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Abstract: A greedy algorithm has been presented in this paper to construct decision trees for three different approaches
(many-valued decision, most common decision, and generalized decision) in order to handle the inconsistency
of multiple decisions in a decision table. In this algorithm, a greedy heuristic ‘misclassification error’ is
used which performs faster, and for some cost function, results are better than ‘number of boundary subtables’
heuristic in literature. Therefore, it can be used in the case of larger data sets and does not require huge amount
of memory. Experimental results of depth, average depth and number of nodes of decision trees constructed
by this algorithm are compared in the framework of each of the three approaches.

1 INTRODUCTION

There are groups of rows (objects) with equal val-
ues of conditional attributes but with different de-
cisions (values of the decision attribute) in incon-
sistent decision tables (IDT). It is common to have
such tables in our real life because we do not have
enough number of attributes of the domain to sep-
arate rows. Furthermore, it is natural to have such
data sets in optimization problems such as finding a
Hamiltonian circuit with the minimum length in trav-
eling salesman problem, finding nearest post office
(Moshkov and Zielosko, 2011). It also arises when
we study, e.g., problem of semantic annotation of
images (Boutell et al., 2004), music categorization
into emotions (Wieczorkowska et al., 2005), func-
tional genomics (Blockeel et al., 2006), text catego-
rization (Zhou et al., 2005) etc.

Table 1 presents the ‘Play Tennis’ example
(Mitchell, 1997) where the conditional attributes de-
scribe the condition of the environment and the de-
cision attribute refers whether one can play tennis or
not (Note,r i refers observation or rowi). Here,r1, r8
andr15 have the same values of conditional attributes
but different decisions. Such rows are highlighted in
blue color. Similar situation is forr6, and r10 that
have been colored with red. This type of inconsis-
tency can happen because of missing attribute to sep-
arate objects. In the paper (Azad et al., 2013), three

Table 1: Example of ‘Play Tennis’ inconsistent decision ta-
ble.

Outlook Humidity Wind Play Tennis
r1 Sunny High Weak No
r2 Sunny High Strong No
r3 Overcast High Weak Yes
r4 Rain High Weak Yes
r5 Rain Normal Weak Yes
r6 Rain Normal Strong No
r7 Overcast Normal Weak Yes
r8 Sunny High Weak Yes
r9 Sunny Normal Weak Yes
r10 Rain Normal Strong Yes
r11 Sunny Normal Strong Yes
r12 Overcast High Strong Yes
r13 Overcast Normal Weak Yes
r14 Rain High Strong No
r15 Sunny High Weak Yes

approaches are considered to deal with inconsistent
decision tables.

The first approach is called many-valued decisions
– MVD. Instead of a group of equal rows with dif-
ferent decisions, just one row is kept with the same
values of conditional attributes and a set containing
all decisions for rows from the group (Moshkov and
Zielosko, 2011) is attached with the row. The second
approach is called the most common decision –MCD.
Instead of a group of equal rows with different deci-
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sions, just one row is kept with the same values of
conditional attributes and a single decision attached
with this row that have the value of the most common
decision for rows from the group. The third approach
is well known in the rough set theory (Pawlak, 1991;
Skowron and Rauszer, 1992) and is called generalized
decision –GD approach. In this case, an inconsistent
decision table is transformed into the table with many-
valued decisions and after that each set of decisions is
encoded by a number (decision) such that equal sets
are encoded by equal numbers and different sets are
encoded by different numbers.

In literature, often, problems that are connected
with multi-label data are considered for classifica-
tion (multi-label classification problem) (Clare and
King, 2001; Comité et al., 2003; Loza Mencı́a and
Fürnkranz, 2008; Tsoumakas and Katakis, 2007;
Tsoumakas et al., 2010; Zhou et al., 2012). How-
ever, in this paper the aim is to study decision trees
for multi-label decision tables for knowledge repre-
sentation. Furthermore, decision tree has been used as
the model to represent such knowledge and the goal
is to compare the decision tree structure for different
heuristics and different approaches of representation
of inconsistent decision table.

In this paper, a greedy heuristic ‘misclassifica-
tion error’ has been introduced for decision table with
many-valued decisions. Its performance has been
compared with the heuristic ‘number of boundary
subtables’ from the paper (Azad et al., 2013). Data
sets have been used from UCI ML repository as well
as KEEL repository (Alcal-Fdez et al., 2009). The
advantages of the KEEL data sets are twofolds: (1)
they have big amount of data, and (2) they are real
life examples of decision tables with many-valued de-
cisions. The heuristic ‘number of boundary subtables’
is complex in terms of time, and memory require-
ment. Hence, it is essential to design new heuristic
which gives equal or better results but with less time
complexity, and memory requirement. At the end, re-
sults have been presented which show that the use of
MCD and, especially,MVD approaches can reduce
the complexity of trees in comparison withGD ap-
proach. The goal is to find all decisions for the case
GD whereas a fixed decision for the case ofMCD and
arbitrary decision for the case ofMVD for a particu-
lar row. That means we are moving from highly re-
stricted decision constraint to less restricted decision
constraint. Hence we usually get less complex tree
for the last case than others. This comparison is cru-
cial for knowledge representation since we can get the
useful knowledge in the form of less complicated de-
cision trees.

This paper consists of five sections. Section 2 con-

tains main definitions. In Sect. 3, the greedy algo-
rithm for construction of decision trees is presented.
Section 4 contains results of experiments and Sect. 5
concludes the paper.

2 MAIN DEFINITIONS

A decision tableis a rectangular tableT filled by
non-negative integers. Columns of this table are la-
beled with conditional attributesf1, . . . , fn. If we have
strings as values of attributes, we have to encode the
values as nonnegative integers. In addition, if we have
real valued data, we have to discretize the value to use
in this format. Rows of the table are pairwise differ-
ent, and each row is labeled with a natural number
(decision) which is interpreted as a value of the de-
cision attribute. To differentiate withdecision table
with many-valued decisions, we sometimes call itde-
cision table with one-valued decisions.

It is possible thatT is inconsistent, i.e., contains
equal rows with different decisions. The tableT can
contain also equal rows with equal decisions. The
most frequent decision attached to rows from a group
of rows in a decision tableT with one-valued decision
is called themost common decisionfor this group of
rows. For approach calledmost common decision –
MCD, we transform inconsistent decision tableT into
consistent decision tableTMCD with one-valued deci-
sion. Instead of a group of equal rows with different
decisions, we consider one row from the group and
we attach to this row the most common decision for
the considered group of rows.

For approach calledgeneralized decision – GD,
we transform inconsistent decision tableT into con-
sistent decision tableTGD with one-valued decisions.
Instead of a group of equal rows with different de-
cisions, we consider one row from the group and we
attach to this row the set of all decisions for rows from
the group. Then instead of a set of decisions we attach
to each row a code of this set – a natural number such
that the codes of equal sets are equal and the codes of
different sets are different.

For approach calledmany-valued decisions –
MVD, we transform an inconsistent decision tableT
into a decision tableTMVD with many-valued deci-
sions. Instead of a group of equal rows with different
decisions, we consider one row from the group and
we attach to this row the set of all decisions for rows
from the group (Moshkov and Zielosko, 2011).

Note that each decision table with one-valued de-
cisions can be interpreted also as a decision table with
many-valued decisions. In such table, each row is la-
beled with a set of decisions which has one element.
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Table 2: Transformation of inconsistent decision tableT0

into decision tablesT0
MVD, T0

GD andT0
MCD.

T0 =

f1 f2 f3
r1 0 0 0 1
r2 0 1 1 1
r3 0 1 1 2
r4 1 0 1 1
r5 1 0 1 3
r6 1 1 0 2
r7 1 1 0 3
r8 0 0 1 2

T0
MVD =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1{1,2}
r3 1 0 1{1,3}
r4 1 1 0{2,3}
r5 0 0 1 {2}

T0
GD =

f1 f2 f3
r1 0 0 0 1
r2 0 1 1 2
r3 1 0 1 3
r4 1 1 0 4
r5 0 0 1 5

T0
MCD =

f1 f2 f3
r1 0 0 0 1
r2 0 1 1 1
r3 1 0 1 1
r4 1 1 0 2
r5 0 0 1 2

We have shown in Table 2 the transformation of an
inconsistent decision tableT0 using all the three ap-
proaches.

We denote rowi by r i wherei = 1, . . . ,N(T). For
example,r1 means the first row,r2 means the second
row and so on. We denote the number of rows in the
tableT by N(T).

If there is a decision which belongs to the set of
decisions attached to each row ofT, then we call it
a common decisionfor T. We will say thatT is a
degeneratetable if T does not have rows or it has a
common decision. For example,T ′

MVD is degenerate
table as shown in Table 3, where the common decision
is 1.

Table 3: A degenerate many-valued decision table,T ′.

T ′
MVD =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1 {1,2}
r3 1 0 1 {1,3}

A table obtained fromT by removing some rows
is called a subtable ofT. There is a special type of
subtable calledboundary subtable. The subtableT ′

of T is aboundary subtableof T if and only if T ′ is
not degenerate but each of its proper subtable is de-
generate. We denote the number of boundary subta-
bles of the tableT by nBS(T). It is clear thatT is a
degenerate table if and only ifnBS(T) = 0. The value

nBS(T) has been considered as greedy heuristic ofT
in (Azad et al., 2013). Below is an example of all
boundary subtables ofT0

MVD:

T1 =

f1 f2 f3 d
r2 0 1 1{1,2}
r3 1 0 1{1,3}
r4 1 1 0{2,3}

T2 =
f1 f2 f3 d

r1 0 0 0 {1}
r4 1 1 0{2,3}

T3 =
f1 f2 f3 d

r3 1 0 1{1,3}
r5 0 0 1 {2}

T4 =
f1 f2 f3 d

r1 0 0 0{1}
r5 0 0 1{2}

We denote the subtable ofT which consists of
rows that have valuesa1, . . . ,am at the intersection
with columns fi1, . . . , fim by T( fi1,a1) . . . ( fim,am).
Such nonempty subtables (including the tableT) are
called separable subtables ofT. For example, (see
Table 4) if we consider subtableT0

MVD( f1,0) for table
T0

MVD (see Table 2), it will consist of rows 1,2, and 5.
Similarly, T0

MVD( f1,0)( f2,0) subtable will consist of
rows 1, and 5.

Table 4: Example of subtables of a decision table with
many-valued decisionsT0

MVD.

T0
MVD( f1,0) =

f1 f2 f3
r1 0 0 0 {1}
r2 0 1 1 {1,2}
r5 0 0 1 {2}

T0
MVD( f1,0)( f2,0) =

f1 f2 f3
r1 0 0 0 {1}
r5 0 0 1 {2}

The set of attributes (columns of tableT) which
have different values i.e. not constant, is denoted by
E(T). For example, for the tableT0

MVD, E(T0
MVD) =

{ f1, f2, f3}. Similarly, E(T0
MVD( f1,0)) = { f2, f3} for

the subtableT0
MVD( f1,0), because the value for the

attribute f1 is constant (=0) in subtableT0
MVD( f1,0).

The set of values from the columnfi is denoted by
E(T, fi) where fi ∈ E(T). For example, if we con-
sider tableT0

MVD and attributef1, thenE(T0
MVD, f1) =

{0,1}.
The most common decisionfor a tableT with

many-valued decisions is the decision which belongs
to the maximum number of sets of decisions attached
to rows of the tableT. If we have more than one such
decision, we choose the minimum one. We denote the
number of rows for which the set of decisions con-
tains the most common decision byNmcd(T). We de-
note theMisclassification errorfor a tableT which is
the difference between total number of rows and num-
ber of rows with the most common decision in the
set of decisions in the tableT by M(T), i.e.,M(T) =
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N(T)−Nmcd(T). For example, if we look at the ta-
bleT0

MVD, the decisions 1,2,3, appear 3,3,2 times, re-
spectively. The minimum decision that appears most
of the time in the tableT0

MVD is 1. Therefore, 1 is
the most common decision inT0

MVD. So, for the table
T0

MVD, the number of rowsN(T0
MVD) is 5, number of

rows with most common decisionNmcd(T0
MVD) is 3,

and misclassification error is 5−3= 2.
A decision tree over Tis a finite tree with root

in which each terminal node is labeled with a deci-
sion (a natural number), and each nonterminal node
is labeled with an attribute from the set{ f1, . . . , fn}.
A number of edges start from each nonterminal node
which are labeled with different non-negative integers
(e.g. two edges labeled with 0 and 1 if the nontermi-
nal node is labeled with binary attribute).

Let Γ be a decision tree overT andv be a node
of Γ. There is one to one mapping between node
v and subtable ofT i.e. for each nodev, there is
a unique subtable ofT. This subtable is defined as
T(v) corresponding to the tableT and nodev. If
nodev is the root ofΓ thenT(v) = T i.e. the sub-
tableT(v) is the same asT. Otherwise,T(v) is the
subtableT( fi1,δ1) . . . ( fim,δm) of the tableT where
attributes fi1, . . . , fim and numbersδ1, . . . ,δm are re-
spectively node and edge labels in the path from the
root to nodev.

f1

3 f3

1 2

1 0

0 1

Figure 1: Decision tree forT0
MVD.

We will say thatΓ is a decision tree forT, if for
any nodev of Γ:

• if T(v) is degenerate thenv is labeled with the
common decision forT(v),

• if T(v) is not degenerate thenv is labeled with
an attribute fi ∈ E(T(v)), and if E(T(v), fi) =
{a1, . . . ,ak}, thenk outgoing edges from nodev
are labeled witha1, . . . ,ak.

An example of a decision tree for the tableT0
MVD

can be found in Fig. 1. Ifv is the node labeled with the
attribute f3, then subtableT(v) corresponding to the
nodev will be the subtableT( f1,0) of tableT. Sim-
ilarly, the subtable corresponding to the node labeled
with 2 will be T( f1,0)( f3,1).

The depthof Γ which is the maximum length of
a path from the root to a terminal node is denoted by

h(Γ). Let ∆(T) be the set of rows ofT. The aver-
age depth ofΓ is denoted byhavg(Γ) which is equal

to ∑r∈∆(T)
lΓ(r)
N(T) , wherelΓ(r) is the length of the path

from the root ofΓ to a terminal nodev for which r
belongs toT(v). The number of nodes in the decision
treeΓ is denoted byL(Γ).

Algorithm 1 : Greedy algorithmU .

Input: A decision tableT with many-valued deci-
sions, and conditional attributesf1, . . . , fn.

Output: Decision treeU(T) for T.
Construct the treeG consisting of a single node la-
beled with the tableT;
while (true)do

if No node of the treeG is labeled with a table
then

Denote the treeG byU(T);
else

Choose a nodev in G which is labeled with a
subtableT ′ of the tableT;
if M(T ′) = 0 then

Instead ofT ′ mark the nodev with the most
common decision forT ′;

else
For eachfi ∈ E(T ′), we compute the value
of the impurity functionI(T ′

, fi) equal to
∑

b∈E(T′
, fi)

M(T ′( fi ,b))×N(T ′( fi ,b));

Choose the attributefi0 ∈ E(T ′), wherei0
is the minimumi for which I(T ′

, fi) has
the minimum value; Instead ofT ′ mark the
nodev with the attributefi0;
For eachδ ∈ E(T ′

, fi), add to the treeG the
nodevδ and mark this node with the sub-
tableT ′( fi0,δ);
Draw an edge fromv to vδ and mark this
edge withδ;

end if
end if

end while

3 GREEDY ALGORITHM U

The greedy algorithmU , for a given decision table
T with many-valued decisions, constructs a decision
treeU(T) for T (see Algorithm 1). We will interpret
decision table with one-valued decisions, i.e.TGD,
TMCD, as a decision table with many-valued decisions
where each row is labeled with a set of decisions that
has one element. Hence, we can apply the same algo-
rithm for all three cases.

In Algorithm 1, the heuristicM refers the misclas-
sification error for the given decision tableT. The
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Table 5: Characteristics of decision tables with many-valued decisions from KEEL data sets.

Decision Rows Attr Spectrum
tableT #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

bibtex∗ 7355 1836 2791 1825 1302 669 399 179 87 46 18 7
corel5k 4998 499 3 376 1559 3013 17 0 1 0 0 0
delicious∗ 15862 944 95 207 292 340 422 536 714 930 1108 1460
enron∗ 1561 1001 179 238 441 337 200 91 51 15 3 3
genbase 662 1186 560 58 31 8 2 3 0 0 0 0
medical 967 1449 741 212 14 0 0 0 0 0 0 0

number of rowsN(T ′( fi ,b)) is used as the weight of
the corresponding tableT ′( fi ,b). The impurity func-
tion I has been calculated as the weighted sum of the
values of the heuristic, i.e., theM value is multiplied
with the weight of the corresponding table. Then, the
multiplied values are summed up.

Now, the work of the greedy algorithm for con-
struction of a decision tree for the decision tableT0

MVD
is portrayed in Fig. 1. The tableT0

MVD is not de-
generate, so fori ∈ {1,2,3}, the value ofI( fi) has
been computed:I( f1) = 0+3= 3, I( f2) = 0+3= 3,
I( f3) = 3+ 2 = 5. The minimum values areI( f1),
and I( f2). Then, the attributef1 is selected as it is
with minimum index. After that, it is assigned to the
root of the constructed tree.

The left child of the root denotes the node which
points the subtableT0

MVD( f1,1) and the edge is
marked by 1. The subtableT0

MVD( f1,1) is degener-
ate and the common decision is 3. So, the node is
labeled by the decision 3. Similarly, the right child
of the root denote the subtableT0

MVD( f1,0) which is
not degenerate. Then, it is further divided according
to the algorithm 1 by choosing the attributef3. The
child nodes of the node labeled withf3 are degenerate
and they are marked by their common decisions. As
all nodes are labeled, the work of the algorithm is fin-
ished. At the end, the decision tree isU(T0

MVD) (see
Fig. 1) for the tableT0

MVD.

4 EXPERIMENTAL RESULTS

A number of decision tablesT from KEEL multi-
label data sets (Alcal-Fdez et al., 2009) as well as
from UCI ML repository (Bache and Lichman, 2013)
have been considered. Data sets from KEEL are al-
ready in decision table with many-valued decisions
format TMVD. These tablesT are further converted
into formatsTMCD (in this case, the first decision is se-
lected from the set of decisions attached to a row) and
TGD by the procedure described in Section 2. Con-
versely, more conditional attributes are removed from
the data sets of UCI ML Repository to convert data

sets into inconsistent decision tables. These inconsis-
tent tables were further converted into many-valued,
most common and generalized decision by the pro-
cedure described in Section 2. The information about
the considered decision tables is shown in Table 5 and
7.

These tables contain name of decision tableT =
TMVD, number of rows (column “Rows”), number of
attributes (column “Attr”), and spectrum of the table
T (column “Spectrum”). Spectrum of a decision table
with many-valued decisions is a sequence #1, #2,. . . ,
where #i, i = 1,2, . . ., is the number of rows labeled
with sets of decisions with the cardinality equal toi.
For some tables (marked with * in Table 5), the spec-
trum is too long to fit in the page width. Hence, it has
been shown up to the element of the sequence that is
possible to show in the page width limit.

Table 6 and 9 contain depth, average depth
and number of nodes for decision treesU(TMVD),
U(TMCD) andU(TGD) constructed by the greedy al-
gorithm U using greedy heuristic ‘misclassification
error’ for decision tablesTMVD, TMCD andTGD respec-
tively. For the depth of the trees, even though some
cases (‘enron’, ‘genbase’)MVD approach gives larger
tree depth, but on average it gives smallest depth of
the tree. For other cost functions like average depth
and number of nodes, it gives equal or smaller tree
size thanMCD andGD approach. Now, if one com-
pares betweenMCD approach andGD approach, one
can find thatGD approach gives either equal or larger
tree size.

Therefore, the decision trees constructed in the
frameworks ofMVD approach are usually simpler
than the decision trees constructed in the frameworks
of MCD approach, and the decision trees constructed
in the frameworks ofMCD approach are usually sim-
pler than the decision trees constructed in the frame-
work of GD approach.

Furthermore, the decision tree depth, average
depth and number of nodes has been compared based
on greedy heuristics. In the paper (Azad et al., 2013),
the number of boundary subtables has been consid-
ered as heuristic to compare among three approaches.
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Table 6: Depth, average depth and number of nodes for decision treesU(TMVD), U(TGD) andU(TMCD).

Decision Depth Average Depth Number of Nodes
tableT MVD MCD GD MVD MCD GD MVD MCD GD

bibtex 39 42 43 11.52 12.24 12.97 9357 10583 13521
corel5k 156 156 157 36.1 36.41 36.29 6899 8235 9823
delicious 79 92 92 13.74 15.9 16.718 6455 18463 31531
enron 28 26 41 9.18 9.62 11.18 743 1071 2667
genbase 12 12 11 4.718 4.937 5.762 43 49 81
medical 16 16 16 8.424 8.424 8.424 747 747 747

average 55 57.33 60 13.95 14.59 15.22 4040.67 6524.67 9728.33

Table 7: Characteristics of decision tables with many-
valued decisions from UCI data sets.

Decision Rows Attr Spectrum
tableT #1 #2#3#4#5#6

balance-scale-1 125 3 45 5030
breast-cancer-1 193 8 169 24
breast-cancer-5 98 4 58 40

cars-1 432 5 258 16113
flags-5 171 21 159 12

hayes-roth-data-1 39 3 22 13 4
kr-vs-kp-5 1987 311564 423
kr-vs-kp-4 2061 321652 409

lymphography-5 122 13 113 9
mushroom-5 4078 174048 30

nursery-1 4320 728581460 2
nursery-4 240 4 97 9647

spect-test-1 164 21 161 3
teeth-1 22 7 12 10
teeth-5 14 3 6 3 0 5 0 2

tic-tac-toe-4 231 5 102 129
tic-tac-toe-3 449 6 300 149
zoo-data-5 42 11 36 6

But in this paper, the result using ‘misclassification
error’ heuristic has been compared with the result us-
ing ‘number of boundary subtables’ heuristic. Table 8
shows the results using ‘number of boundary subta-
bles’ heuristic along with ‘weighted-sum’ impurity
function. If one looks at the Table 8 and 9, the per-
formance of the heuristic ‘misclassification error’ is
comparable to the heuristic ‘number of boundary sub-
table’. In the case of ‘depth’, it is slightly smaller for
‘number of boundary subtables’, and in the case of
‘average depth’, it is slightly smaller for ‘misclassi-
fication error’ heuristic. But the ‘number of nodes’
of tree is essentially smaller for the ‘misclassification
error’ heuristic.

The reason of using UCI ML repository data sets
to compare the two heuristics is that the ‘number of
boundary subtables’ heuristic requires a higher degree
polynomial (if one consider the maximum number of

decisions in the table is bounded) running time and
huge amount of memory. Therefore, smaller data sets
from UCI ML repository have been used to compare
between the two heuristics. The advantage is that the
‘misclassification error’ heuristic is simple, and re-
quires little time and few memory as well as it gives
better results for the minimization of average depth
and number of nodes of the constructed tree.

5 CONCLUSIONS

In this paper, three approaches have been described
to represent the useful knowledge from inconsistent
decision tables in terms of decision tree model. The
complexity of decision trees (depth, average depth,
and number of nodes) constructed by the greedy al-
gorithm with ‘weighted sum’ impurity type and ‘mis-
classification error’ heuristic have been compared for
these approaches.

Experimental results show that the approach based
on the many-valued decisions outperforms the ap-
proaches based on the generalized decisions and the
most common decisions, also it is found that the per-
formance of new heuristic is sometimes better than
the ‘number of boundary subtables’ heuristic.

In future to get a good decision tree model, we
want to investigate the effect of new impurity types
and new heuristics for inconsistent decision tables.
We also would like to investigate the effect of such
algorithms when we consider the prediction problem
for inconsistent decision tables.
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Table 8: Depth, average depth and number of nodes for decision treesU(TMVD), U(TGD) andU(TMCD) for UCI data sets
using number of boundary subtables heuristic.

Decision Depth Average Depth Number of Nodes
tableT MVD MCD GD MVD MCD GD MVD MCD GD

balance-scale-1 2 3 3 2 2.52 3 31 96 156
breast-cancer-1 6 6 7 3.575 3.658 4.104 150 161 220
breast-cancer-5 3 4 4 1.837 2.184 2.602 49 77 102
cars-1 5 5 5 2.361 3.167 4.007 97 197 312
flags-5 6 6 6 3.772 3.819 3.854 211 219 226
hayes-roth-data-1 2 3 3 1.744 1.974 2.308 17 26 39
kr-vs-kp-5 12 15 15 7.939 8.169 9.08 681 957 1635
kr-vs-kp-4 13 14 15 8.009 8.271 9.18 711 1011 1723
lymphography-5 6 6 7 3.787 4.033 4.189 80 98 110
mushroom-5 6 7 8 2.753 2.768 2.78 219 235 261
nursery-1 7 7 7 2.172 3.48 4.132 220 920 1477
nursery-4 2 4 4 1.333 2.283 2.417 9 53 61
spect-test-1 6 9 9 3.037 3.238 3.482 31 45 53
teeth-1 4 4 4 2.818 2.818 2.818 35 35 35
teeth-5 3 3 3 2.214 2.214 2.214 20 20 20
tic-tac-toe-4 5 5 5 2.957 4.017 4.506 73 174 243
tic-tac-toe-3 6 6 6 4.058 4.577 5.343 191 320 542
zoo-data-5 5 6 7 3.071 3.31 3.952 19 25 41

average 5.5 6.28 6.56 3.3 3.69 4.11 158 259.39 403.11

Table 9: Depth, average depth and number of nodes for decision treesU(TMVD), U(TGD) andU(TMCD) for UCI data sets
using misclassification error heuristic.

Decision Depth Average Depth Number of Nodes
tableT MVD MCD GD MVD MCD GD MVD MCD GD

balance-scale-1 2 3 3 2 2.52 3 31 96 156
breast-cancer-1 6 6 7 3.679 3.736 4.104 152 160 217
breast-cancer-5 3 4 4 1.816 2.184 2.602 46 77 102
cars-1 5 5 5 1.958 2.583 3.813 43 101 280
flags-5 6 6 6 3.754 3.801 3.836 210 216 223
hayes-roth-data-1 2 3 3 1.744 1.974 2.308 17 26 39
kr-vs-kp-5 13 14 15 7.802 8.329 9.503 543 873 1539
kr-vs-kp-4 14 14 14 7.87 8.504 9.477 555 915 1635
lymphography-5 7 7 7 3.787 4.115 4.311 77 94 112
mushroom-5 7 7 8 2.772 2.781 2.795 246 253 265
nursery-1 7 7 7 2.169 3.469 4.127 198 832 1433
nursery-4 2 4 4 1.333 2.283 2.083 9 53 54
spect-test-1 6 10 10 3.134 3.274 3.543 35 43 53
teeth-1 4 4 4 2.818 2.818 2.818 35 35 35
teeth-5 3 3 3 2.214 2.214 2.214 20 20 20
tic-tac-toe-4 5 5 5 2.965 4.139 4.286 76 182 216
tic-tac-toe-3 6 6 6 4.145 4.78 5.207 199 362 490
zoo-data-5 4 7 7 3.214 3.714 4.119 19 25 41

average 5.67 6.39 6.56 3.29 3.73 4.12 139.5 242.39 383.89
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