formula obtained by replaciny at occ
with the disjunction BL(conjpb,apb) Vv -V
FoL(conj,pB,apB) usingp ande.

e Let REPL(CsC,occiff(a),p,8) denote the con-
junction of RepL(C,occiff(a),p,0) and all
clauses irCs— {C}.

Note that occ is an occurrence at any arbitrary
position in C (i.e.,, it can be in the left-hand
side or the right-hand side of). In general,
RepPL(C,occ iff(a),p,0) is not a clause. After the re-
placement ofocc a new clause set, says, is ob-
tained by using meaning-preserving Skolemization,
i.e., CS = MPS(REPL(Cs,C,ocg(iff(a),p,0)). The
resulting clause seds is often simply said to be ob-
tained by replacement usirifj(a) at the occurrence
occofbin C.

4.2 ET Rules for Iff-Formulas and
Their Correctness

An ET rule on ECLS% for replacement using an iff-
formula is given by Theorem 2 and that for remov-
ing a useless iff-formula is given by Theorem 3. Let
(Cs E,q, ) be a QA problem on ECLS

Theorem 2. (Replacement Using an Iff-Formula) As-
sume that:

1. E contains an iff-formulaff(a).

2. rep(a) Nrep(q) = .

3. occis an occurrence of an atolmn a clauseC €
Cs

p is a renaming substitution for usual variables
such thatC andiff(a)p have no usual variable in
common.

5. Bis the most general matcherag into b.

6. Cs = MPS(RePL(Cs C,ocgiff(a),p,0)).

Then (CsE,q,m can be equivalently transformed
into (Cs,E,q,T0).

4.

Proof. Assume thatiff(a) = (a <+ (conp Vv .-V
conj,)) andF is the disjunction

FoL(conjipB,apB) V --- Vv FoL(conj,pB,apB).
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ThenCs is obtained by applying meaning-preserving
Skolemization to the formula resulting from replac-
ing apb in Cswith F. Sinceap® is logically equiva-
lent toF, CsandCs are logically equivalent in the
presence of Cs(E). Henceanswe(CsE,q,m)

O

Theorem 3. (Removal of an Iff-Formula) Assume
that:

1. E contains an iff-formulaff(a).
2. rep(a) Nrep(q) = @.

3. For each atorb that occurs irCsor E — {iff(a)},
aandb are not unifiable.

Then (Cs E,q,T) can be equivalently transformed
into (Cs E —{iff(a)},q, ).

Proof. Let Cs; = CsU CLS(E) and Cs, = Csu
(CLs(E) — Cus(iff(a))). Obviously,Model§Cs;) C
Model4Cs). Based on this, we prove that

rep(q) N ((-)ModelgCsy))
=rep(q) N (["ModelCs)) (4)

by further showing as follows that for ang €

ModelgCs), there existsM € Model§Cs;) such
that Gnrep(q) = M Nrep(g). Assume thatG €

ModeldCs;). Let G’ = G —rep(a). By Assumption 3
of this theorem@G' is also a model oCs. Assum-
ing thatiff(a) = (a<> (conp V--- Vv conj)), let Dy

be defined as the set of definite clauses

{C|(ie{l,....n}) &
(6 is a ground substitution faff(a)) &
(G contains all atoms igon j6 that are not
instances o&) &
(Cis a definite clause witheadC) = ab
andbody(C) = conj6— G')}.

Let M = M (Dp) UG/, where M (Dp) is the least
model of Dp. By Assumption 3 of this theorenM
is a model ofCs;. By Assumption 2 of this theorem,
Gnrep(q) = G'Nrep(q) = M Nrep(q).

As a result, (4) holds. It follows from Equa-
tion (3) in Section 3.2 thaanswe(Cs E,q, )
answe(Cs E — {iff(a)},q, ).

Application of Theorems 2 and 3 is illustrated be-
low.

Example 2. Assume thaansis a query atom an
is the union of a clause s€sand the seflg,C1,Cz},
wherelg is the iff-formula

lg: B« ({C,D}Vv{H})
andC; andC; are the following clauses:
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Cy1: ans«+ A,B

C: B« AC
By Theorem 2, the claugg; can be transformed by
replacement usinlg into:

Cs: ans+ A,C,D

C4: ans«+ AH
Again by Theorem 2, replacement usiiggs applica-
ble toCy, and the replacement transfor@sinto:

Cs: CH«+AC

Cs: D,H«+AC
Note that{Cs,Cs} = MPS(((CAD)VH) «+ (AAC)).
By Theorem 3, if the clause s€is contains no oc-
currence ofB, then the iff-formulalg can be re-
moved. O

5 A COMPARISON BETWEEN
REPLACEMENT AND
UNFOLDING

After introducing the unfolding operation on ECLS
in Section 5.1 and presenting ET rules for unfold-
ing and for definite-clause removal in Section 5.2, re-
placement using an iff-formula is compared with un-
folding in Section 5.3. Section 5.4 illustrates how iff-
formulas are useful for reduction of computation cost.

5.1 Unfolding Operation on ECLS-

Assume thatCs is a clause set in ECLS D is a
definite-clause set in EClsSandoccis an occurrence
of an atonb in the right-hand side of a clau€an Cs
By unfolding Cs usingD at occ Csis transformed
into

(Cs—{C})U(|_J{resolventC,C’,b) |C' € D}),

where for eaclC’ € D, resolvenfC,C',b) is defined
as follows, assuming thatis a renaming substitution
for usual variables such th@tandC’p have no usual
variable in common:

1. If b and headC'p) are not unifiable, then
resolven(C,C’,b) = &.

2. If they are unifiable, with® being their most
general unifier, themesolventC,C’.b) = {C"},
whereC” is the clause obtained fro@ andC'p
as follows:

(@) Ihs(C”) = Ihs(CB)
(b) rhs(C”) = (rhs(C8) — {bB}) UbodyC'pb)

The resulting clause set is denoted byr{JCs,C, occ

D).

5.2 ET by Unfolding and
Definite-Clause Removal

For any predicate, let Atomgp) denote the set of
all atoms having the predicate ET rules on ECLE

for unfolding and for definite-clause removal (Akama
and Nantajeewarawat, 2013c) are given below. As-
sume that{Cs E, g, ) is a QA problem on ECLS

5.2.1 ET by Unfolding (UNF)

Suppose that:
1. pqis the predicate of the query atam
2. pis a predicate such that# pq.

3. Dis a set of definite clauses@sthat satisfies the
following conditions:

(a) For any definite claus€ € D, headC) €
Atomgp).

(b) For any clauseC' € (CsuU CLs(E)) — D,
Ihs(C"yn Atomgp) = .

4. occis an occurrence of an atomAtomgp) in the
right-hand side of a clausgin (CsUIF(E)) — D.

Then (CsE,q,m) can be equivalently transformed
into the QA problem(UNF(Cs,C,occ D), E,q, ).

In order to apply unfolding toCs E,q, ), we
have to find a seD of definite clauses iCsthat sat-
isfies Condition 3. By Conditions 3a and 3b, we se-
lect a predicate and collect all definite clauses with
p-atoms in their heads. To satisfy Condition 3b, a
p-atom can neither appear in the left-hand side of a
multi-head clause il€s nor appear in an iff-formula
in E. These conditions often disable application of
unfolding ET rules in solving problems with multi-
head clauses.

5.2.2 ET by Definite-Clause RemovalRmD)

Suppose that:
1. pq is the predicate of the query atam
2. pis a predicate such that# pq.

3. Dis a set of definite clauses @sthat satisfies the
following conditions:

(a) For any definite claus€ € D, headC) ¢
Atomgp).

(b) For any clauseC' € (CsuU CLs(E)) — D,
Ihs(C") nAtomgp) = @.

4. For any claus€’ € (CsUCLS(E)) —D, rhs(C")n
Atomgp) = @.
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Then (CsE,q,m can be equivalently transformed
into the QA problemCs—D,E,q, 1.

Next, an example showing application of unfold-
ing and definite-clause removal is given.

Example 3. Consider the Oedipus problem described
in (Baader et al., 2007). Oedipus killed his father,
married his mother lokaste, and had children with her,
among them Polyneikes. Polyneikes also had chil-

dren, among them Thersandros, who is not a patri-
cide. The problem is to find a person who has a pat-

ricide child who has a non-patricide child. The dif-

ficulty of this problem arises from the absence of in-
formation as to whether Polyneikes is a patricide or
not.

Assume that 6e” “io,” “po” and “th” stand,
respectively, for Oedipus, lokaste, Polyneikes, and
Thersandros.
QA problem with the query atomrob(x) and the
background knowledge consisting of the following
clauses:

Ci: prob(x), pat(y) < isChildOf(z x), pat(z),
isChildOf(y, 2)

isChildOf(og i0) +
isChildOf(po,io) «
isChildOf(po, 0e) +
isChildOf(th, po) +

Cs: pat(oe) «+

Cr: + pat(th)
SinceC; is a multi-head clause containingpatatom
in its left-hand side, unfolding at theat-atom in the
right-hand side o€; is disabled. By unfolding at the
first isChildOfatom, i.e. isChildOf(z x), in its right-
hand side, the claugg, is transformed into the fol-
lowing four clauses:

Cs: prob(io), pat(y) « pat(oe),isChildOf(y, oe)
Co: prob(io),pat(y) « pat(po),isChildOf(y, po)
Cio: prob(oe), pat(y) + pat(po),isChildOfy, po)
Ci1: prob(po), pat(y) < pat(th),isChildOf(y,th)

By further unfolding atisChildOfatoms four times
successively, the claus€g-Ci; are transformed into:

Ci2: prob(io), pat(po) + pat(oe)

Ciz: prob(io), pat(th) <+ pat(po)

Cia: prob(oe), pat(th) «+ pat(po)
Since the predicatisChildOf does not appear in the
right-hand side of any ds, C; andCy2—Cy4, the def-
inite clause€,—Cs are removed. The resulting clause
set isCs= {Cg,C7,C12,C13,C14}. At this point, pat
is the only predicate of a possible target body atom
for unfolding. However, since each 6f,, Ci3 and
C14 also contains @at-atom in its left-hand side, no
further unfolding is applicable tGs.

Co:
C3:
C4Z
Cs:
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Using other equivalent transformation ruless
can be further transformed as follows: By forwarding
transformation (Akama and Nantajeewarawat, 2012b)
with respect toC;, the clausesCiz and Cy4 are
changed into:

Cis: prob(io) + pat(po)

Cis: prob(oe) + pat(po)

By erasing independent satisfiable atoms (Akama and
Nantajeewarawat, 20143, is replaced with:

Ci7: prob(io), pat(po) «+

By resolution and elimination of subsumed clauses,
Ci5andCy7 are replaced with:

Cig: prob(io) «+

The resulting clause set 88 = {Cs,C7,Cy6,Ci8}-
Since no atom in the left-hand side of any clause

This problem is represented as ajy C< can be instantiated intpat(po), Cyg is re-

moved. The obtained answer set is thus the single-
ton set{prob(io)}, i.e., lokaste is the only answer to
this problem (no matter whether Polyneikes is a pat-
ricide).

Alternatively, after the original background know-
ledge is simplified by unfolding and definite-clause
removal intoCs= {Cg,C7,C12,C13,C14}, the simpli-
fied QA problem(Cs prob(x)) can also be solved by
using bottom-up computation (Akama and Nantajee-
warawat, 2012a) or by using a SAT solver (Akama
and Nantajeewarawat, 2013a). O

5.3 Replacement Using Iff-Formulas vs.
Unfolding

Assume thaCsis a clause set in the ECESpaceC
is a clause IrCs, occis an occurrence of an atoorin
the right-hand side of, andiff(a) is an iff-formula.
Consider two QA problemBrb; andPrh,, given by:

e Prb; = (Cs EU{iff(a)},q,id),
e Prby; = (CsUCLs(iff(a)),E,q,id).

By the definitional equation (3Rrb; is equivalent to
Pl’bz.

Whenever replacement is applicable using a re-
naming substitutiorp and the most general matcher
0 of ap into b, Prb; is transformed into an equiv-
alent QA problemPrb) = (Cs,E U {iff(a)},q,id),
whereCs = MPS(RePL(Cs,C,occ iff(a),p,0)). Re-
ferring to Section 5.2, if the required conditions for
ET by unfolding Csu CLs(iff(a)) using IF(iff(a))
at occ are satisfied, therPrb, can be equiva-
lently transformed by unfolding into a QA prob-
lem Prb, = (C<’,E,q,id), whereCs’ = UNF(CsU
CLs(iff(a)),C,occ I F(iff(a))). The changes are made
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by the above two transformation steps only in the
clause-set parts, i.e., at the first arguments of the
quadruples representiyb; andPrbs,.

It can be shown that the changes made by them
are exactly the same (i.eGs U CLs(iff(a)) = C<’)
as follows: Assume thaff(a) = (a <« (conjVv---Vv
conj)), p is a renaming substitution for usual vari-
ables such that andiff(a)p have no usual variable
in common, and is the most general matcher ab
into b. The substitutio® used above is also the most
general unifier olap andb. It is thus also used for
unifying ap andb in the unfolding step.

e By replacement usingff(a) followed by con-
version using meaning-preserving Skolemization,
n copies ofC are produced and for eadhe
{1,...,n}, the atonb atoccin theith copy is re-
placed withcon jpB. All other atoms in each copy
of C are unchanged.

By the unfolding operation with respect to
IF(iff(a)), which is the set{(a < conj) | i €
{1,...,n}}, Cis transformed intm clauses, say,
Ci,...,Cy, and for each € {1,...,n}, the atom
b at the occurrenceccis replaced withcon jp6

in the construction o€;. Although® is also ap-
plied to all other atoms i€, it makes no change
to those atoms sind@ andap have no usual vari-
able in common an@ only instantiates variables
occurring inap.

Hence the two transformation steps make the samec, respectively.

change to the target clause As a result,Cs U
Cus(iff(a)) = C¢'.

However, the required conditions for applicability
of the two transformations are totally different. While
replacement is always applicable, the required con-
ditions for unfolding (cf. Section 5.2) are easily vio-
lated whenCs contains a multi-head clause with an
instance of in its left-hand side. Such violation dis-

ables unfolding. As a consequence, replacement by

iff-formulas in the quadruple form gives higher possi-
bility of transformation compared to unfolding in the

qguadruple form (and, thus, also unfolding in the triple
form).

Example 4. Assume that the query atom pisob(x)
and the background knowleddeincludes the con-
junction of the following first-order formulas, where
“Co” “nt” “te” “AC” and “BC’ are abbreviations
for “course,” “non-teaching professor,” “teach,” “ad-
vanced course,” and “basic course,” respectively:

Fi: Wx: ((3y: (Co(y) Ate(x,y))) — prob(x))

Fo: Wx: (nt(x) < —(3y: te(x,y) ACa(y)))

Fs: Wx: (Co(x) <+ (AC(x) VBC(X)))
By meaning-preserving Skolemization (Akama and
Nantajeewarawat, 2011), the conjunctiBnA F> A

Fs is converted into the following extended clauses,
wheref is a unary function variable:

Ci:
C22
C32
Cy:
Cs:

prob(x) < Co(y), te(x,y)

& nt(x), te(x,y), Co(y)
te(x,y),nt(x) < funq(f,xy)
Co(x),nt(y) « fund(f,y.x)
Co(x) + AC(x)

Cs: Co(x) + BC(x)

C7: AC(x),BC(x) + Co(x)

These clauses are used in the triple form. Using them,
unfolding at theCo-atom in the body o€; is blocked
due to the presence ofGo-atom in the left-hand side

of the multi-head clausg,. If such an unfolding step

is not blocked, then it transforn@ into:

Ca: prob(x) < AC(Y);te(x,y)
Cp: prob(x) + BC(y),te(x,y)

By contrast, if the quadruple form is used, then the
clauses—C; are replaced with a single iff-formula

lco: Co(x) ¢+ ({AC(x)} V{BC(x)})

and replacement usinkg, is applicable at theCo-
atom inCy. This replacement transforn@3 into the
following two clauses:

Cg: prob(x) < AC(y),te(x,y)

Co: prob(x) + BC(y), te(x,y)
The resulting clauseSg andCq are equal taC; and
O

5.4 Overcoming Computation Difficulty
by Using Iff-Formulas

Assume thaK is the first-order formula

YXYYWZ: (app(X, Y, 2)
< ((eqx []) redy,2) v
(3AIX3Z: (eqx, [AIX]) Aedz [A|Z])
Aapp(X,y,2))))),

where ‘apg’ stands for “append.” Consider the QA
problem(K,q), whereg = app([1,2,3],[4,5],X). This
problem is solved by successively transforming the
clause

As: angz) + app([1,2,3],[4,5],2)

into unit clauses.

We first show that a solution with the triple form,
using only unfolding and resolution, results in com-
putation difficulty. By meaning-preserving Skolemi-
zation, the first-order formull is converted into the
setCsconsisting of the following clauses, whefg-
fs are function variables:
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Ci:
Co:

app(x,y;z) < eqx,[]).eqy,2)
app(x,y;z) + eqx, [A[X]),eqz,[AZ]),
app(X,y,Z)
eq(x,[]), eq(x, [AX])
+ app(x,y,2), fundfo,z y,x, A),
fund f1,zy,x,X),fund f2,2,y,x,Z)
eqx,[]), edz [AlZ])
< app(x,y,z),fund(fo, 2y, X, A),
func( fl? Z7 y7 X7 X) 3 func( f27 Z7 y7 X7 Z)
eqx,[]),app(X,y, Z)
— apqxa Y, Z),fUnC( an Z Y, X, A)7
fund(f1,zy,x,X),func(f2,2y,x, Z)
eq(y, 2),eq(x, [AlX])
— apqxa Y, Z),fUnC( f37 Z Y, X, A)7
fund f4,zy,x,X),fund f5,zy,x, 2)
eq(y.2),eqz[AZ))
< app(x,y,2),func(fs,z )y, x, A),
fund f4,z,y,x,X), fund( s, z,y,x,Z)
eqy,z),app(X,y,Z)
— apqxa Y, Z)afund f37 Z Y, X, A)7
fung(fa,zy, x, X), func(fs, 2y, %, Z)
AmongC;—Cg, there are four clauses whose left-hand
sides contaimpp-atoms, i.e.,C;, Cp, Cs, andCs.
SinceCs andCg are multi-head clauses, unfolding at
theapp-atom in the body of the claug® is blocked.
Instead, resolution is applicable to the cladge
and it produces the following resolvent clauses:
As angz) < app(1,2.3),[4,5).2
(by applying resolution té\; andCy)
ani[1|zl]) — apq[zv 3]3 [47 5]321)
(by applying resolution té\; andCy)
anq[la 2|22]) — ap[x[3]7 [41 5]722)
(by applying resolution té\s andCy)
ang([1,2,3|zs]) < app({],[4.5], 23)
(by applying resolution té\; andC;)
As: ang[1,2,3,4,5]) +
The clause®s indicates thafl,2,3,4,5] is one result
of concatenatingl,2,3] and[4,5]. However, we can-
not conclude this is the only result. The reason is

Ca:

C4Z

Cr:

Cs:

Ao:
As:
Ay

that resolution adds resolvent clauses to the original
clause set and, therefore, the above resolution steps

transformCsU {A1} as follows:

CsU {Aj_}

= CsU {Al,Az}

= CsU {Al,Az,Ag}

= CsU {A]_,Az,Ag,A4}

= CsU {A]_,Az,Ag,A4,A5}

Some other result of concatenatifig2, 3] and[4, 5]
may be obtained by other clauses, i&+Cg andA;—

transformation rules, if possible, tends to take non-
negligible computation cost.

Next, we show that the above difficulty can be re-
solved by using an iff-formula. The original formula
K can be transformed equivalently into the iff-formula

lapp: @PP(X,Y,2)
< ({eax,[]),eqy,2)} v
{edx, [A[X]),eqz [AlZ]),app(X,V.2)}).

We then consider the quadruple

<{Al}v {lapp}v ans{x), T[>7

where 11 is a mapping such that for any tert
n(angt)) = app([1,2,3],[4.5].t).

By repeated replacement usikigp and equivalent
transformation with respect tegatoms, the clause
set{A1} is transformed into the singleton unit-clause
set{(ang[1,2,3,4,5]) «+ )} as follows:

{(ang2) +—apn([1,2,3],4,5.2))}
= (by replacement usinigpp)
{(ang2) < eq([1,2,3],]]),eq[4,5],2)),
(ang2) «—eq([1,2,3], [A[X]),eqz [A[Z]),
app(X, [4,5],2))}
= (by equality solving)
{(and[1}z1]) - app([2,3], 4,5, 1))}
= (by replacement usinigp)
{(and[1|z]) - eq([2,3],[]).eq([4,5],21)),
(ang[1]z1]) < eq([2 3], [AIX]),eqz, [A]Z]),
app(X,[4,5],2))}
= (by equality solving)
{(and[1,2|z]) - app([3], 4,5, 2))}
= (by replacement usinigpp)
{(and[1,2|2]) < eq([3],[]),eq([4,5],2)),
(ang[1,2[z2]) « eq([3], [AX]), eqz, [A[Z]),
app(X,[4,5,2))}
= (by equality solving)
{(and[1,2,3|z]) - app([], [4,9],23)) }
= (by replacement usinigp)
{(ans([l, 273|Z3]) «—e [])76(:([475]723))'
(ang[1,2,3]z]) « eq[], [AIX]), eqzs, [AZ]),
app(X,[4,5,2]))}
= (by equality solving)
{(anq[1,2,3,4,5]) +)}

By the removal transformation for an iff-formuliapp
is removed. Then

answe({A}, {lapp},angx),m)

= answe({(ang([1,2,3,4,5]) +)},,angx), )
=mn({ang[1,2,3,4,5])} Nnrep(angx)))
=m({ang[1,2,3,4,5))})
={app([1,2,3],[4,5],[1,2,3,4,5))},

],
[,

A4. To ensure that no such additional result exists, which meansl,2,3,4,5] is the only result of concate-

removal ofA;—Ay is required. Neither unfolding nor
resolution removes them. RemoviAg—A4 by other
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nating [1,2,3] and [4,5]. The aforementioned diffi-
culty is thus overcome with small computation cost.
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| Structural | Relational
NFP=FPMNT curr(x, z) < exantx,y),subjecty, z)
NT = —3teachCo & x: Sty: Co,z: Tp
FPC FM mayDoTlix,y) « curr(x, z),experty, z)
ACUBC=Co & x: St z: Tp,y: FP M 3teachAC
ACMNBCLC L mayDoTlix,y) « & x: Sty: NFP
john: FP, teacHjohn, ai) exantpaul, ai)
mary: FP rMvteachAC subjectai, kr), subjectai,lp)
paul: St ai: AC, kr: Tp, Ip: Tp | expertjohnkr), expertmary,Ip)

Figure 1: A knowledge base.

Ci: + NT(x),teachx,y),Co(y) Cp: teachxy),NT(x) +fundf,x,y) Cz: Co(x),NT(y) « funqf,y,x)

Ca: FM(X) + FP(x) Cs: + AC(x),BC(x) Cs: FP(john) «

C7: teacHjohnai) + Cs: FP(mary) + Co: AC(x) + teachmary,x)
Cio: Stpaul) + Ci1: AC(ai) «+ Cio: Tp(kr) +

Ciz Tp(lp) « Ci14: exanipaul,ai) + Cis: subjectai, kr) «+

Cie subjectai,lp) <+ Ci7: expertjohn kr) < Cig: experfmary,lp) <

Cig: curr(x,z) < exantx,y), subjecty, z), St(x), Co(y), Tp(z)
Co: mayDOTmXa y) — CUrr(X, 2)7 eXperty, Z)a St(X)7Tp(Z), FP(y) ) AC(W) ) teacl‘(y, W)
Co1: mayDoTHXx,y) « Stx), NFP(y)

l1: NFP(x) <> {FP(x),NT(x)} l2: Co(x) < ({AC(X)} vV {BC(x)})

Figure 2: Extended clauses and iff-formulas in the EEEface representing the knowledge base in Fig. 1.

6 EXAMPLE placement usingy is applied toCy1 (Theorem 2), and

I1 is then removed (Theorem 3). Replacement using
Consider the knowledge base in Fig. 1, slightly mod- 12 is applied toCy9 (Theorem 2). The transformation
ified from (Donini et al., 1998), where (i) the two rules mentioned at Step 2c of the procedure are next
columns refer to the structural component and the applied in the following order: NF (25 times), R1D
relational component and (ii) the two rows refer to (8 times), SG, UNF (6 times), RuD, EIS, ESB (4
the intensional level and the extensional level. The times), REso (3 times), EIS, EIF, EBB (5 times),
structural component is described using the descrip- SCH, and ESI. The final clause set consists only of
tion logic AL C (Baader et al., 2007). The intensional the two unit clausesmayDoTlHpaul john) «) and
part of the relational component is described using an (mayDoTlipaul, mary) <), from which the answer
extension of Horn clauses, where class membershipset{mayDoTlpaul john),mayDoTlpaul, mary)} is
constraints are specified after the symbol ‘&’. This derived.
intensional part provides the conditions for a student
to do his/her thesis with a professor. The query to be
considered is to find every pair of a studerdnd a
professomp such thas may do his/her thesis with. 7 CONCLUSIONS

Using standard translation fro@LC to first-
order logic (Baader et al., 2007), the knowledge base The ET principle provides a basis for solving a very
in Fig. 1 can be converted into a conjunction of first- large class of QA problems. Our proposed ET-
order formulas. With reference to Fig. 2, the ob- based procedure for solving QA problems is a state-
tained formula conjunction can further be converted transition procedure in which a state is a QA problem
into CsSUE, whereCsis the clause set consisting of and application of an ET rule results in state transi-
C1-Cp1 andE = {l4,l2}. The problem canthen be for- tion. Using ET, a given QA problem is transformed
malized as the quadruple forf@€s E, mayDoTlix,y), equivalently into simpler forms until its answer set
id), whereid is the identity mapping. can be readily obtained. The design of an appropri-
At Step 2 of the procedure in Section 3.3, the ate representation of the state space, i.e., an appro-

above quadruple is successively transformed. Re-priate form for representing QA problems, is essen-
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tial for ET-based problem solving. A triple form of of Innovative Computing, Information and Control
a QA problem was previously used, where the first 9:3515-3526.
component is a set of extended clauses with function Akama, K. and Nantajeewarawat, E. (2014). Equiva-
variables, representing the background knowledge of lent Transformation in an Extended Space for Solv-
the problem, the second component is a query atom ing Query-Answering Problems. IRroceedings of
o > ) - ' the 6th Asian Conference on Intelligent Information

and the third one is a mapping for converting ground and Database SystemsNAI 8397, pages 232-241,
atoms into elements of an answer set. Bangkok, Thailand.

The background knowledge of a QA problem of- Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
ten includes iff-formulas, which are useful for prob- and Patel-Schneider, P. F., editors (2007he De-
lem transformation. By introducing a set of iff- scription Logic Handboak Cambridge University

X Press, second edition.
formulas as a new component, this paper proposes aChang C.-L. and Lee, R. C.-T. (1978ymbolic Logic and

quadrupl_e form for representing a QA p_roblem. Iff- Mechanical Theorem Provinghcademic Press.
formulas in the quadruple form provide higher chance Donini, F. M., Lenzerini, M., Nardi. D.. and Schaerf, A.

of transformation with less cost compared to the triple (1998). 41-log: Integrating Datalog and Description
form. ET rules for using iff-formulas are invented, Logics. Journal of Intelligent Information Systems
i.e., an ET rule for replacement using an iff-formula 16:227-252.

and that for removal of a useless iff-formula. Each Horrocks, I., Patel-schneider, P. F., Bechhofer, S., and

it Tsarkov, D. (2005). OWL Rules: A Proposal and
transition step by an ET rule preserves the answer set TSI S I IS c

of a given input problem and, consequently, the cor- 3(1):23-40.
rec_tness of the pr(_)posed procedure with any combi- Lloyd, J. W. (1987). Foundations of Logic Programming
nation of ET rules is guaranteed. Springer-Verlag, second, extended edition.
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