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Abstract: This paper proposes a general framework for structuring dynamic Particle Swarm populations and uses a 
conservation of function evaluations strategy to increase the convergence speed. The population structure is 
constructed by placing the particles on a 2-dimensional grid of nodes, where they interact and move 
according to simple rules. During the running time of the algorithm, the von Neumann neighborhood is used 
to decide which particles influence each other when updating their velocity and position. Each particle is 
updated in each time-step but they are evaluated only if there are other particles in their neighborhood. A set 
of experiments demonstrates that the dynamics imposed by the structure provides a more consistent and 
stable behavior throughout the test set when compared to standard topologies, while the conservation of 
evaluations significantly reduces the convergence speed of the algorithm. Furthermore, the working 
mechanisms of the proposed structure are very simple and, except for the size of the grid, they do not 
require parameters and tuning.  

1 INTRODUCTION 

Kennedy and Eberhart (1995) proposed the Particle 
Swarm Optimization (PSO) algorithm for binary and 
real-valued function optimization, a method inspired 
by the swarming and social behavior of bird flocks 
and fish schools. Since then, PSO has been applied 
with success to a wide range of problems but the 
proper balance between exploration (global search) 
and exploitation (local search) is still an open 
problem that motives several lines research on the 
various mechanisms that control the algorithm’s 
performance.  

Population topology is one of PSO’s components 
that affect the balance between exploration and 
exploitation and the convergence speed and 
accuracy of the algorithm. In the context of particle 
swarms, topology is the structure that defines the 
connections between the particles and consequently 
the flow of information through the population. The 

reason why particles are interconnected is the core 
of the algorithm: the particles communicate so that 
they acquire information on the regions explored by 
other particles. In fact, it has been claimed that the 
uniqueness of the PSO algorithm lies in the 
interactions of the particles (Kennedy and Mendes, 
2002). The population can be structured on any 
possible topology, from sparse to dense (or even 
fully connected) graphs), with different degrees of 
connectivity and clustering. The classical and most 
used population structures are the lbest (which 
connects the individuals to a local neighborhood) 
and the gbest (in which each particle is connected to 
every other individual). These topologies are well-
studied and the major conclusions are that gbest is 
fast but is frequently trapped in local optima, while 
lbest is slower but converges more often to the 
neighborhood of the global optima.  

Since the first experiments on lbest and gbest 
structures, researchers have tried to design networks 
that hold the best traits given by each structure 
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(Parsopoulos and Vrahatis, 2004). Some studies also 
try to understand what makes a good structure: for 
instance, Kennedy and Mendes (2002) investigate 
several types of topologies and recommend the use 
of a lattice with von Neumann neighborhood (which 
results in a connectivity degree between that of lbest 
and gbest).  

Recently, dynamic structures have been tested in 
order to improve the algorithm’s adaptability to 
different fitness landscapes and overcome the 
rigidity of static structures, like in (Liang et al., 
2006). Fernandes et al. (2003) try a different 
approach and propose a dynamic and partially 
connected von Neumann structure with Brownian 
motion. This paper uses this model but introduces a 
strategy for the conservation of function evaluations 
(Majercik, 2013) with the aim of taking advantage of 
the underlying structure and reduce convergence 
speed. Furthermore, a formal description of the 
dynamic network is given here, opening the way for 
more sophisticated dynamics. 

In the proposed topology, ݊ particles are placed in a 
2-dimensional m-nodes grid where ݉ ൐ ݊. Every 
time-step, each individual checks its von Neumann 
neighborhood and, as in the standard PSO, updates 
its velocity and position using the information given 
by the neighbors. However, while the connectivity 
degree (number of numbers, considering the particle 
itself) of the von Neumann topology is ݇ ൌ 5, the 
degree of the proposed topology is variable: ݇ ൑ 5. 
Furthermore, the structure is dynamic: in each time-
step, every particle updates its position on the grid 
(which is a different concept from the position of the 
particle on the fitness landscape) according to a pre-
defined rule that selects the destination node. The 
movement rule, which is implemented locally and 
without any knowledge on the global state of the 
system, can be based on stigmergy (Grassé, 1959) or 
Brownian motion.  

As stated above, the connectivity degree ݇ of each 
particle in each time-step is variable and lies in the 
range 1 ൑ ݇ ൑ 5. Depending on the size of the grid, 
there are, in each time-step, a number of particles 
with ݇ ൌ 1. These particles without neighbors 
(except the particle itself) do not learn from any 
local neighborhood at that specific iteration. 
Therefore, it is expected that they continue to follow 
their previous trajectory in the fitness landscape. 
Taking into account these premises, the algorithm 
proposed in this study does evaluate the position of 
the particles when ݇ ൌ 1. Regardless of the loss of 
informant intrinsic to a conservation of evaluations 
policy, we hypothesize that the strategy is 

particularly suited for the proposed dynamic 
topology (in which the particles are sometimes 
isolated from the flow of information) and the 
number of function evaluations required for meeting 
the stop criteria can be significantly reduced. 
Furthermore, it is the structure of the population and 
the position of the particles at a specific time-step 
that decides the application of the conservation rule 
and not any extra parameter or pre-defined decision 
rule.  

A classical PSO experimental setup is used for the 
tests and the results demonstrate that the proposed 
algorithm consistently improves the speed of 
convergence of the standard von Neumann structure 
without degrading the quality of solutions. The 
experiments also demonstrate that the introduction 
of the conservation strategy reduces significantly the 
convergence speed without affecting the quality of 
the final solutions. 

The remaining of the paper is organized as follows. 
Section 2 describes PSO and gives an overview on 
population structures for PSOs. Section 3 gives a 
formal description of the proposed structure. Section 
4 describes the experiments and discusses the results 
and, finally, Section 5 concludes the paper and 
outlines future research.  

2 BACKGROUND REVIEW 

PSO is described by a simple set of equations that 
define the velocity and position of each particle. The 
position of the i-th particle is given by Ԧܺ௜ ൌ
ሺݔ௜,ଵ, ,௜,ଶݔ …  is the dimension of the ܦ ଵ,஽), whereݔ

search space. The velocity is given by ሬܸԦ௜ ൌ
ሺݒ௜,ଵ, ,௜,ଶݒ …  ଵ,஽). The particles are evaluated with aݒ

fitness function ݂ሺ Ԧܺ௜ሻ and then their positions and 
velocities are updated by: 
 

ሻݐ௜,ௗሺݒ ൌ ݐ௜,ௗሺݒ െ 1ሻ
൅ ܿଵݎଵ൫݌௜,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯
൅ ܿଶݎଶ൫݌௚,ௗ െ ݐ௜,ௗሺݔ െ 1ሻ൯ 

(1)

ሻݐ௜,ௗሺݔ ൌ ݐ௜,ௗሺݔ െ 1ሻ ൅ ሻ (2)ݐ௜,ௗሺݒ
 

were ݌௜ is the best solution found so far by particle ݅ 
and ݌௚ is the best solution found so far by the 
neighborhood. Parameters ݎଵand ݎଶ are random 
numbers uniformly distributed in the range ሾ0,1] and 
ܿଵand ܿଶ are acceleration coefficients that tune the 
relative influence of each term of the formula. The 
first term is known as the cognitive part, since it 
relies on the particle’s own experience. The last term 
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is the social part, since it describes the influence of 
the community in the trajectory of the particle. 
In order to prevent particles from stepping out of the 
limits of the search space, the positions ݔ௜,ௗሺݐሻ are 
limited by constants that, in general, correspond to 
the domain of the problem: 
ሻݐ௜,ௗሺݔ ∊ ሾെܺ݉ܽݔ,  ሿ. Velocity may also beݔܽ݉ܺ
limited within a range in order to prevent the 
explosion of the velocity vector: ݒ௜,ௗሺݐሻ ∊
ሾെܸ݉ܽݔ,   .ሿݔܸܽ݉

For achieving a better balancing between local and 
global search, Shi an Eberhart (1998) added the 
inertia weight	߱ as a multiplying factor of the first 
term of equation 1. This paper uses PSOs with 
inertia weight.  

The neighborhood of the particle defines the value 
of ݌௚ and is a key factor in the performance of PSO. 
Most of the PSOs use one of two simple sociometric 
principles for defining the neighborhood network. 
One connects all the members of the swarm to one 
another, and it is called gbest, were g stands for 
global. The degree of connectivity of gbest is ݇ ൌ ݊, 
where ݊ is the number of particles. Since all the 
particles are connected to every other and 
information spreads easily through the network, the 
gbest topology is known to converge fast but 
unreliably (it often converges to local optima). 

The other standard configuration, called lbest (where 
l stands for local), creates a neighborhood that 
comprises the particle itself and its ݇ nearest 
neighbors. The most common lbest topology is the 
ring structure, in which the particles are arranged in 
a ring structure (resulting in a degree of connectivity 
݇ ൌ 3, including the particle). The lbest converges 
slower than the gbest structure because information 
spreads slower through the network but for the same 
reason it is less prone to converge prematurely to 
local optima. In-between the ring structure with 
݇	 ൌ 	3 and the gbest with ݇	 ൌ ݊ there are several 
types of structure, each one with its advantages on a 
certain type of fitness landscapes. Choosing a proper 
structure depends on the target problem and also on 
the objectives or tolerance of the optimization 
process.  

Kennedy and Mendes (2002) published an 
exhaustive study on population structures for PSOs. 
They tested several types of structures, including the 
lbest, gbest and von Neumann configuration with 
radius 1 (also kown as 5ܮ neighborhood). They also 
tested populations arranged in randomly generated 
graphs. The authors conclude that when the 
configurations are ranked by the performance the 

structures with k = 5 (like the 5ܮ) perform better, 
but when ranked according to the number of 
iterations needed to meet the criteria, configurations 
with higher degree of connectivity perform better. 
These results are consistent with the premise that 
low connectivity favors robustness, while higher 
connectivity favors convergence speed (at the 
expense of reliability). Amongst the large set of 
graphs tested in (Kennedy and Mendes, 2002), the 
Von Neumann with radius 1 configuration 
performed more consistently and the authors 
recommend its use.  

Alternative topologies that combine standard 
structures’ characteristics or introduce some kind of 
dynamics in the connections have been also 
proposed. Parsopoulos and Vrahatis (2004) describe 
the unified PSO (UPSO), which combines the gbest 
and lbest configurations. Equation 1 is modified in 
order to include a term with ݌௚ and a term with ݌௜ 
and a parameter balances the weight of each term. 
The authors argue that the proposed scheme exploits 
the good properties of gbest and lbest. Peram et al. 
(2003) proposed the fitness–distance-ratio-based 
PSO (FDR-PSO), which defines the “neighborhood” 
of a particle as its ݇ closest particles in the 
population (measured by the Euclidean distance). A 
selective scheme is also included: the particle selects 
nearby particles that have also visited a position of 
higher fitness. The algorithm is compared to a 
standard PSO and the authors claim that FDR-PSO 
performs better on several test functions. However, 
the FDR-PSO is compared only to a gbest 
configuration, which is known to converge 
frequently to local optima in the majority of the 
functions of the test set. More recently, a 
comprehensive-learning PSO (CLPSO) was 
proposed (Liang et al. 2006). Its learning strategy 
abandons the global best information and introduces 
a complex and dynamic scheme that uses all other 
particles’ past best information. CLPSO can 
significantly improve the performance of the 
original PSO on multimodal problems. Finally, 
Hseigh et al. (2009) use a PSO with varying swarm 
size and solution-sharing that, like in (Liang et al. 
2006), uses the past best information from every 
particle. 

A different approach is given in (Fernandes et al., 
2013). The authors describe a structure that is based 
on a grid of ݉ nodes (with ݉ ൐ ݊) on which the 
particles move and interact. The von Neumann 
neighborhood is checked for chosing the informants 
of the cognitive part of equation 1. Since ݉ ൐ ݊, the 
number of neighbors lies in the range 1 ൑ ݇ ൑ 5 and 
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the distribution of the particles on the grid at a given 
time-step defines the PSO structure at that precise 
iteration. The results demonstrate that the proposed 
structure performs consistently throughout the test 
set, improving the performance of other topologies 
in the majority of the scenarios and under different 
performance evaluation criteria. Furthermore, the 
structure is very simple and only the grid size needs 
to be set before the run (the authors suggest 1:2 ratio 
between the swarm size and the number of nodes). 
However, the structure itself and the distribution of 
the particles on the grid suggest that there is still 
room for improvement, namely of convergence 
speed, which is a critical aspect when optimizing 
real-world functions.  

In the proposed structure, a particle, at a given time-
step, may have no neighbors except itself. The 
isolated particles will continue to follow its previous 
trajectory, based on their current information, until 
they find another particle in the neighborhood. 
Therefore, we intend to investigate if the loss of 
information caused by not evaluating these particles 
is overcome by the payoff in the convergence speed.  

Common ways of addressing the computational cost 
of evaluating solutions in hard real-world problems 
are function approximation (Landa-Becerra et al., 
2008), fitness inheritance (Reyes-Sierra and Coello 
Coello, 2007) and conservation of evaluations 
(Majercik, 2013). Due to the underlying structure of 
the proposed algorithm, we have tested a 
conservation policy similar to the GREEN-PSO 
proposed by Majercik (2013). However, in our 
algorithm the decision on evaluating or not is made 
by the position of the particle in the grid (isolated 
particles are not evaluated) while in the GREEN-
PSO the decision is probabilistic and the likelihood 
of conserving a solution is controlled by a 
parameter.  

The following section gives a formal description of 
the proposed network and presents the transition 
rules that define the model for dynamic population 
structures. 

3 PARTIALLY CONNECTED 
STRUCTURES 

Let us consider a rectangular grid ܩ of size ݍ ൈ ݏ ൒
 is the size of the population of any ߤ where ,ߤ
population-based metaheuristics or model. Each 
node ܩ௨௩ of the grid is a tuple 〈ߟ௨௩,  ௨௩〉, whereߞ
௨௩ߟ ∈ ሼ1, … , ሽߤ ∪ ሼ•ሽ and ߞ௨௩ ∈ ሺܦ ൈ Գሻ ∪ ሼ•ሽ for 

some domain ܦ. The value ߟ௨௩ indicates the index 
of the individual that occupies the position 〈ݑ,  in 〈ݒ
the grid. If ߟ௨௩ ൌ	• then the corresponding position 
is empty. However, that same position may still have 
information, namely a mark (or clue) ߞ௨௩. If ߞ௨௩= • 
then the position is empty and unmarked. Please 
note that when ݍ ൈ ݏ ൌ -the topology is a static 2 ,ߤ
dimensional lattice and when ݍ ൈ ݏ ൌ ݍ and ߤ ൌ  ݏ
the topology is the standard square grid graph. 

In the case of a PSO, the marks are placed by 
particles that occupied that position in the past and 
they consist of information about those particles, 
like their fitness ߞ௨௩

௙  or position in the fitness 
landscape, as well as a time stamp ߞ௨௩௧  that indicates 
the iteration in which the mark was placed. The 
marks have a lifespan of ܭ iterations, after which 
they are deleted. 

Initially, ܩ௨௩ ൌ ሺ•,•ሻ for all 〈ݑ,  Then, the .〈ݒ
particles are placed randomly on the grid (only one 
particle per node). Afterwards, all particles are 
subject to a movement phase (or grid position 
update), followed by a PSO phase. The process 
(position update and PSO phase) repeats until a stop 
criterion is met. 

The PSO phase is the standard iteration of a PSO, 
comprising position and velocity update. The only 
difference to a static structure is that in this case a 
particle may find empty nodes in its neighborhood.  

In the position update phase, each individual moves 
to an adjacent empty node. Adjacency is defined by 
the Moore neighborhood of radius ݎ, so an 
individual ݅ at ߩ௚ሺ݅ሻ ൌ ,ݑ〉  can move to an empty 〈ݒ
node 〈ݑᇱ, ,ݑ〉ஶሺܮ ᇱ〉 for whichݒ ,〈ݒ ,ᇱݑ〉 ᇱ〉ሻݒ ൑  If .ݎ
empty positions are unavailable, the individual stays 
in the same node. Otherwise, it picks a neighboring 
empty node according to the marks on them. If there 
are no marks, the destination is chosen randomly 
amongst the free nodes. 

With this framework, there are two possibilities for 
the position update phase: stimergic, whereby the 
individual looks for a mark that is similar to itself; 
and Brownian, whereby the individual selects an 
empty neighbor regardless of the marks. For the first 
option, let ࣨ〈ݑ, 〈ݒ ൌ ൛〈ݑሺଵሻ, ,〈ሺଵሻݒ … , ,௪ݑ〉  ௪〉ൟ beݒ
the collection of empty neighboring nodes and let ݅ 
be the individual to move. Then, the individual 
attempts to move to a node whose mark is as close 
as possible to its own corresponding trait (fitness or 
position in the fitness landscape, for instance) or to 
an adjacent cell picked at random if there are no 
marks in the neighborhood. In the alternative 
Brownian policy, the individual moves to an 
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adjacent empty position picked at random. In either 
case, the process is repeated for the whole 
population.  

For this paper, the investigation is restricted to the 
Brownian structure. The algorithm is referred in the 
remaining of the paper has PSO-B, followed by the 
grid size ݍ ൈ  An extension of the PSO-B is also .ݏ
proposed by introducing a conservation of function 
evaluations (cfe) strategy. If at a given time-step a 
particle has no neighbors, then the particle is 
updated but its position is not evaluated. This 
version of the algorithm is referred to as PSO-Bcfe. 
The following section describes the results attained 
by the PSOs with dynamic structure and Brownian 
movement, with and without conservation of 
function evaluations and compares them to the 
standard topologies. 

4 EXPERIMENTS AND RESULTS 

This section describes the experiments conducted for 
evaluating the performance of the proposed stru-
cture. The algorithm is first compared to the version 
without conservation of function evaluations. 

Table 1: Benchmarks for the experiments. Dynamic range, 
initialization range and stop criteria. 

function	 mathematical	
representation	

Range	of	
search/	
Range	of	

initialization

stop	

Sphere  
f1 

ଵ݂൫ Ԧܺ൯ ൌ ෍ݔ௜ଶ
஽

௜ୀ

 ሺെ100, 100ሻଷ଴

(50, 100ሻଷ଴ 
0.01 

Rosenbrock 
 f2 

ଶ݂ሺݔԦሻ

ൌ ෍ሺ100ሺݔ௜ାଵ െ ௜ଶሻଶݔ
஽ିଵ

௜ୀଵ
൅ ሺݔ௜ െ 1ሻଶ 

ሺെ100, 100ሻଷ଴

ሺ15, 30ሻଷ଴ 
100 

Rastrigin  
f3 

ଷ݂ሺݔԦሻ

ൌ෍ሺݔ௜ଶ െ 10 cosሺ2ݔߨ௜ሻ
஽

௜ୀଵ
൅ 10ሻ 

ሺെ10, 10ሻଷ଴ 
ሺ2.56, 5.12ሻଷ଴

100 

Griewank 
 f4 

ସ݂ሺݔԦሻ
ൌ 1

൅
1

4000
෍ݔ௜ଶ
஽

௜ୀଵ

െෑcos ൬
௜ݔ
√݅
൰

஽

௜ୀଵ

 

ሺെ600, 600ሻଷ଴

ሺ300, 600ሻଷ଴
0.05 

Schaffer 
f5 

଺݂ሺݔԦሻ
ൌ 0.5

൅
൫sinඥݔଶ ൅ ଶ൯ݕ

ଶ
െ 0.5

൫1.0 ൅ 0.001ሺݔଶ ൅ ଶሻ൯ݕ
ଶ 

ሺെ100, 100ሻଶ

ሺ15, 30ሻଶ 
0.00001

Table 2: PSO-B and PSO-Bcfe. Best fitness values 
averaged over 50 runs. 

 f1 f2 f3 f4 f5 

PSO-B  

8×8 

2.71e‐40 7.98e+00 6.57e+01  7.43e‐03  1.17e‐03

±4.21e‐40 ±1.11e+01  ±1.78e+01 ±9.02e‐03 ±3.19E‐03

PSO-Bcfe

8×8 

3.20e‐40 1.12e+01 6.29e+01  7.44e‐03  1.94e‐04

±8.44e‐40 ±2.02e+01  ±1.35e+01 ±7.96e‐03 ±1.37E‐03

PSO-B  

 10×10 

8.74e‐38 1.25e+01 6.23e+01  7.73e‐03  0.00e+00

±1.29e‐37 ±2.07e+01  ±1.88e+01 ±9.50e‐03 ±0.00E+00

PSO-Bcfe

 10×10 

2.43e‐39 1.09e+01 6.16e+01  5.61e‐03  0.00e+00

±4.38e‐39 ±1.67e+01  ±1.60e+01 ±7.47e‐03 ±0.00E+00

PSO-B  

 15×15 

3.47e‐33 1.53e+01 6.05e+01  3.79e‐03  3.89e‐04

±4.31e‐33 ±2.65e+01  ±1.45e+01 ±6.22e‐03 ±1.92E‐03

PSO-Bcfe

 15×15 

2.47e‐45 1.31 e+01 6.62e+01  6.45e‐03  0.00e+00

±4.21e‐45 ±2.42e+01  ±2.05e+01 ±9.90e‐03 ±0.00E+00

 

Then, the topology with Brownian motion and 
conservation of evaluations is compared to the lbest, 
gbest, and standard square von Neumann topologies.  

An experimental setup was constructed with five 
benchmark unimodal and multimodal functions that 
are commonly used for investigating the 
performance of PSO − see (Kennedy and Mendes, 
2002) and (Trelea, 2003) for instance). The 
functions are described in Table 1. The optimum 
(minimum) of all functions is located in the origin 
with fitness 0. The dimension of the search space is 
set to ܦ ൌ 30 (except Schaffer, with ܦ ൌ 2). In 
order to set a square grid graph for the standard von 
Neumann topology, the population size ݊ is set to 49 
(which is within the typical range of PSO’s swarm 
size). The acceleration coefficients were set to 1.494 
and the inertia weight is 0.729, as in (Trelea, 2003). 
 is defined as usual by the domain’s upper ݔܽ݉ܺ
limit and ܸ݉ܽݔ	 ൌ  A total of 50 runs for .ݔܽ݉ܺ	
each experiment are conducted. Asymmetrical 
initialization is used (the initialization range for each 
function is given in Table 1). 

Two experiments were conducted. Firstly, the 
algorithms were run for a limited amount of function 
evaluations (147000 for ଵ݂ and ହ݂, 49000 for ଶ݂, ଷ݂ 
and ସ݂) and the fitness of the best solution found was 
averaged over the 50 runs. In the second experiment 
the algorithms were run for 980000 iterations 
(corresponding to 20000 iterations of standard PSO 
with ݊ ൌ 49) or until reaching the stop criterion. 
The criteria were taken from (Kennedy and Mendes, 
2002) and are given in Table 1. For each function 
and each algorithm, the number of function 
evaluations required to meet the criterion is recorded 
and averaged over the 50 runs. A success measure is 
defined as the number of runs in which an algorithm 
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attains the fitness value established as the stop 
criterion. 

Table 3: PSO-B and PSO-Bcfe. Function evaluations 
averaged over 50 runs. 

 f1 f2 f3 f4 f5 

PSO-B  

8×8 

21070.98  56472.50 13224.90  19959.66 14369.25

±1023.60 
(50) 

±49342.60
(50) 

±3894.30 
(48) 

±1408.36
(50) 

±20599.03
(46) 

PSO-Bcfe 

8×8 

21157.7  96148.42 13427.12  19968.40 10275.69

±1092.81 
(50) 

±112675.6
(50) 

±2259.73 
(50) 

±1103.20
(50) 

±6952.548
(49) 

PSO-B  

 10×10 

22700.72  65769.76 15114.46  21574.70 10741.78

±906.39 
(50) 

±70232.15
(50) 

±3939.74 
(48) 

±1107.56
(50) 

±10658.16
(50) 

PSO-Bcfe 

 10×10 

21796.04  57704.16 13953.04  20430.34 11817.06

±832.54 
(50) 

±71260.77
(50) 

±3341.41 
(49) 

±1176.32
(50) 

±15647.63
(50) 

PSO-B  

 15×15 

26122.88  74321.24 20408.50  24626.42 11830.83

±950.08 
(50) 

±83535.59
(50) 

±3692.10 
(50) 

±1406.53
(50) 

±11576.37
(48) 

PSO-Bcfe 

 15×15 

19600.76  77348.06 16713.59  18734.94 10890.55

±730.62 
(50) 

±91374.00
(50) 

±4387.78 
(46) 

±1029.26
(50) 

±11624.59
(47) 

Table 4: PSO-Bcfe and standard topologies. Best fitness 
values averaged over 50 runs. 

 f1 f2 f3 f4 f5 

PSO 

VN 

4.26e‐36  1.39e+01 6.40e+01  5.61e‐03 0.00e+00

±1.32e‐35  ±2.39e+01 ±1.59e+01  ±8.78e‐03 ±0.00e+00

PSO 

 ࢚࢙ࢋ࢈࢒

1.20e‐25  1.19e+01 1.11e+02  2.95e‐04 1.94e‐04

±1.30e‐25  ±2.48e+01 ±1.74e+01  ±2.09e‐03 ±1.37e‐03

PSO 

 ࢚࢙ࢋ࢈ࢍ

3.80e+03  1.19e+01 9.86e+01  3.80e+01 1.36e‐03

±5.67e+03  ±1.50e+01 ±2.84e+01  ±5.80e+01 ±3.41e‐03

PSO-Bcfe 

10×10 

2.43e‐39  1.09e+01 6.16e+01  5.61e‐03 0.00e+00

±4.38e‐39  ±1.67e+01 ±1.60e+01  ±7.47e‐03 ±0.00E+00

 

Table 2 shows the average fitness values attained by 
PSO-B and PSO-Bcfe with different grid sizes. 
Table 3 shows the average number of function 
evaluations required to meet the stop criteria as well 
as the number of successful runs. The performance 
according to the fitness values is very similar with 
no significant differences between the algorithm in 
every function except ଵ݂ (PSO-Bcfe is better). When 
considering the number of function evaluations (i.e., 
convergence speed), PSO-Bcfe is significantly better 
or statistically equivalent in every function. For the 
statistical tests comparing two algorithms, non-
parametric Kolmogorov-Smirnov tests (with 0.05 
level of significance) have been used.  

The results confirm that PSO-Bcfe is able to 
improve the convergence speed of PSO-B without 

degrading the accuracy of the solutions. The loss of 
information that results from conserving evaluations 
is clearly overcome by the benefits of reducing the 
computational cost per iteration.  

In the case of ଵ݂, PSO-Bcfe also significantly 
improves the quality of the solutions, namely with 
larger grids. The proposed scheme seems to be 
particularly efficient in unimodal landscapes, but 
further tests are required in order to confirm this 
hypothesis and understand what mechanisms make 
PSO-Bcfe so efficient in finding more precise 
solutions for the sphere function.  

Table 5: PSO-Bcfe and standard topologies. Function 
evaluations averaged over 50 runs. 

 f1 f2 f3 f4 f5 

PSO

VN 

23530.78 72707.18 18424.00  22015.70  17622.36

±954.74
(50) 

±92916.33
(50) 

±11082.75 
(49) 

±1304.60 
(50) 

±16056.6
8 

(50) 

PSO 

࢚࢙ࢋ࢈࢒

32488.96 80547.18 233260.18  30200.66  26263.00

±921.45
(50) 

±112067.67
(50) 

±281453.62 
(17) 

±1703.88
1 

(50) 

±27266.8
6 

(49) 

PSO 

࢚࢙ࢋ࢈ࢍ

16082.39 56681.24 9602.04  14856.07  13933.09

±2697.41
(33) 

±88165.30
(50) 

±3599.04 
(25) 

±2028.12 
(27) 

±21576.6
3 

(43) 

PSO-
Bcfe 

15×15

21796.04 57704.16 13953.04  20430.34  11817.06

±832.54
(50) 

±71260.77
(50) 

±3341.41 
(49) 

±1176.32 
(50) 

±15647.63
(50) 

 

 

Figure 1: Rank by Holm-Bonferroni test. 

Tables 4 and 5 compare the PSO-Bcfe with standard 
PSOs: square grid (7 ൈ 7) with von Neumann (VN) 
neighborhood, lbest with ݇ ൌ 3 (ring) and gbest. 

As expected, gbest is fast but its solutions are clearly 
worst than the other algorithms results (except for 
ଶ݂, and ଷ݂) and the success rates are lower than the 

average;  lbest is fairly accurate when compared to 
other strategies but it clearly requires more 
evaluations than the other PSOs in order to meet the 
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same criteria. The standard von Neumann strategy 
and the PSO-Bcfe are more consistent throughout 
the test set, but PSO-Bcfe is faster is most of the 
functions and significantly faster in ଵ݂,	 ଷ݂, and ସ݂. In 
addition, its solutions for ଵ݂are significantly better 
than the fitness values attained by the PSO with von 
Neumann topology. The proposed strategy maintains 
or improves the accuracy of the von Neumann 
strategy throughout the test set — the consistency of 
the von Neumann topology has been reported by 
Kennedy and Mendes (2002) —, while increasing 
significantly the convergence speed.  

A statistical analysis of the algorithms (including 
also PSO-B) on the entire test set was conducted. 
First, a Friedman test showed that there are no 
significant differences in the performance of the 
algorithms considering the fitness values criteria. 
When taking into account the function evaluations 
and success rates the test reveals significant 
differences between the algorithms. 

After the Friedman test, a Holm-Bonferroni test was 
conducted for ranking the algorithms according to 
their convergence speed and reliability and detect 
significant differences between the algorithms. PSO-
Bcfe ranks first, followed by PSO-B, PSO with von 
Neumann topology, PSO with lbest and finally PSO 
with gbest (see Figure 1). Considering ߙ ൌ 0.1, 
PSO-Bcfe is significantly better than the von 
Neumann, lbest and gbest topologies. Table 6 shows 
the results of the Holm test.  

Table 6: Holm test results. ࢻ ൌ ૚. 

  z‐statistic  p‐value  ߙ ݅⁄
PSO-B 0.800000  0.211855  0.10000 

PSO VN 1.700000  0.044565  0.05000 

PSO 2.600000 ࢚࢙ࢋ࢈ࢍ  0.004661  0.33333 

PSO 2.900000 ࢚࢙ࢋ࢈࢒  0.001866  0.02500 
 

The Holm test concludes that although PSO-Bcfe 
attains a better average ranking than PSO-B, there 
are no significant differences between the
algorithms. Please remember that the grid size
considered in the general comparisons is 10×10. If
we consider a 15×15 grid size we see that PSO-Bcfe 
is faster in every function and significantly faster in
f_1, f_3 and f_4, while for grids with size 8×8 the
algorithms are statistically equivalent in every
function. In general, the performance of PSO-Bcfe is 
improved or preserved when the grid size grows,
while the performance of PSO-B degrades with the
grid size. Figure 2: PSO-B and PSO-Bcfe. Function evaluations 

required to meet stop criteria when using grids with 
different sizes. 
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This behavior may be explained by the fact that in 
larger grids the particles are isolated more often and 
for longer periods of time. During these periods, the 
particles are not using information from the rest of 
the swarm. PSO-Bcfe partially overcomes the loss of 
communication and information by not evaluating 
the particles, thus saving computational resources. 
Figure 2 graphically displays the evaluations 
required by each version of the algorithm in each 
function for different grids. Except for ହ݂, PSO-B 
number of function evaluations to meet the criteria 
increase with the size of the grid, while PSO-Bcfe 
scales better, namely in functions ଵ݂, ଷ݂ and ସ݂.  

These results show that it is possible to improve 
standard PSO’s performance by structuring the 
particles on a grid of nodes, let them move 
according to simple rules and save computational 
resources by letting them follow their current 
trajectories without evaluation the new positions.  

5 CONCLUSIONS 

This paper proposes a general scheme for structuring 
dynamic populations for the Particle Swarm 
Optimization (PSO) algorithm. The particles are 
placed on a grid of nodes where the number of nodes 
is larger than the swarm size. The particles move on 
the grid according to simple rules and the network of 
information is defined by the particle’s position on 
the grid and its neighborhood (von Neumann vicinity 
is considered here). If isolated (i.e., no neighbors 
except itself), a particle is updated but its position is 
not evaluated. This strategy results in loss of 
information but it decreases the number of 
evaluations per generation. The results show that the 
payoff in convergence speed overcomes the loss of 
information: the number of function evaluations is 
reduced in the entire test set, while the accuracy of 
the algorithm (i.e., the averaged final fitness) is not 
degraded by the conservation of evaluations 
strategy. 

The proposed algorithm is tested with a Brownian 
motion rule and compared to standard static 
topologies. Statistical tests and ranking according to 
convergence speed and success rates shows that the 
dynamic structure with conservation of function 
evaluations ranks first and it is significantly better 
than the von Neumann, ring and lbest topologies. 
Furthermore, the conservation of evaluations 
strategy results in a more stable performance when 
varying the grid size, while removing this strategy 
from the proposed dynamic structure results in a 

drop off of the convergence speed when the size of 
the grid increases in relation to the swarm size.  

The present study is restricted to dynamic structures 
based on particles with Brownian motion. However, 
a self-organized behavior based on communication 
via the grid (stigmergy) can be modeled by the 
general framework proposed in this paper. Future 
research will be focused on dynamic structures with 
stigmergic behavior based on the fitness and position 
of the particles.  
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