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Abstract: The problem of recurrent neural network training is considered here as an approximate joint Bayesian 
estimation of the neuron outputs and unknown synaptic weights. We have implemented recursive estimators 
using nonlinear derivative free approximation of neural network dynamics. The computational efficiency 
and performances of proposed algorithms as training algorithms for different recurrent neural network 
architectures are compared on the problem of long term, chaotic time series prediction. 

1 INTRODUCTION 

In this paper we consider the training of Recurrent 
Neural Networks (RNNs) as derivative free 
approximate Bayesian estimation. RNNs form a 
wide class of neural networks with feedback 
connections among processing units (artificial 
neurons). Neural networks with feed forward 
connections implement static input-output mapping, 
while recurrent  networks implement the mapping of 
both input and internal state (represented by outputs 
of recurrent neurons) into the future internal state.  

In general, RNNs can be classified as locally 
recurrent, where feedback connections exist only 
from a processing unit to itself, and globally 
recurrent, where feedback connections exist among 
distinct processing units. The modeling capabilities 
of globally recurrent neural networks are much 
richer than that of the simple locally recurrent 
networks. 

There exist a group of algorithms for training 
synaptic weights of recurrent neural networks that 
are based on the exact or approximate computation 
of the gradient of an error measure in the weight 
space. Well known approaches that use methods for 
exact gradient computation are back-propagation 
through time (BPTT) and real time recurrent 
learning (RTRL) (Williams and Zipser, 1989; 
Williams and Zipser, 1990). Since BPTT and RTRL 
are using only first-order derivative information, 

they exhibit slow convergence. In order to improve 
the speed of the RNN training, a technique known as 
teacher forcing has been introduced (Williams and 
Zipser, 1989). The idea is to use the desired outputs 
of the neurons instead of the obtained to compute the 
future outputs. In this way the training algorithm is 
focused on the current time step, given that the 
performance is correct on all earlier time steps.  

However, in its basic form teacher forcing is not 
always applicable. It clearly cannot be applied in 
networks where feedback connections exist only 
from hidden units, for which the target outputs are 
not explicitly given. The second important case is 
the training on noisy data, where the target outputs 
are corrupted by noise. Therefore, to apply teacher 
forcing in such cases, a true target outputs of 
neurons have to be estimated somehow. 

The well-known extended Kalman filter 
(Anderson and Moore, 1979), as a second order 
sequential training algorithm and state estimator 
offers the solution to the both stated problems. It 
improves the learning rate by exploiting second 
order information on criterion function and 
generalizes the teacher forcing technique by 
estimating the true outputs of the neurons. 

The extended Kalman filter can be considered as 
the approximate solution of the recursive Bayesian 
state estimation problem. The problem of estimating 
the hidden state of a dynamic system using 
observations which arrive sequentially in time is 
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very important in many fields of science, 
engineering and finance. The hidden state of some 
dynamic system is represented as a random vector 
variable, and its evolution in time ,...}2,1,{ kxk  is 

described by a so called dynamic or process 
equation: 

),,( 1 kkkkk duxfx  , (1)

where xdx nnn
k RRf :  is  nonlinear function, 

and ,...}2,1,{ kdk  is an i.i.d. process noise 

sequence, while xn  and dn  are dimensions of the 

state and process noise vectors respectively. The 
hidden state is known only through the measurement 
(observation) equation: 

),( kkkk vxhy  , (2)

where yvx nnn
k RRh :  is nonlinear function, 

and ,...}2,1,{ kvk  is an i.i.d. measurement noise 

sequence, and yn and vn  are dimensions of the 

measurement and measurement noise vectors, 
respectively. 

In a sequential or recursive Bayesian estimation 
framework, the state filtering probability density 
function (pdf) )( :0 kk yxp , (where ky :0  denotes the 

set of all observations },...,,{ 10:0 kk yyyy   up to the 

time step k), represents the complete solution. The 
optimal state estimate with respect to any criterion 
can be calculated based on this pdf.  

The recursive Bayesian estimation algorithm 
consists of two steps: prediction and update. In the 
prediction step the previous posterior 

)( 1:01  kk yxp  is projected forward in time, using 

the probabilistic process model: 

kkkkkkk dxyxpxxpyxp )()()( 1:0111:0   , (3) 

where the state transition density function 
)( 1kk xxp  is completely specified by )(f  and the 

process noise distribution )( kdp . 

In the second step, the predictive density is 
updated by incorporating the latest noisy 
measurement ky  using the observation likelihood 

)( kk xyp  to generate the posterior: 

 


kkkkk

kkkk
kk dxyxpxyp

yxpxyp
yxp

)()(

)()(
)(

1:0

1:0
:0  (4)

This recursive estimation algorithm can be 
applied to RNN training after representing the time 
evolution of neurons outputs and connection 

weights, as well as their observations, in the form of 
the state space model. The hidden state of the 
recurrent neural network kx  is a stacked vector of 

recurrent neurons outputs ks  and connection 

weights kw . Its evolution in time can be represented 

by the following dynamic equation. 
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where 
ksd  and 

kwd  represent dynamic noise 

vectors. 
The outputs of the neurons are obtained through 

the following observation equation: 

),,( kkkk vwshy  . (6)

The recurrence relations (3) and (4) are only 
conceptual solutions and the posterior density 

)( :0 kk yxp  cannot be determined analytically in 

general. The restrictive set of cases includes the well 
known Kalman filter, which represents the optimal 
solution of (3) and (4) if the prior state density 

)()( 000 xpyxp  , the process noise as well as the 

observation noise densities are Gaussians, and )(f  

and )(h  are linear functions. 

In case of RNN training, )(f  and )(h  are 

nonlinear in general and an analytic solution is not 
tractable, therefore some approximations and 
suboptimal solutions have to be considered. The 
well known suboptimal solution is the Extended 
Kalman Filter (EKF), which assumes the Gaussian 
property of noise and uses the Taylor expansion of 

)(f  and )(h  (usually up to the linear term) to 

obtain the recursive estimation for )( :0 kk yxp . The 

EKF has been successfully applied in RNN training 
(Todorović et al., 2003; Todorović et al., 2004) due 
to important advantages compared to RTRL and 
BPTT: faster convergence and generalization of 
teacher forcing. Recently, families of new derivative 
free filters have been proposed as an alternative to 
EKF for estimation in nonlinear systems. Divided 
Difference Filters (DDF), derived in (Nørgaard et 
al., 2000), are based on polynomial approximation 
of nonlinear transformations using a 
multidimensional extension of Stirling’s 
interpolation formula. The Unscented Kalman Filter 
(UKF) (Julier and Uhlmann, 1997) uses the true 
nonlinear models and approximates the state 
distribution using deterministically chosen sample 
points.  Surprisingly, both the DDF and the UKF 
result in similar equations and are usually called 
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derivative free filters (Van der Merwe and Wan, 
2001). 

The rest of the paper is organized as follows. In 
the second section recursive Bayesian estimator is 
approximated by linear minimum mean square error 
estimator (MMSE), which recursively updates only 
the first two moments of the relevant probability 
densities. The problem that remains to be solved is 
propagating these moments through the nonlinear 
mapping of the process equation and the observation 
equation. In the third section we describe three 
approaches to this problem: a linearization of the 
nonlinear mapping using a Taylor series expansion, 
a derivative free unscented transform and a 
derivative free polynomial approximation using a 
multidimensional extension of the Stirling’s 
interpolation formula. In the fourth section we give 
the state space models of three globally recurrent 
neural networks: fully connected, Elman and Non-
linear AutoRegresssive with eXogenous inputs 
(NARX) recurrent neural networks. We trained them 
by applying approximate recursive Bayesian joint 
estimation of the recurrent neurons outputs and 
synaptic weights. The results of applying three 
different estimation algorithms in training three 
different architectures of recurrent neural networks 
are given in the last section.  

2 LINEAR MMSE ESTIMATION 
OF THE NONLINEAR STATE 
SPACE MODEL 

An analytically tractable solution of the problem of 
recursive Bayesian estimation framework can be 
obtained based on the assumption that the state 
estimator kx̂ can be represented as a linear function 

of the current observation ky : 

kkkk byAx ˆ , (7)

where matrix kA  and vector kb  are derived by 

minimizing mean square estimation error criterion: 

0: 1
ˆ ˆ( ) ( ) ( , )T

k k k k k k k k k kR x x x x p x y y dx dy    . (8)

Note that the condition 0 kk bR  is 

equivalent to the requirement that the estimator is 
unbiased: 

0),()( 1:0   kkkkkkkkk dydxyyxpbyAx , (9)

from which we obtain, 
  kkkk yAxb ˆˆ ,  )ˆ(ˆˆ   kkkkk yyAxx , (10)

where  
  kkkkkkk dxyxpxyxEx )(][ˆ 1:01:0  and 

 
  kkkkkkk dyyypyyyEy )(][ˆ 1:01:0 . 

Both the condition 0 kk AR  and the 

unbiasedness of the estimator result in the well 
known orthogonality principle, which states that the 
estimation error is orthogonal to the current 
observation, and, consequently: 

0),(                            

)ˆ))(ˆ(ˆ(

1:0 






kkkkk

T
kkkkkkk

dydxyyxp

yyyyAxx . (11)

From (11) we obtain the matrix 1
kkk yyxk PPA , 

where 

])ˆ)(ˆ([ 1:0 
  k

T
kkkky yyyyyEP

k
 (12b)

])ˆ)(ˆ([ 1:0 
  k

T
kkkkyx yyyxxEP

kk
 (12c)

Note that 
kyP must be invertible, that is 

measurements ky  have to be linearly independent.  

Finally, after replacing 1
kkk yyxk PPA  we obtain 

the linear MMSE estimator: 

)ˆ(ˆˆ 1   kkyyxkk yyPPxx
kkk

. (13a)

The matrix Mean Square Error (MSE) 
corresponding to (13): 

T
yxyyxx

T
kkkk kkkkkk

PPPPxxxxE 1])ˆ)(ˆ[(   . (13b)

is used as the approximation of the estimator 

covariance ])ˆ)(ˆ[( T
kkkkx xxxxEP

k
 . 

If the dynamic and the observation models are 
linear and process and observation noises are 
Gaussian, the linear MMSE estimator is the best 
MMSE estimator and is equal to the conditional 
mean ]/[ :0 kk yxE , otherwise it is the best within the 

class of linear estimators. 
The problem that remains to be solved is the 

estimation of the statics of a random variable 
propagated trough the nonlinear transformation.  

kkk

kkkkkk

dddxdp

yxpduxfx

1

1:011

)(                                           

)(),,(ˆ




   (14a)

kkkkk

T
kkkkkkkkx

dvdxdpyxp

xduxfxduxfP
k

11:01

11

)()(                             

)ˆ),,(()ˆ),,((









    (14b)

 
  kkkkkkkkk dvdxvpyxpvuxhy )()(),,(ˆ 1:0  (14c)

kkkkk

T
kkkkkkkky

dvdxvpyxp

yvuxhyvuxhP
k

)()(                                

)ˆ),,()(ˆ),,((

1:0 





   (14d)
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kkkkk

T
kkkkkkyx

dvdxvpyxp

yvuxhxxP
kk

)()(                               

)ˆ),,()(ˆ(

1:0 





   (14e)

The problem can be considered in a general. 
Suppose that x is a random variable with mean x̂  
and covariance xP . A random variable y  is related 

to x through the nonlinear function )(xfy  . We 

wish to calculate the mean ŷ  and the covariance yP  

of y.  

2.1 Extended Kalman Filter 

The extended Kalman filter is based on the 
multidimensional Taylor series expansion of )(xf . 

We shall consider only the first order EKF, obtained 
by excluding the nonlinear terms of Taylor series 
expansion: 

xxfxfxxfxf x  )ˆ()ˆ()ˆ()(  (15)

where 
xxx xfxf
ˆ

)ˆ(


  is the Jacobian of the 

nonlinear function and x  is a zero mean random 
variable with covariance xP .  

In this way the prediction of the state is given by: 

kkkk duxfx  
 ),ˆ(ˆ 1  (16a)

T
kkk

T
kxkx GQGFPFP

kk





1

 (16b)

where fF
kxk 1ˆ 

 , fG
kdk  , ][ kk dEd  , 

][ T
kkk ddEQ  . 

The prediction of the observation is given by: 

kkk vxhx   )ˆ(ˆ  (17a)

T
kkk

T
kxky LRLHPHP

kk
   (17b)

where hH
kxk  ˆ

, hL
kvk  , ][ kk vEv  , 

and ][ T
kkk vvER  . 

2.2 Divided Difference Filter 

In (Nørgaard et al., 2000) Nørgaard et al. proposed a 
new set of estimators based on a derivative free 
polynomial approximation of nonlinear 
transformations using a multidimensional extension 
of Stirling’s interpolation formula. This formula is 
particularly simple if only the first and second order 
polynomial approximation is considered: 

fDfDxfxf xx
2~~

)ˆ()(    (18)

where divided difference operators are defined by: 

)(
1~

1
xfx

h
fD

n

p
pppx 







 


   (19)

p  is a “partial” difference operator: 

)5.0()5.0ˆ()ˆ( ppp ehxfehxfxf   (20)

and p  is an average operator: 

))5.0ˆ()5.0ˆ((5.0)ˆ( ppp ehxfehxfxf   (21)

where pe  is the p-th unit vector. 

Applying a stochastic decoupling of the variables 

in x by the following transformation xSz x
1 , ( xS  

is the Cholesky factor of the covariance matrix 
T
xxx SSP  ), an approximation of the mean and the 

covariance of )(xfy   is obtained: 
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(22b)

Nørgaard et al. have derived the alternative 
covariance estimate as well (Nørgaard et al., 2000):  
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(23)

This estimate is less accurate than (22b). 

Moreover, for nh 2  the last term becomes 
negative semi-definite with a possible implication 
that the covariance estimate (23) becomes non-
positive definite too. The reason why this estimate is 
considered here is to provide a comparison with the 
covariance estimate obtained by the Unscented 
Transformation described in the next subsection. 

2.3 Unscented Kalman Filter 

Julier and Uhlman proposed the Unscented 
Transformation (UT) (Julier and Uhlmann, 1997) in 
order to calculate the statistics of a random variable 
x  propagated through the nonlinear function 

)(xfy  . The xn -dimensional continuous random 
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variable x  with mean x̂  and covariance xP  is 

approximated by 12 xn  sigma points pX  with 

corresponding weights p , xnp 2,...,1,0 : 

xx nnnx  )(,)(,ˆ 2
0 0X fo

r np ...,2,1  

)(5.0     ˆ ,   nsnx ppxpX  

)(5.0ˆ ,    nsnx
xx nppxnpX  

where   determines the spread of the sigma points 
around x̂  (usually 14.1  e ) and  is the 
scaling parameter, usually set to 0 or xn3 (Julier 

and Uhlmann, 1997). pxs ,  is the p-th row or column 

of the matrix square root of xP . 

Each sigma point is instantiated through the 
function )(f  to yield the set of transformed sigma 

points )( 0XY fi  , and the mean ŷ  of the 

transformed distribution is estimated by: 
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The covariance estimate obtained by the 
unscented transformation is: 
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It can be easily verified that for  nh , the 
estimates of the mean (22a) and the covariance (23) 
obtained by DDF are equivalent to the estimates (24) 
and (25) obtained by UKF. The interval length h  is 
set equal to the kurtosis of the prior random variable 

x . For Gaussians it holds 32 h . 

3 STATE SPACE MODELS OF 
GLOBALLY RECURRENT 
NEURAL NETWORKS 

In order to apply approximate Bayesian estimators 
as training algorithm of recurrent neural networks 
we need to represent dynamics of RNN in a form of 
state space model. In this section we define the state 

space models of three representative architectures of 
globally recurrent neural networks: Elman, fully 
connected, and NARX recurrent neural network. 

3.1 Elman Network State Space Model 

In Elman RNNs adaptive feedbacks are provided 
between every pair of hidden units. The network is 
illustrated in Fig.1.a), and the state space model of 
the Elman network is given by equations 
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where H
kx  represents the output of the hidden 

neurons in the k-th time step, O
kx  is the output of  

the neurons in the last layer, O
kw 1  is the vector of 

synaptic weights between the hidden and the output 

layer and H
kw 1  is the vector of recurrent adaptive 

connection weights. Note that in the original 
formulation of Elman, these weights were fixed. 
Random variables H

kx
d , O

kw
d , H

kw
d represent the 

process noises. 
It is assumed that the output of the network 

),( O
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O
k wxhx   is corrupted by the observation 

noise kv . 
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a) Elman b) Fully connected 

Figure 1: Elman and fully connected RNN. 

3.2 Fully Connected Recurrent 
Network State Space Model 

In fully connected RNNs adaptive feedbacks are 
provided between each pair of processing units 
(hidden and output). The state vector of a fully 
connected RNN consists of outputs (activities) of 
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hidden H
kx  and output neurons O

kx , and their 

synaptic weights H
kw  and O

kw . The activation 

functions of the hidden and thee output neurons are 

),,,( 1 k
H
k

H
k

O
k

H uwxxf   and ),,,( 1 k
O
k

H
k

O
k

O uwxxf  , 

respectively. The network structure is illustrated in 
Fig. 1.b). 

The state space model of the network is given 
by: 
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The dynamic equation describes the evolution of 
neuron outputs and synaptic weights. In the 
observation equation, the matrix H selects the 
activities of output neurons as the only visible part 
of the state vector, where Sn  is the number of 

hidden states which are estimated: 
 HOS nnn HO WW

nn  , On  and Hn  are the 

numbers of output and hidden neurons respectively, 

OW
n  is the number of adaptive weights of the 

output neurons, HW
n  is the number of adaptive 

weights of the hidden neurons. 

3.3 NARX Recurrent Neural Network 
State Space Model 

The non-linear AutoRegressive with eXogenous 
inputs (NARX) recurrent neural network usually 
outperforms the classical recurrent neural networks, 
like Elman or fully connected RNN, in tasks that 
involve long term dependencies for which the 
desired output depends on inputs presented at times 
far in the past.  
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Figure 2: NARX recurrent neural network. 

Here we define the state space model of a NARX 
RNN. Adaptive feedbacks are provided between the 
output and the hidden units. These feedback 
connection and possible input connections are 
implemented as FIR filters. The state vector consists 
of outputs of the network in x  time steps 

O
kx , O

kx 1 ,..., O
k x

x 1 , the output O
kw , and hidden 

synaptic H
kw  weights. 
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The dynamic equation describes the evolution of 
network outputs and synaptic weights. 
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As in previous examples, On  represents the 

number of output neurons. Sn  is the number of 

hidden states of the NARX RNN: 
HO WWOS nnnn  , OW

n  is the number of 

adaptive weights of output neurons, HW
n  is number 

of adaptive weights of hidden neurons. 
All considered models have nonlinear hidden 

neurons and linear output neurons. Two types of 
nonlinear activation functions have been used in the 
following tests: the sigmoidal and the Gaussian 
radial basis function. 

4 EXAMPLES 

In this section we compare derived algorithms for 
sequential training of RNN. 

We have evaluated the performance of 
algorithms in training three different architectures of 
globally recurrent neural networks: fully connected 
RNN, Elman RNN with adaptive recurrent 
connections and NARX recurrent neural network. 
The problem at hand was the long term prediction of 
chaotic time series. Implementation of Divided 
Difference Filter and Unscented Kalman filter did 
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not required linearization of the RNN state space 
models. However, in order to apply Extended 
Kalman Filter we had to linearize the RNNs state 
space models that are to calculate Jacobian of the 
RNN outputs with respect to the inputs and synaptic 
weights. Note that we did not apply back 
propagation through time but standard back 
propagation algorithm to calculate the Jacobian. This 
was possible because of the joint estimation of RNN 
outputs and synaptic weights. 

In the process of the evaluation, recurrent neural 
networks were trained sequentially on the certain 
number of samples. After that they were iterated for 
a number of samples, by feeding back just the 
predicted outputs as the new inputs of the recurrent 
neurons. Time series of iterated predictions were 
compared with the test parts of the original time 
series by calculating the Normalized Root Mean 
Squared Error (NRMSE): 





N

k
kkN

yyNRMSE
1

21 )ˆ(2
 (30)

where   is the standard deviation of chaotic time 
series, ky  is the true value of sample at time step k , 

and 
kŷ  is the RNN prediction. 

Mean and variance of the NRMSE obtained on 
30 independent runs, average time needed for 
training and number of hidden neurons and adaptive 
synaptic weights are given in tables for comparison. 

The variance of the process noise ksd ,  and kwd ,  

were exponentially decayed form 1.e-1 and 1.e-3 to 
1.e-10, and the variance of the observation noise kv  

was also exponentially decayed from 1.e-1 to 1.e-10 
during the sequential training. 

4.1 Mackey Glass Chaotic Time Series 
Prediction 

In our first example we have considered the long 
term iterated prediction of the Mackey Glass time 
series. We have applied Divided Difference Filter, 
Unscented Kalman Filter and Extended Kalman 
Filter for joint estimation of synaptic weights and 
neuron outputs of three different RNN architectures: 
Elman, fully connected and non-linear 
AutoRegressive with eXogenous inputs (NARX) 
recurrent neural network.  

After sequential adaptation on 2000 samples, a 
long term iterated prediction of the next 100N  
samples is used to calculate the NRMSE.  
Table 1. contains mean and variance of NRMSE 
obtained after 30 independent trials of each 

estimator applied on each architecture. We also give 
the number of hidden units, the number of adaptable 
parameters and time needed for training on 2000 
samples. Given these results we can conclude that 
the NARX network is superior in both NRMSE of 
long term prediction and time needed for training, 
compared to other two architectures. As for the 
approximate Bayesian estimators, although slightly 
slower in our implementation, derivative free filters 
(DDF and UKF) are consistently better than EKF, 
that is they produced RNN’s with significantly lower 
NRMSE. 

Sample results of long term prediction using 
NARX network with sigmoidal neurons, trained 
using DDF are shown in Fig. 3. 
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a) Phase plot of kx  versus 1kx  and 2kx  for the 

Mackey Glass time series and the NARX RMLP iterated 
prediction 
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b) Comparison of the original chaotic time series and the 
NARX RMLP iterated prediction 

Figure 3: Mackey Glass chaotic time series prediction. 

Table 1: NRMSE of the long term iterated prediction for 
various RNN architectures and training algorithms. 

 Mean Var nH nW T[s] 
DDF_ELMAN_SIG 0.316 8.77e-3 10 121 20.88 
UKF_ELMAN_SIG 0.419 3.43e-2 10 121 20.91 
EKF_ELMAN_SIG 0.429 5.89e-2 10 121 14.98 

DDF_FC_SIG 0.269 7.15e-3 10 131 23.43 
UKF_FC_SIG 0.465 8.51e-2 10 131 23.78 
EKF_FC_SIG 0.359 8.64e-2 10 131 17.38 

DDF_NARX_SIG 0.0874 2.91e-4 5 41 5.64 
UKF_NARX_SIG 0.119 1.89e-3 5 41 5.68 
EKF_NARX_SIG 0.153 3.37e-3 5 41 4.76 

4.2 Hénon Chaotic Time Series 
Prediction 

In our first example, we consider the prediction of 
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the long-term behavior of the chaotic Hénon 
dynamics: 

2
2

1 3.04.11   kkk xxx  (31)

RNNs with sigmoidal and Gaussian hidden neurons 
(we call this network Recurrent Radial Basis 
Function network – RBF network) were trained 
sequentially on 3000 samples. After training 
networks were iterated for 20 samples by feeding 
back the current outputs of the neurons as the new 
inputs. Figures 4 and 5 show results of prediction 
using NARX_RBF network trained by DDF on a 
Hénon chaotic time series.  

It can be seen from Figures 4.a and 4.b, that, 
although the network was trained only using sample 
data chaotic attractor, which occupies small part of 
the surface defined by equation (31), the recurrent 
neural network was able to reconstruct that surface 
closely to the original mapping (Fig 4.a), as well as 
to reconstruct the original attractor (Fig 4.b). 
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a) Surface plot of the Hénon and NARX_RRBF map; Dots 
– chaotic attractor and NARX RRBF attractor 
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b) Phase plot of kx  versus 1kx  and 2kx  for the Hénon 

series and NARX RRBF iterated prediction 

Figure 4: Hénon chaotic time series prediction: surface 
and phase plot. 
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Figure 5: Comparison of the original chaotic time series 
and the NARX RRBF iterated prediction. 

Results presented in Table 2. show that both DDF 

and UKF produce more accurate RNNs than EKF 
with comparable training time. 

Table 2: Results of long term predictions of the Hénon 
chaotic time series. 

 Mean Var nH nW T[s] 

DDF_ELMAN_SIG 1.73e-2 6.19e-5 4 25 8.34 

DDF_ELMAN_RBF 6.02e-2 3.89e-4 3 22 7.76 

UKF_ELMAN_SIG 7.29e-2 9.46e-3 4 25 8.53 

UKF_ELMAN_RBF 7.24e-2 1.79e-3 3 22 7.91 

EKF_ELMAN_SIG 1.69e-1 5.17e-2 4 25 7.69 

EKF_ELMAN_RBF 1.01e-1 7.50e-3 3 22 7.96 

DDF_NARX_SIG 7.46e-3 3.39e-6 4 17 6.21 

DDF_NARX_RBF 4.36e-3 4.15e-6 3 16 5.85 

UKF_NARX_SIG 1.28e-2 2.68e-5 4 17 6.37 

UKF_NARX_RBF 5.72e-3 7.14e-6 3 16 6.00 

EKF_NARX_SIG 1.57e-2 1.65e-5 4 17 5.76 

EKF_NARX_RBF 7.07e-3 1.35e-6 3 16 6.17 

5 CONCLUSIONS 

We considered the problem of recurrent neural 
network training as an approximate recursive 
Bayesian state estimation. Results in chaotic time 
series long term prediction show that derivative free 
estimators Divided Difference Filter and Unscented 
Kalman Filter considerably outperform Extended 
Kalman Filter as RNN learning algorithms with 
respect to the accuracy of the obtained network, 
while retaining comparable training times. 

Experiments also show that of tree considered 
architectures: Elman, fully connected and non-linear 
AutoRegressive with eXogenous inputs (NARX) 
recurrent neural network, NARX is by far superior 
in both training time and accuracy of trained 
networks in long term prediction. 
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