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Abstract: Open pit mining problems aims at correctly identifying the set of blocks to be mined in order to maximize 
the net present value of the extracted ore. Different constraints can be involved and may vary the difficulty 
of the problem. In particular, the Open-Pit Long-Term Production Planning Problem is one of the variants 
that better models the real mining operation. It considers, among others, limited processing plant and mining 
capacity as well as slope and grade blending constraints. During the last thirty years, different techniques 
have been proposed to solve the multiple variants of the open pit mining problem; however, the resolution 
via constraint programming has not been reported yet. In this paper, we present a performance evaluation of 
seven constraint programming solvers for the open pit mining long-term scheduling problem. We illustrate 
interesting and comparative results on a set of varied open pit mining instances. 

1 INTRODUCTION 

Open pit mining refers to a method of mineral 
extraction in which the ore body is reached by 
opening a large ground surface along a mine. The 
orebody is commonly discretized to be regarded as a 
three-dimensional array of blocks, where each block 
has different attributes, e.g., tonnage, extraction cost, 
estimated ore content, and expected in-ground value. 
A main aim of mine planning is to correctly select 
the blocks to be mined in order to maximize the total 
profit from the process. Different constraints can be 
involved and may vary the difficulty of the problem 
such as, a limited processing plant capacity, the need 
for a balanced mining flow during a given time 
horizon, the satisfaction of a given metal demand, or 
simply to handle the extraction of several 
predecessors blocks to reach a valuable one. The 
study of open pit mining problems dates back to the 
1960s, and different variants have been reported. 
The simplest one is the ultimate pit problem (UPIT) 
[Ahuja et al., 1993) also known as maximum-weight 
closure problem. This problem aims at finding the 
set of profitable blocks within the ore body that 

maximizes the net present value (NPV). The only 
constraint involved is about precedence among 
blocks for extraction, also known as slope 
constraints. The constrained pit limit problem 
(CPIT) (Chicoisne et al., 1993) can be seen as the 
immediate extension of the UPIT, which introduces 
the time dimension to the problem and the 
corresponding constraints. The idea is to maximize 
the NPV in a given time horizon by considering the 
precedence constraints among blocks, upper and 
lower bounds for operational resources for each 
period, and constraints to ensure that blocks are 
extracted only once during the time horizon. The 
precedence constrained production scheduling 
problem (PCPSP) (Espinoza et al., 2012) adds to the 
CPIT constraints about the destination of blocks. If 
blocks contain ore they are processed otherwise they 
are sent to the waste dump. The open-pit mine 
production scheduling problem with metal 
uncertainty (MPSP) (Lamghari et al., 2012) 
introduces mining and processing constraints to the 
CPIT. The idea is to balance the mining flow 
through the periods by avoiding exceeding the metal 
production that can be sold. Processing constraints 
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ensures a minimum amount of mineral processing 
but without exceeding the processing plant capacity. 
Analogously, mining constraints establish lower and 
upper bounds of mineral tons to be mined. The open 
pit mining long-term scheduling problem (Caccetta 
et al., 2003) is another variant and perhaps is the one 
that better models the real mining operation. It 
introduces processing, mining, and grade blending 
constraints to the CPIT. Grade blending constraints 
ensure that the average grade of the material sent to 
the mill respect given lower and upper bounds. 
During the last thirty years, different solving 
techniques have been proposed to tackle the multiple 
versions of this problem, mostly belonging from the 
mathematical programming field and a few from the 
approximate methods domain. Some examples are 
the classic linear and mixed-integer linear 
programming (Caccetta et al., 2003, Chicoisne et al., 
2012, Ramazan et al., 2007, Boland et al., 2009), 
also chance constrained integer programming 
(Gholamnejad et al., 2006, Gholamnejad et al., 
2008), cutting planes (Bley et al., 2010), goal 
programming (Chanda et al., 1995), stochastic 
optimization (Marcotte et al., 2013), and genetic 
algorithms (Denby et al., 1994, Zhang, 2006) among 
others. However, no report exists about the use of 
constraint programming (CP) for solving open pit 
mining problems.  In this paper, we present a 
performance evaluation of seven constraint 
programming solvers for the open pit mining long-
term scheduling problem. We illustrate interesting 
and comparative results in order to provide a 
performance overview of constraint programming 
tackling open pit mining problems. 

The remainder of this paper is structured as 
follows. A CP overview is given in Section 2. The 
open pit mining long-term scheduling problem is 
modeled in Section 3. The experiments are 
illustrated in Section 4, followed by the conclusions 
and future work. 

2 CP BACKGROUND 

Constraint programming is a complete search 
technique devoted to the efficient solving of 
constraint-based problems. It has its roots on three 
well-known computer science domains: operational 
research, artificial intelligence, and programming 
languages. During the last couple of decades, CP has 
successfully been employed to solve different real-
life problems, e.g., set covering problems (Crawford 
et al., 2013), sudoku puzzles (Soto et al., 2013), 
manufacturing cell designs (Soto et al., 2013), nurse 

rostering (Pizarro et al., 2011), and water 
distribution problems (Soto et al., 2012), just to 
number a few. 

Under CP, problems are modeled as Constraint 
Satisfaction Problems (CSP), which mainly consists 
of a sequence of variables holding a domain of 
possible values and a set of constraints over those 
variables. Formally, a CSP P is defined by a triplet 
ܲ ൌ 〈ܸ, ,ܦ ܸ where 〈ܥ ൌ ሼݒଵ, ଶݒ … ,  ௡ሽ is the set ofݒ
variables. ܦ ൌ ሼ݀௩೔|ݒ௜ ∈ ܸሽ , is the set of domains 
and ݀௩೔ ൌ ሼܽ௜భ, ܽ௜మ, … , ܽ௜ೕሽ represents the set of 

values that variable ݒ௜ can take. ܥ ൌ ሼܥோ|ܴ ⊆
ܸ, ܴ ് ∅ሽ is the set of constraints, where ܥோ is a 
constraint over variables in ܴ. A solution to a CSP is 
an assignment ሼݒଵ → ܽଵ, … , ௡ݒ → ܽ௡|ܽ௜ ∈ ݀௩೔, ݅ ∈
1. . ݊ሽ that satisfies the whole set of constraints. An 
optimization problem is simple an extension of a 
CSP that can be seen as a 4-tuple ܲ ൌ 〈ܸ, ,ܦ ,ܥ ܱ〉, 
where ܱ corresponds to the objective function. 

 

 

Figure 1: A general algorithm for solving optimization 
problems under the CP framework. 

The most used approach to solve CSP and 
optimization problems under CP is to combine a 
backtracking procedure with filtering techniques in 
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the form of constraint propagation. Constraint 
propagation attempts to delete from domains the 
values that do not lead to any solution in order to 
accelerate the exploration. The constraint 
propagation is performed by validating a consistency 
property on the constraints of the problem; the most 
used one is the arc-consistency (Soto et al., 2014). 

Figure 1 illustrates a general procedure for 
solving optimization problems under the CP 
framework. The idea is to generate partial solutions 
to be verified backtracking when inconsistencies are 
detected until a result is encountered. The first step 
is to select the variable and its corresponding value 
to generate a potential solution to be verified. Then, 
the propagation attempts to delete the unfeasible 
values. The update instruction is responsible for 
storing the best optimum value reached at this time. 
Finally two conditions perform backtracks. The 
classic backtrack comes back to the most recently 
tested variable that has still chance to reach a 
solution. A shallow backtrack jumps to the next 
value available from the domain of the current 
variable. 

3 PROBLEM FORMULATION 

In this section we formulate the Open-Pit Long-
Term Production Planning Problem. We proceed by 
firstly stating the notation followed by the 
mathematical model. 

3.1 Page Setup 

 Indices and sets 
 ݐ: time period index ݐ ∈ ሼ1,2, … , ܶሽ.  
 ܶ: set of periods	ݐ.  
 ܾ: time period index ܾ ∈ ሼ1,2, … ,   .ሽܤ
 ܤ: set of blocks	ܾ.  
 ݁ݔ: index of a block considered for 

extraction. 
 
 Parameters 
 ܥ௕

௧: net present value obtained from 
mining block ܾ in period ݐ. 

 ෤݃௕: block grade, which is defined as a 
random constant. 

 ܶ݋௕: The total amount of ore in block ܾ. 
 ܶݓ௕: The total amount of waste in block 

ܾ. 
 ܥܯ௠௔௫௧ : The maximum material, 

including waste and ore, to be mined in 
period ݐ. 

 ܥܯ௠௜௡
௧ : The minimum material, including 

waste and ore, to be mined in period ݐ. 
 ܲܥ௠௔௫௧ : The maximum amount of ore to 

be mined in period ݐ. 
 ܲܥ௠௜௡

௧ : The minimum amount of ore to be 
mined in time ݐ. 

 ܩ௠௔௫௧ : The maximum average grade of 
material to be processed in time ݐ. 

 ܩ௠௜௡
௧ : The minimum average grade of 

material to be processed in time ݐ. 
 ݀: Discount rate in each period. 
 ܲ௧: Selling price of metal unit in time ݐ. 
 ܵܲ௧: Selling cost of metal unit in time ݐ. 
 ܴ: Total metal recovery. 
 ௖ܲ

௧: Unit processing cost of ore in time ݐ. 
 ܯ௖௢

௧ : Mining cost of metal unit in time ݐ.  
 ܯ௖௪

௧ : Mining cost of waste material in 
time ݐ. 

 ݁: Total number of blocks overlaying a 
block. 

 Variables 
 ݔ௕

௧ : a binary decision variable which is set 
to 1 if the block is mined, 0 otherwise. 

3.2 Mathematical Model   

The Open pit mining long-term scheduling problem 
aims at correctly selecting the blocks to be mined in 
order to maximize the total profit from the process in 
a given period of time. The corresponding objective 
function of the problem is depicted below, where ܥ௕

௧ 
is computed by Eq. 2. 

 

ܼ	݁ݖ݅݉݅ݔܽ݉ ൌ෍෍ܥ௕
௧ݔ௕

௧

஻

௕ୀଵ

																		ሺ1ሻ

்

௧ୀଵ

 

 

௕ܥ
௧ ൌ

1
ሺ1 ൅ ݀ሻ௧

ሼሾሺܲ௧ െ ܵܲ௧ሻ ෤݃௕ܴ െ ௖ܲ
௧ െ ௖௢ܯ

௧ ሿܶ݋௕

െ ሺܯ௖௪
௧  ሺ2ሻ																															௕ሻሽݓܶ

 

The objective function is subjected to several 
constraints. For instance, the average grade of the 
material sent to the mill must respect given upper 
௠௔௫௧ܩ) ) and lower bounds (ܩ௠௜௡

௧ ). This constraint is 
known as grade blending constraint. 

 

௠௜௡ܩ
௧ ൑ 	

∑ ෤݃௕ܶ݋௕ݔ௕
௧஻

௕ୀଵ

∑ ௕ݔ௕݋ܶ
௧஻

௕ୀଵ
൑ ௠௔௫௧ܩ 								ሺ3ሻ 

ݐ		ݎ݋݂	 ∈ ሼ1,2, … , ܶሽ				 
 

The total tons of material to be exploited are 
restricted by processing and mining capacities. The 
amount of ore to be processed in each period must 
respect the given upper (ܲܥ௠௔௫௧ ) and lower bounds 
௠௜௡ܥܲ)

௧ ) as stated in Eq. 4. Likewise, the total 
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material mined, involving ore and waste, is bounded 
by ܥܯ௠௜௡

௧ and ܥܯ௠௔௫௧  as stated in Eq. 5. 
 

௠௜௡ܥܲ
௧ ൑ ෍ܶ݋௕ݔ௕

௧ 	൑ ௠௔௫௧ܥܲ 										ሺ4ሻ

஻

௕ୀଵ

 

ݐ		ݎ݋݂	 ∈ ሼ1,2, … , ܶሽ				 
 

௠௜௡ܥܯ
௧ ൑෍ሺܶ݋௕ ൅ ௕ݔ௕ሻݓܶ

௧ 	൑ ௠௔௫௧ܥܯ 																ሺ5ሻ

஻

௜ୀଵ

 

ݐ		ݎ݋݂	 ∈ ሼ1,2, … , ܶሽ				 
 

Eq. 6 ensures that all predecessor blocks of a 
block ܾ must be completely mined in order to have 
access and be able to mine the block ܾ. This is 
commonly represented as a cone model as illustrated 
in Figure 2. Finally Eq. 7 guarantees that any block 
is mined only once.  
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Figure 2: Cone model. 

4 EXPERIMENTS 

We have performed a set of experiments by using 36 
instances of different size in order to compare the 
performance of the seven CP solvers. The 
experiments have been performed on an Intel Core 
i5 with 6 Gb RAM running Windows 7. The 
description of solvers and instances is detailed in 
tables 1, 2, and 3, respectively. For each instance, 
we provide number of periods (ܶ), number of blocks 
௠௜௡ܥܯ ,number of precedence ,(ܤ)

௧ ௠௔௫௧ܥܯ	, , 
௠௜௡ܥܲ

௧ ௠௔௫௧ܥܲ	, ௠௜௡ܩ ,
௧ , and	ܩ௠௔௫௧ . For space reasons, 

௕ܥ
௧,	ܶ݋௕, and ܶݓ௕	for each block ܾ are not included, 

but provided in data sets available at 
http://inf.ucv.cl/~rsoto/OPM.html. 

The results in terms of solving time are depicted 
in table 4 and 5. Bold font is used for the best 
solving time in each instance, and 10:00:00.000 
means that no solution was reached after 10 hours of 
running time. The summary of results is depicted in 
table 6, which considers as indicators: average 
solving time for the complete set of instances 
(Avg.), the difference w.r.t the best average solving 
time (∆), the standard deviation (ߪ), the number of 
times the solver achieved the best time for a given 
instance (1st place), the second best time (2nd place), 
and the third best time (3rd place). 

The results illustrate that Gecode, MiniZinc, and 
Mzn-g12cpx exhibit the best performance by far. 
Gecode achieves the best average solving time close 
to the performance of MiniZinc, and Mzn-g12cpx. 
Likewise, Mzn-g12cpx obtained 20 first places, 
Gecode obtained 13 first places, and MiniZinc 2 first 
places. The second places are also taken by these 
solvers, MiniZinc taking 21, Gecode 14, and Mzn-
g12cpx only 1. Finally, MiniZinc takes 13 third 
places, Mzn-g12cpx takes 8, and Gecode takes 9. 
The better performance exhibited by those solvers 
with respect to its competitors can be explained by 
different reasons. Gecode is a fast solver specially 
tuned via efficient propagators for solving this kind 
of problems1. MiniZinc is rather a modeling 
language than a solver, but its default solver is also 
very efficient sharing several solving, search, and 
filtering features with Gecode. Mzn-g12cpx is a 
recent solver based on the lazy clause LazyFD 
solver. A lazy clause solver is a hybrid combining 
CP and SAT. The idea is to mimic a domain 
propagation engine by mapping propagators into 
SAT clauses. As a result, we obtain reduced search 
by nogood creation, and effective autonomous 
search. This leads normally to a faster solving 
process. 

On the contrary, Mzn-g12fd is a finite domain 
solver mostly oriented to satisfaction problems and 
perhaps not specially tuned for optimization 
problems.  

 
Mzn-g12fdlp, which is the linear programming 
version of Mzn-g12fd, slightly improves the results, 
but the solving times reached remain quite far from 
the best ones. Finally, Choco is a well-known solver 
including state-of-the-art CP solving technology but 
also rather devoted to constraint satisfaction than 
optimization.  
1  See results of different competitions at http://www.geco 

de.org/  
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Table 1: Solver Description. 

MiniZinc 

It is a state-of-the-art high level CP 
modeling language that can be 
interfaced with several solvers via the 
FlatZinc low-level solver input 
language. For the experiments, we 
employ the default solver for 
MiniZinc. 

Flatzinc 

FlatZinc is the interface of MiniZinc 
to derive models to target solvers. For 
the experiments, we employ the 
default solver for FlatZinc. 

Mzn-g12cpx 

It is the successor of the LazyFD 
solver (lazy clause generation) 
involving Constraint Programming 
with eXplanations. 

Mzn-g12fd 
It is the finite domain solver of the 
G12 project, to be used with the 
MiniZinc modeling language. 

Mzn-g12fdlp 
It is the linear programming solver of 
the G12 project, to be used with the 
MiniZinc modeling language. 

Choco 

It is another state-of-the-art CP solver 
implemented on top of Java. It is built 
on a event-based propagation 
mechanism with backtrackable 
structures. 

Gecode 

It is a well-known CP solver, 
implemented as a C++ library. It can 
also be interfaced to several languages 
such as MiniZinc, Alice, Ruby, and 
Lisp. 

Table 3: Lower and upper bounds for ܥܯ,  ,per periods ܥܲ
for all instances. 

௠௜௡ܥܯ 
௧ ௠௔௫௧ܥܯ  ௠௜௡ܥܲ 

௧  

t ൌ 1 2000 0 200 

t ൌ 2 2000 0 20000 

t ൌ 3 200000 0 20000 

t ൌ 4 200000 0 200000 

t ൌ 5 200000 0 200000 

t ൌ 6 200000 0 20000 

t ൌ 7 200000 0 20000 

Table 2: Instance Description. 

Instance ܶ  Precedences ܤ

1 3 27 98 

2 5 27 98 

3 7 27 98 

4 3 36 140 

5 5 36 140 

6 7 36 140 

7 3 45 182 

8 5 45 182 

9 7 45 182 

10 3 48 200 

11 5 48 200 

12 7 48 200 

13 3 54 224 

14 5 54 224 

15 7 54 224 

16 3 60 260 

17 5 60 260 

18 7 60 260 

19 3 64 300 

20 5 64 300 

21 7 64 300 

22 3 80 390 

23 5 80 390 

24 7 80 390 

25 3 90 416 

26 5 90 416 

27 7 90 416 

28 3 96 480 

29 5 96 480 

30 7 96 480 

31 3 120 624 

32 5 120 624 

33 7 120 624 

34 3 150 832 

35 5 150 832 

36 7 150 832 

Table 4: Lower and upper bounds for ܲܥ, and ܩ per 
periods, for all instances. 

௠௔௫௧ܥܲ  ௠௜௡ܩ 
௧ ௠௔௫௧ܩ   

t ൌ 1 0 0.5 0 
t ൌ 2 0 5 0 
t ൌ 3 0 5 0 
t ൌ 4 0 5 0 
t ൌ 5 0 5 0 
t ൌ 6 0 0.5 0 
t ൌ 7 0 0.5  
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Table 5: Solving times of the seven tested solvers for instances 1 to 30 using the hh:mm:ss format. Part 1. 

Instance MiniZinc Flatzinc Mzn-g12cpx Mzn-g12fd Mzn-g12fdlp Choco Gecode 

2 00:00:00.150 00:00:00.812 00:00:00.930 00:00:02.040 00:00:01.850 00:00:01.280 00:00:00.169

2 00:00:12.997 00:01:00.980 00:02:16.290 00:01:21.120 00:01:11.950 00:01:10.360 00:00:13.043

3 00:03:50.798 00:14:55.507 00:13:13.350 00:15:39.960 00:16:04.700 00:17:04.000 00:03:44.042

4 00:00:03.635 00:00:22.105 00:00:26.360 00:00:23.070 00:00:20.290 00:00:34.540 00:00:02.694

5 00:12:40.846 00:48:20.136 01:40:26.190 00:49:18.220 00:43:28.680 01:07:13.220 00:12:37.014

6 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000

7 00:00:00.560 00:00:03.681 00:00:01.770 00:00:03.990 00:00:03.610 00:00:04.401 00:00:00.548

8 00:02:29.646 00:10:36.109 00:05:20.740 00:10:32.120 00:10:17.210 00:12:03.390 00:02:13.807

9 01:58:58.975 07:40:50.599 01:29:02.750 07:38:07.250 07:30:34.710 08:45:14.445 01:59:26.708

10 00:00:00.220 00:00:00.015 00:00:00.500 00:00:02.030 00:00:01.770 00:00:02.710 00:00:00.271

11 00:01:08.555 00:05:22.735 00:00:11.530 00:05:17.390 00:04:54.750 00:05:22.110 00:01:12.042

12 00:16:27.507 00:53:22.070 00:00:46.120 00:56:47.420 00:56:30.670 01:07:10.120 00:22:02.862

13 00:00:00.411 00:00:02.824 00:00:00.630 00:00:03.400 00:00:03.410 00:00:03.004 00:00:00.390

14 00:00:56.978 00:04:19.585 00:00:10.010 00:04:29.830 00:03:44.840 00:04:54.403 00:01:01.748

15 00:16:59.469 01:16:28.910 00:00:48.780 01:24:09.280 01:10:18.450 01:15:40.358 00:15:58.783

16 00:00:04.884 00:00:25.412 00:00:14.000 00:00:23.690 00:00:23.530 00:00:23.710 00:00:04.415

17 01:01:42.276 04:15:41.200 04:53:15.860 04:03:15.000 03:43:18.280 10:00:00.000 01:00:33.329

18 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000

19 00:00:00.150 00:00:00.765 00:00:00.800 00:00:01.100 00:00:01.010 00:00:02.030 00:00:00.143

20 00:00:09.617 00:00:43.010 00:00:31.910 00:00:43.630 00:00:41.910 00:01:01.520 00:00:09.604

21 00:01:10.816 00:06:21.000 00:01:57.930 00:06:22.240 00:06:06.300 00:09:03.706 00:01:08.862

22 00:00:16.200 00:01:19.014 00:00:12.740 00:01:19.540 00:01:12.000 00:01:38.060 00:00:16.192

23 03:40:37.626 10:00:00.000 01:11:47.810 10:00:00.000 10:00:00.000 10:00:00.000 03:32:05.568

24 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000 10:00:00.000

25 00:00:00.812 00:00:04.601 00:00:00.771 00:00:04.640 00:00:04.910 00:00:05.010 00:00:00.770

26 00:02:44.479 00:10:14.520 00:00:18.270 00:10:17.310 00:09:40.130 00:10:36.211 00:02:37.258

27 00:31:02.560 02:09:37.945 00:00:47.930 02:06:37.440 02:05:32.460 02:31:24.025 00:30:35.024

28 00:00:00.906 00:00:05.133 00:00:00.750 00:00:05.440 00:00:05.070 00:00:05.457 00:00:00.894

29 00:01:34.900 00:05:27.212 00:00:10.480 00:05:33.400 00:05:03.880 00:05:33.007 00:01:33.349

30 00:30:43.134 02:15:08.105 00:01:01.720 02:48:42.800 02:44:18.000 02:58:12.070 00:31:12.581

 

5 CONCLUSIONS 

In this paper, we have solved the open-pit long-term 
production planning problem by using constraint 
programming. This problem aims at maximizing the 
net present value of the extracted ore from the 
mining operation by considering limited processing 
plant and mining capacity as well as slope and grade 
blending constraints. We have solved this problem 

by means of seven well-known CP solvers: 
MiniZinc, Mzn-g12cpx, Gecode, Flatzinc, Mzn-
g12fd, Mzn-g12fdlp, and Choco. MiniZinc, Mzn-
g12cpx, and Gecode obtained the best results, which 
can be explained by different reasons such as the 
incorporation of efficient propagators, and state-of-
the-art search and filtering techniques. 
As future work, we expect to study additional 
variants of this problem in order to solve them with 
constraint programming or related complete and
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Table 6: Solving times of the seven tested solvers for instances 31 to 36 using the hh:mm:ss format. Part 2. 

Instance MiniZinc Flatzinc Mzn-g12cpx Mzn-g12fd Mzn-g12fdlp Choco Gecode 

31 00:00:01.261 00:00:06.224 00:00:01.010 00:00:06.760 00:00:06.140 00:00:06.210 00:00:01.262

32 00:02:17.578 00:08:07.190 00:00:11.260 00:08:11.050 00:07:46.920 00:08:49.040 00:02:08.285

33 00:35:49.456 02:37:20.354 00:00:55.500 02:39:53.180 02:37:34.020 02:57:41.408 00:32:59.947

34 00:00:00.676 00:00:03.494 00:00:01.020 00:00:03.420 00:00:03.420 00:00:03.588 00:00:00.595

35 00:04:12.895 00:14:03.637 00:00:16.040 00:14:04.330 00:13:31.680 00:14:22.753 00:03:54.553

36 01:00:00.734 02:41:58.363 00:00:44.660 02:48:25.340 02:49:57.390 03:05:42.428 00:50:05.400

28 00:00:00.906 00:00:05.133 00:00:00.750 00:00:05.440 00:00:05.070 00:00:05.457 00:00:00.894

29 00:01:34.900 00:05:27.212 00:00:10.480 00:05:33.400 00:05:03.880 00:05:33.007 00:01:33.349

30 00:30:43.134 02:15:08.105 00:01:01.720 02:48:42.800 02:44:18.000 02:58:12.070 00:31:12.581

31 00:00:01.261 00:00:06.224 00:00:01.010 00:00:06.760 00:00:06.140 00:00:06.210 00:00:01.262

32 00:02:17.578 00:08:07.190 00:00:11.260 00:08:11.050 00:07:46.920 00:08:49.040 00:02:08.285

33 00:35:49.456 02:37:20.354 00:00:55.500 02:39:53.180 02:37:34.020 02:57:41.408 00:32:59.947

34 00:00:00.676 00:00:03.494 00:00:01.020 00:00:03.420 00:00:03.420 00:00:03.588 00:00:00.595

35 00:04:12.895 00:14:03.637 00:00:16.040 00:14:04.330 00:13:31.680 00:14:22.753 00:03:54.553

36 01:00:00.734 02:41:58.363 00:00:44.660 02:48:25.340 02:49:57.390 03:05:42.428 00:50:05.400

Table 7: Summary of performance. 

 MiniZinc Flatzinc Mzn-g12cpx Mzn-g12fd Mzn-g12fdlp Choco Gecode 

Avg. 00:19:02.570 01:05:31.917 00:17:44.134 01:06:40.831 01:04:56.483 01:22:28.139 00:17:08.711

∆ 00:01:53.859 00:48:23.206 00:00:35.423 00:49:32.120 00:47:47.772 01:05:19.428 00:00:00.000

00:43:20.211 02:48:26.598 02:14:44.799 02:16:16.958 00:55:37.507 02:16:14.323 00:44:50.159 ߪ

1st place 2 1 20 0 0 0 13 

2nd place 21 0 1 0 0 0 14 

3rd place 13 3 8 0 3 0 9 

 

incomplete search techniques. Another interesting 
further work would be the introduction of 
autonomous search in the solving process. As 
detailed in (Crawford et al., 2013, Monfroy et al., 
2013, Soto et al., 2013), the incorporation of 
autonomous search in a CP search engine can clearly 
speed up the resolution, especially in the presence of 
harder instances. 
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