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Abstract: This paper proposes dual multiobjective quantum-inspired evolutionary algorithm (DMQEA) with the dual-
stage of dominance check by introducing secondary objectives in addition to primary objectives. The sec-
ondary objectives are to maximize global evaluation values and crowding distances of the solutions in the
external global population obtained for the primary objectives and the previous archive obtained from the sec-
ondary objectives-based nondominated sorting. By employing the secondary objectives for sorting the solu-
tions in each generation, DMQEA can induce the balanced exploration of the solutions in terms of user’s pref-

erence and diversity to generate preferable and diverse nondominated solutions in the archive. To demonstrate

the effectiveness of the proposed DMQEA, empirical comparisons with MQEA, MQEA-PS, and NSGA-II are
carried out for benchmark functions.

1 INTRODUCTION evolutionary algorithm with preference-based selec-
tion (MQEA-PS) was proposed (Kim et al., 2012).
Multiobjective evolutionary algorithms (MOEAs) are [N each archive generation process, MQEA-PS em-
designed to solve multiobjective optimization prob- Ploys PSSA in MQEA for preference-based sorting
lems to get Pareto-optimal solutions while maintain- for the solutions in the external global population and
ing as diverse a distribution as possible. These arethe previous archive. It means that the nondominated
well-known two goals, proximity to Pareto-optimal Solutions in the archive are obtained by preference-
front and diversity preservation, in ideal multiobjec- Pased sorting instead of dominance-based sorting,
tive optimization. Much research has been conducted Whereas the internal subpopulations are sorted by fast
to enhance the solution quality and diversity (Lau- Nondominated sorting. In this way, the solutions that
manns et al., 2002: Cui et al., 2001: Bosman and eflect user’s preference for each objective can be ob-
Thierens, 2003: Kim et al., 2009: Deb et al., 2002; tained in the archive. Furthermore, for considering
Lee and Kim, 2012). the diversity of the solutions as well as user’s prefer-
The other issue is how to select a preferable so- €NC€; crowding distance sorting after the preference-
lution among the widely distributed solutions in the Dased sorting in the archive generation process is de-
Pareto-optimal front for the application of the real Veloped (Ryuetal., 2012). However, the solutions are
world problem. To solve this issue, preference-basedack of the proximity to the Pareto front.

solution selection algorithm (PSSA) was proposed In this paper, we propose dual multiobjective
(Kim et al., 2012). It selects a solution considering quantum-inspired evolutionary algorithm (DMQEA)
user’s preference for each objective, which is repre- by introducing secondary objectives in addition to pri-
sented by the fuzzy measures. In PSSA, global eval- mary objectives that are given objectives in the prob-
uation value of a candidate solution is calculated by lem. The proposed DMQEA has the dual-stage of
the fuzzy integral of the partial evaluation values with dominance check respectively for the primary and
respect to the fuzzy measures. The solution with the secondary objectives. In the first stage, the domi-
highest global evaluation value is selected out of the nated solutions with respect to primary objectives are
candidate solutions. culled out by primary objectives-based nondominated
Based on PSSA, multiobjective quantum-inspired sorting (PONS). In the second stage, nondominated
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sorting is applied for the secondary objectives for 41
the generation of archive, which is called secondary ! o0y + 1)
objectives-based nondominated sorting (SONS). The F | aloy+al)
secondary objectives are to maximize global eval- / ol
uation values and crowding distances of the solu- ;

0 (;z' e Fendl

tions in the previous archive and the external global
population obtained for the primary objectives. The
archive consists of first-tier solutions obtained from
the SONS.

By employing SONS in each generation, DMQEA
can induce the balanced exploration of the solutions
in terms of user’s preference and diversity to pro- Figure 1: Qubit described in two-dimensional space.
duce preferable and diverse nondominated solutions
in the archive. The effectiveness of the proposed |gws:

DMQEA is demonstrated through statistical com- { o }

parisons with MQEA, MQEA-PS, and NSGA-II for B (2)

benchmark functions. The experimental results con- 2 2 F .. _ _

firm that the proposed DMQEA generates the so- Where|a| +|B|= 1. Q-bitindividual is defined as a

lutions with larger hypervolume while maintaining Stfing of Q-bits as follows:

user’s preference compared to the existing two algo- . atj A,
q; = [ £

t
atj,m—l
Bj,mfZ

rithms, MQEA and MQEA-PS. B
J,m—

t
A
The rest of this paper is organized as fol- 1,0

lows: quantum-inspired evolutionary algorithm ~wheremis the string length of Q-bit individual, and
(QEA), preference-based solution selection algorithm j=1,2 ... nfor the population sizae. The population
(PSSA), and crowding distance are briefly described of Q-bit individuals at generationis represented as
in Section II. Section Il proposes dual multiobjective  follows:
evolutionary algorithm (DMQEA). The experimental Q(t) = {d},a5,--- g} (4)
results are presented in Section IV and concluding re-
marks follow in Section V.

Since Q-bit individual represents the linear super-
position of all possible states probabilistically, vari-
ous individuals are generated during the evolution-
ary process. The procedure of QEA and the over-

2 PRELIMINARIES all structure for single-objective optimization prob-
lems are described in (Han and Kim, 2002). To solve
21 QEA multiobjective optimization problems, multiobjective

quantume-inspired evolutionary algorithm (MQEA) is
Quantum-inspired evolutionary algorithm (QEA) is also developed (Kim et al., 2006).
an evolutionary algorithm, which employs the prob-
abilistic mechanism inspired by the concept and prin- 2.2 PSSA
ciples of quantum computing, such as a quantum bit
and superposition of states (Han and Kim, 2002; Han Preference-based solution selection algorithm
and Kim, 2004). Building block of classical digital (PSSA) selects a solution among the obtained non-
computer is represented by two binary states, ‘0’ or dominated solutions considering user’s preference
‘1", which is afinite set of discrete and stable state. In (Kim et al., 2012). The nondominated solutions
contrast, QEA utilizes a novel representation, called a cannot be directly compared against each other, and
Q-bit representation, for the probabilistic representa- therefore a multicriteria decision making (MCDM)
tion that is based on the concept of qubits in quantum algorithm is required to evaluate them. In PSSA,
computing (Hey, 1999). Quantum system enables thethe global evaluation value of a candidate solution is
superposition of such state as follows: calculated by the fuzzy integral, as an MCDM algo-
a|0) + B|L) (1) rithm, of the partial evaluation values with respect to
the fuzzy measures. The fuzzy measures represent
wherea and 3 are the complex numbers satisfying the degrees of consideration for objectives, and
o2+ B2 =1. the partial evaluation value indicates a normalized
Qubit is shown in Fig. 1, which can be illustrated objective function value. Overall procedure of global
as a unit vector on the two dimensional space as fol- evaluation is summarized in Algorithm 1. Each step
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in the algorithm is briefly described in the following 2.3 Crowding Distance
and detail procedure of global evaluation is described
in (Kim etal., 2012). 1. Calculate-fuzzy Measures The crowding distance estimates the density of solu-
tions surrounding a particular solution in the popu-
Objectives are defined as criteria in multi- |ation (Deb et al., 2002). The crowding distance is
objective problem. A-fuzzy measure represents the aimed to uniformly select the solutions in the front,
degree of consideration for each criterion. To get the making the solutions in the most dense areas less
values ofA-fuzzy measures, a pairwise comparison |ikely to be selected. The crowding distance is de-
matrix (P) is initially defined by user for represent-  fined by the average distance of the closest points on
ing preference degrees between criteria. Secondly,either side of the point for each objective. Therefore,
the normalized weights ¢# are calculated by adding  the crowding distance is inversely proportional to the
each value in the row of the pairwise comparison ma- density of solutions. Boundary points for each objec-
trix and leIdIng it by the total sum of the values in tive have the maximum Crowding distance, and they

the row. LastlyA-fuzzy measures are obtained using are always selected. Calculation of crowding distance
the normalized weights (Bajwa et al., 2008). is described in Algorithm 2.

2. Compute Global Evaluation Value

First, the value of partial evaluation of each solu-
tion is calculated by normalizing the objective func- e |: No. of the solutions
tion value to 1. Global evaluation of each and every , ny No. of the objectives
solution is performed by the Choquet fuzzy integral
of the partial evaluation values with respect to Me
fuzzy measures, which are obtained from the previous e xx.CD: Crowding distance of the solutioq
steps.

Algorithm 2. Crowding distance assignment.

o fj(xk): j-th objective value ok

Algorithm 1: Procedure of global evaluation. 1. Initialization
I No. of th luti 1: for k=1tol do
e |: No. of the solutions 2. x.CD=0
e m: No. of the objectives 3: end for
e C: A set of objective€ = {c1,Cp,...,Cm} 2. Calculate the crowding distances
e P: A power set ofC 1: for j=1tomdo
e - 2: fork=1tol do
o fi(xe): J th Obje-ctlve valu? Ok 3: Calculate the objective valuig(x)
o hj(x): j-th partial evaluation value of 4:  end for
e e(x¢): Global evaluation value of; 5:  Sort the solutions using objective value

fj(Xk), Xk = sortxk)

6 X1.CD=X,.CD =
1. Calculate\-fuzzy measureg's of P(C) 7. fork=2tol—1do
1: Make a pairwise comparison matix 8: X.CD = Xi.CD+ [ fj(Xir1) — fj(xi-1)]
2: Calculate normalized weights of 9:  end for
3: Calculater-fuzzy measures d?(C). 10: end for
2. Compute global evaluation valee
1: for k=1tol do
2. for j=1tomdo
3 hj(xx) = Normalize(;(xk)) 3 DMQEA
4:  end for
5 end for Dual multiobjective quantum-inspired evolutionary
6 for k= 1tol do algorithm (DMQEA) has the dual-stage of domi-
7. e(x)=[hog nance check for the primary and secondary objec-
8: end for tives. Primary objectives are the given objectives of

the problem. The secondary objectives are to maxi-
mize both the global evaluation values and crowding
distances of the solutions in the external global pop-
ulation obtained for the primary objectives and the
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i Multiple

observations

, | |
previous archive. In each archive generation process, | i i
the secondary objectives are employed for sorting i T~
the solutions, which is called secondary objectives- Figyre 3: Overall procedure of DMQEA, where PONS: Pri-
based nondominated sorting (SONS). By the pro- mary objectives-based nondominated sorting, SONS: Sec-
posed SONS, the archive stores first-tier solutions.  ondary objectives-based nondominated sorting.

'
’ N ’

3.1 SONS nondominated sorting (PONS) or fast nondominated
sorting is already performed in each subpopulation. It

SONS is to sort the solutions with the secondary ob- M€aNs jat the doihinagce-Rased sarting fof dhe pri-
jectives for maximizing the global evaluation value mary ijectlve_s g/gHtoctam |neffect|ve operation in
(GEval) and crowding distance (CD). The SONS is selecting solutions to be stored in the archive. In-

performed for the solutions in the external global pop- dleed,tm expetrlm(fents, (tjhe (_axt(:';-rr(;al g}lq[_bal po_lp_>ulat||on
ulation obtained for the primary objectives and the 105t consiggrot nondominaled soitions. 10 solve

previous archive. It means that in DMQEA, the solu- this,problem; DMQEA employs SONS in the archive

tions are sorted by SONS that checks the dominance(g.e.r‘er‘."ltion process. By S.ON.S’ each solution .is CI"’.‘S'
relationship with respect to GEval and CD. By SONS, sified into the corresponding tier and the solutions in

the solutions that are not dominated by any other so- ;Ehe f':cSt tier are lst:_)red ;ﬂ the zrfhh'vel' g'hlese (;;\re used
lutions could be obtained as first-tier solutions that are 0" '€1€rence soiutions through the giobal random mi-

stored in the archive gration process. The overall procedure of DMQEA is

The proposed SONS is depicted in Fig. 2. GEval summarize_d in Alg_orith_m 3, a'.q(.j depicted ir_1 Fig. 3.
and CD of every solution in the external global pop- Each step is described in detail in the following.
ulation and the previous archive are calculated as eX-41 |nitialize Q«(t) and Generate Archiva(t)
plained in the previous section. Note that the global 0
evaluation value of a solution is calculated by the = . ) ) I
fuzzy integral of the partial evaluation values with re- initialized with 1V2, wherei =0,1,...m-1,j =
spect to the fuzzy measures representing the userst:2s M andk=1,2,...,s. Note thatmis the string
preference for objectives. The solutions with higher 1€ngth of Q-bitindividualnis the subpopulation size,
values of GEval and CD are better in terms of user's andsis the number of subpopulations. It means that
preference and diversity. For example, in the figure, ©N€ Q-bit |nd|V|duaI,q?, represents the linear super-
blue points are classified as first-tier solutions to be POSItion of all possible states with same probabil-
stored in the archive. The solutions in lower tiers are ty- Binary solutions inR(0) are produced by mul-
discarded because they are dominated by the first-tiert'p(')e 8bser\é|ng theostates @x(0), whereP(0) =
solutions. {x3,33, ... xp} andx) = {x) 1% 5. .. XG0}, | =

1,2,....,n. Abit of one binary solutiorbgoi, has a value

3.2 Procedure of DMQEA either ‘0’ or ‘1’ according to the probability either

|0(?i |2 or |[3,?i |, wherei =0,1,....m—1,j=1,2,..,n,
In an archive generation process, MQEA employs 2 fOllOWS:

dominance-based sorting for primary objectives of the . 0 ifrand[0,1]> |B% 2

. ) : - 11> |Bji
solutions in the external global population and the X { 1 ifrand[0,1]< |B(}Ji|2' (5)
the other solutions because primary objectives-based Multiple observation is performed on each and

Q«(0) includingq?, which consists 0t andpj, is

i
previous archive. Most of them are nondominated by
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Algorithm 3. Procedure of DMQEA.

o Bllt) = (kL)

o X\ =& 1% 2 X0}
Q(t) = {d},qb, -~ ,aL}
qtj = [ O(E’m*1 O(E',mfz

jm=1 | Fjm-2
R(t) = {11l

s= No. of subpopulations

n = Size of subpopulation
e m= Q-bit string length

1. Initialize Qk(t) and generate archivi(t)
1:t=0
2: for k=1tosdo
3: for j=1tondo
4. fori=0tom—1do
5: ol =By =1/v2
6: end for
7: Make P (t) by multiple observing the states
of Qk(t)
8: for each objectivelo
9: Evaluate the objective value froxf}
10: end for
11: Copy all solutions iP(t) into P(t)
12: Store first-tier solutions d®?(t) by SONS in
the archiveA(t)
13:  endfor
14: end for
2. Generate global populatid?t)
Lt=t+1
2: for k=1tosdo
3: for j=1ltondo
4: Make P (t) by multiple observing the states
of Qk(t)
5: for each objectivelo
6: Evaluate the objective value froxf?
7: end for
8: endfor
9:  Run PONS foP(t) U Bi(t — 1)
10:  Storen higher-tier solutions oPy(t) UBk(t —1)
into By(t)
11: end for

12: Store all solutions in evei(t) into P(t)

3. Update archivé\(t)
: for each solution irA(t — 1) UP(t) do
Evaluate GEval and CD

O =

2

3: end for

4: Run SONS
5: Store the first-tier solutions into the archiké)

every Q-bit individual in subpopulationsq? in
Q«(0), k=1,2,....,s. Each binary solution iR (0)

4. Migrate and updaté(t)

1: fork=1tosdo

2: for j=1tondo

3 Select a solution ir\(t) randomly

4 Store it intor'

5 Updateqtj using Q-gates referring to the
solutions inr'

6: end for

7: end for

5. Go back to Step 2 and repeat

is decoded to a real number if necessary, and its
objective value is calculated. All solutions in each
binary subpopulatioR(0) are copied to the external
global populatiorP(0) and store first tier solutions of
P(0) by SONS in the archivA(t).

2. Generate Global Populatidtt)

Binary solutions are generated by multiple obser-
vations jof Q-bit individuals in Q-bit subpopulation
Qk(t). Each bit of binary solutiorxtjl, l=1,2,..,0,
where o is the observation index is obtainedx!
is assigned by the best among the observed f)inary
solutionsx‘jl, | =1,2,...,0, from the multiple ob-
servations. And then, evaluation is performed to
P(t), wherek = 1,2,...,s. Therefore, objective
values of all solutions in each subpopulation are
obtained. The solutions in the previous higher-tier
subpopulation and the current binary subpopulation
P(t) UB(t — 1) are sorted by PONS to selent
solutions in order from the first tier to the lower
tiers. Then higher-tier solutions fornB(t), where
Bk(t) = {b%,b,,....bL} that is to become the previous
higher-tier subpopulation in the next generation. To
update Q-bit individuals corresponding to higher-tier
subpopulation later, Q-bit subpopulatid®(t) is
rearranged by replacing eaq}pin the subpopulation
by the Q-bit individual that has generatbfji All
higher-tier solutions in each subpopulatiBg(t) are
copied to the external global populatiB(t).

3. Update ArchiveA(t)

Global evaluation values are calculated by the
fuzzy integral and crowding distance is also cal-
culated. The fuzzy integral reflects how much a
user prefers the solution, and crowding distance
denotes the density of the solutions. SONS with
GEval and CD for the solutions in the external global
population and the previous archive is performed.
The nondominated solutions in the first tier are stored
into the archiveA(t). The size of the archive might
be different each generation.
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Table 1. Parameter setting of MQEA, MQEA-PS, and

4. Migrate and Updat€(t) DMQEA for DTLZ functions
The solutions in the archivA(t) are randomly Algorithms ] Parameters [ Values

selectedn times and they are globally migrated to The population sizeN=n-s) | 100
each reference subpopulati®(t), whereRy(t) = No. of generations 3000

t ot t pop @R() : ; Rk() MQEA, Subpopulation sizej 25
{ri.r5,....,rh}. Note that the solutions iR(t) are MQEA-PS, |\ o0t Subpopulationsy P
employed as references to update Q-bit individuals, DMQEA No. of multiple observations| 10
each of which is corresponding to the solution in the The rotation angle/(®) 0.231
higher-tier subpopulation. Global random migration NSGALI Thﬁ popfulatlon Sil_zeN) 31(?000

H - 0. Of generations

procedure occurs at every generation. In the update Mutation probability o1

process of Q-bit individuals, the rotation gate is em-
ployed.rt andb® in each subpopulation are compared
bit-by-bit to decide the update directions of Q-bit in- the performances of MQEA, MQEA-PS, DMQEA,
dividuals in the rotation gatd (A8), which is defined ~ and NSGA-II (Zitzler, 1999). The size of dominated

as follows: space, is defined by the hypervolume of the finally
obtained global population. The quality of the ob-
q} =U(A8) ~qjt*1 (6) tained globalloopulation is high if this space is large.
with The diversity,D, is to evaluate the spread of nondom-
U (88) = CQS(AG) —sin(AB) inated solutions, which is defined as follows (Li et al.,
sin(AB)  coqAB) 2004):
whereAB is the rotation angle of each Q-bit as shown Ly (fimas g (min)y
in Fig. 1. Note that crossover and mutation operators D= 1 <ol 5 (7)
are not used in QEA. Moy 2i—1(di —d)
whereNy is the set of nondominated solutiorts,is
5. Go back to Step 2 and Repeat the minimal distance between thé¢h solution and

Go back to Step 2 and repeat until a termination the nearest neighbor, anmtis the mean value of all

condition s satisfied. di. £ andf(™" represent the maximum and min-
imum objective function values of tHeth objective,
respectively. A larger value means a better diversity

4 EXPERIMENTAL RESULTS of the nondominated solutions.

4.1 Experimental Settings 4.3 Results

The proposed DMQEA was compared with MQEA, The proposed DMQEA generated the optimized so-
MQEA-PS, and NSGA-Il. To evaluate the perfor- lutions concentrated on the selected preferred objec-
mance of algorithms, we employed seven DTLZ func- tives, f, and f4. The hypervolume and diversity of
tions as benchmark functions. The number of vari- MQEA, MQEA-PS, DMQEA, and NSGA-Il are sum-
ables for each DTLZ function was setto 9 for DTLZ1, marized in Tables 2. The results in Table 2 are aver-
16 for DTLZ2 to DTLZ6, and 26 for DTLZ7. Param- aged ones by repeating the simulation 50 times.

eters for DMQEA, MQEA-PS, MQEA, and NSGA-II For statistical analysis;test was employed to sta-
were equally set and given in Table 1. Belief mea- tistically compare the performance metrics of algo-
sure € =0.25) for MQEA-PS and DMQEA was used. rithms. Thet-test is a statistical hypothesis test in
As the preferred objectives, two objectives among the which the test statistic follows tadistribution if the

five objectives in DTLZ functions were selected. The null hypothesist is supported. If the null hypothesis
preference degrees or the degrees of consideration for# is rejected, the alternative hypothesis is supported.
five objectiveswas setds: fo: fz: f4: f5=1:10: t-test was used to determine whether two comparison
1:10: 1. The normalized weights from the pairwise groups were significantly different from each other.
comparison matrix were calculated as (0.0435, 0.435, Thet-test was carried out with the two-tailed test. Ta-

0.0435, 0.435, 0.0435). bles 3 show-value (andp-value) for the hypervolume
with MQEA, MQEA-PS, and NSGA-II.
4.2 Performance Metrics As shown in Table 3, the proposed DMQEA had

larger hypervolume than MQEA for DTLZ1, DTLZ3,
Two performance metrics, the size of dominated DTLZ6, and DTLZ7. For the fair comparison of hy-
space and the diversity, were employed to evaluate pervolume, the size of the obtained global populations
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Table 2: Comparisons of hypervolume and diversity among Table 3: The hypothesis test gnof the three algorithms
MQEA, MQEA-PS, and DMQEA for seven DTLZ func-

Ho : SomQEA — Smgea =0

tions. t-value p-value) Reject T

(a) Average hypervolume of nondominated solutions DTLZ1 | 6.731(0.000) NO Spwoea —Swgea >0
DTLZ2 | -14.524(0.000) YES SpmoeA — Smoea <0
Problem[ NSGA-II MQEA MQEA-PS DMQEA DTLZ3 | 67.767 (0.000)  YES Sowmoca — Swoca >0

DTLZ1 | 99999 99255 99740 99748 DTLZ4 | -0557(0.580)  NO N/A
DTLZZ | 99998 99796 97139 99202 DTLZ5 | -7.233(0.000)  YES SpmoEA — Smoea <0
DTLZ3 66773 N/A 71911 79015 DTLZ6 | 8.871(0.000) YES Spwmea —Smoea >0
DTLZ4 99999 95119 92309 94898 DTLZ7 | 57.875(0.000) YES SpmQea —SmQea >0

DTLZ5 99158 98578 95877 98388
DTLZ6 96169 67967 89411 72915

DTLZ7 | 63202 10907 38574 40500 } - “lﬁi)?mgoE_AfMQEA-Ps: ]
- : n . -value (p-value ejec T
(b) Average diversity of nondominated solutions DTLZL | 0252(0802) NO WA
Problem[ NSGA-Il MQEA MQEA-PS  DMQEA DTLZ2 15-134((0-00(;) YES Somoea — Smoeaps>0
DTLZ3 3.367 (0.001 YES Spomgea — Smgea-ps>0
DTLZ1 | 103.95 14499 92.13 75.99 > 2!
DTLZ2 | 132.95 71.05 93.96 79.19 DTLZ4 | 6.287(0.000)  YES Spmoea — Smoears>0
DTLZ3 | 10436 5505  60.93 52.73 DILZs 212 (0000 YES Sowoea— Swgears> 0
DTLz4 | 13253 8062 10524 13761 DILZC | 37.855(0.000) YES Somoen—Swoeaps<0
: : : : DTLZ7 | 6.709 (0.000 YES — SmoeA-ps> 0
DTLZ5 | 179.29 12939  278.32 139.29 (0000 DHQEA—SMQEAPS
DTLZ6 | 14312  73.35 65.26 63.46
DTLZ7 | 164.78 11596  136.27 135.55 \ Ho : Somoea — Snscad =0
| t-value (p-value) Reject Fh
. DTLZ1 | -10.460 (0.800 YES S -5 a1 <0
for three algorithms are set to the same value. In com- oo 17 88 Eo_ooog VES Somoen Shecnn <0
parison with MQEA-PS, DMQEA had larger hyper- DTLZ3 | 4.771(0.000)  YES Spmoea—Snscal >0
volume for all DTLZ functions exceptfor DTLZ1 and el fee, Eg-gggg e %DMQEA *%NSGA-" : g
= = =ol. - DMQEA — ONSGA-II
DTLZ6. It means DMQEA found more optimized so- DTLZ6 | -160.96(0.000) YES Somoca—Snsoat <0
lutions close to the Pareto-optimal front. However, DTLZ7 | -136.51(0.000) YES SpmQeA — Snscadl <0

in comparison with NSGA-Il, DMQEA had better ] _
performance only for DTLZ3. This is because the Table 4: The hypothesis test dnof the three algorithms.
proposed DMQEA generated the optimized solutions \ Ho : Domoea — Dwgea =0

concentrated on the selected preferred objectifses, gy ‘ t'_"sagjg(a":;)"gg’;) Rj';g = j{% —
and f4. Due to the property of the hypervolume, DTLz2 | 9492(0.000)  VES aﬁﬁﬁiﬁaﬁﬁiﬁw
DMQEA that generates the dense solutions in a small DTLZ3 | -0.445(0.658)  NO N/A
region has a lower value of hypervolume compared to DTLZ4 | 3794(0.000)  YES Dougea—Dugea >0
NSGA-Il for DTLZ1, DTLZ2, DTLZ5. DTioe e (0o Ve s JuaEa > 2
Table 4 shows the result for the diversity and Ta- DTLz7 | 3.439(0.001)  YES Dowcen  Duen= 0

ble 5 presents average objective values of preferred
solutions finally selected by PSSA among the solu- |
\

Ho: EDMQ_EA — Dugeaps=0

tions obtained from MQEA-PS and DMQEA, respec- t-value (p-value) _Reject 7
tively. As Table 4 shows, DMQEA has a lower value DTLZ1 | -2959(0.004) YES Dpwmoea—Duoears<0
of diversity compared with MQEA, MQEA-PS, and T s e s Shsnes 0
NSGA-II, and Table 5 shows DMQEA generated the DTLZ4 | 1.997(0.051) NO /A
; ; i At DTLZ5 | -9.052(0.000)  YES Dpmoea — Dvoeaps< 0
solutions that effectively reflect preferred objectn_/es. DTIze | 0544(0522 O 2
It means that DMQEA could generate the solutions DTLZ7 | -0.119(0.906)  NO N/A
emphasized on preference objectives,fs in dense o : Domgea — Dsead =0
area. In other word, the proposed DMQEA could find tvalue pvalue) Reject 74
timized luti for th f d obiecti DTLZ1 | -3.871(0.000) YES Dpmoea — Dnscat <0
more optimized solutions for the preferred objectives DTLZ2 | 63.8581 (0.000) YES Domocs - Drscan <O
compared with the other algorithms. DTLZ3 | 1.773(0.082) NO N/A
DTLZA 4.527 (0.000) YES Dpmgea — Dnscan <0
DTLZ5 -4.076 (0.000) YES 5DMQEA _ENSGA-II <0
DTLZ6 | -65.703(0.000) YES Domoea — Dsca < 0
5 CONCLUSION DTLZ7 | -6.241(0.000) YES Domoea — Dnscal <0

In this paper, dual multiobjective quantum-inspired secondary objectives. The secondary objectives are
evolutionary algorithm (DMQEA) was proposed by to maximize global evaluation values and crowding
introducing secondary objectives in addition to pri- distances of the solutions. The global evaluation of
mary objectives. The proposed DMQEA had the a solution was carried out by the fuzzy integral of
dual-stage of dominance check for the primary and the partial evaluation values with respect to the fuzzy
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Table 5: The objective function values of preferred solu-
tions each selected by PSSA among the solutions obtained
from MQEA-PS and DMQEA, respectively.

(a) Average objective values of a preferred so-
lution finally selected by PSSA among the solu-
tions obtained from MQEA-PS

[ f3  fa T

0.0599 0.0002 0.1402 0.0002 0.4596
0.0000 0.0000 0.0000 0.0000 1.0000
0.0021 0.0002 0.0027 0.1232 5.5938
1.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000
DTLZ6 | 0.0002 0.0002 0.0002 0.0003 1.8851
DTLZ7 | 0.6302 0.0022 0.6022 0.0005 9.2351

(b) Average objective values of a preferred so-
lution finally selected by PSSA among the solu-
tions obtained from DMQEA
[ 1 B3 T fs

0.0685 0.0005 0.1401 0.0005 0.5994
0.0000 0.0000 0.0000 0.0000 1.0003
0.0000 0.0000 0.0000 0.0000 4.4475
1.0251 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0001
0.0004 0.0002 0.0004 0.0006 4.1782
0.1235 0.0017 0.3517 0.0026 10.7801

DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5

DTLZ1
DTLZ2
DTLZ3
DTLZ4
DTLZ5
DTLZ6
DTLZ7

measures representing user’s preference for objec-
tives. By employing the secondary objectives-based
nondominated sorting in each archive generation pro-
cess, DMQEA could generate the preferable and di-
verse solutions.
among MQEA, MQEA-PS, DMQEA, and NSGA-

II, seven DTLZ functions were used as benchmark
functions, and hypervolume and diversity were em-
ployed as performance metrics. The experimental re-
sults confirmed that the proposed DMQEA was able
to generate more optimized solutions for the preferred
objectives compared with the other algorithms.
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