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Abstract: Usage control extends access control by enabling the specification of requirements that should be satisfied
before, while and after access. To ensure that the deployment of usage control policies in target domains
achieves the required security goals, policy verification and analysis tools are needed. In this paper, we present

an approach for the dynamic analysis of usage control policies using formal descriptions of target domains

and their usage control policies. Our approach provides usage control management explicit labeled transition

system semantics and enables the automated verification of usage control policies using model checking.

1 INTRODUCTION in every possible (reachable) state. Dynamic policy
analysis has been used for the verification of access

Access control aims at protecting information sys- control policies (Li and Tripunitara, 2006; Becker and
tems against unauthorized accesses. Usage contrdNanz, 2007), and obligation policies (Craven et al.,
extends access control with the support of pre-access2009). However, the dynamic analysis of usage con-
ongoing-access and post-access controls, enabling th&0! policies remains, to the best of our knowledge,
expression of more fine-grained controls on accessUnéxplored. An overview of formal security policy
operations. More specifically, usage controls allows @nalysis is presented in Section 6.

specification of before-access, while-access and after-  1hiS paper introduces an approach for the dy-
access requirements, typically in the form of either Namic anaIyS|s_of usage control p_oll_C|es that consists
required useactions e.g. acceptance of an applica- Of first (1) making a formal description of the target
tion’s usage terms prior to access, or scstee con- domain and its usage policy using the action language

ditionsthat should be maintained, e.g. to keep an ad C+ (Giunchiglia et al., 2004), a recent member of
window open during access. the family of action languages (Gelfond and Lifschitz,

A security policy formally specifies rules needed 1998)! an(:]then (@) gsingfmﬁdel cheg_kigg techniques
to satisfy the security requirements of a given infor- to verify the properties of the specified usage con-

mation system. Therefore, the overall system security 0! POlicY. Ciur work a:_lsot_formalézes uSz’-illg::j con?rol
depends on its correct expression. Indeed, misspeci—m"’magetmeln ’ e(.jgihac lvation an tcafnce ation or us-
fied policies could allow undesirable security vulnera- age controis and the management ol usage Sessions,

bilities and compromise the overall goals that security C'af'fy'“g the enforcement of usage controls anq en-
policies aim to achieve abling the use of standard model-checking techniques

Two main analysis types are used for verification for the verification of usage control policy properties.

of security policies. Static analysis typically checks

policy structure to verify policy consistency (Lupu

and Sloman, 1999; Simon and Zurko, 1997). Dy- 2 ACTION LANGUAGE C+

namic policy analysis takes into account policy state

evolution, i.e. the possible policy states that can be The action languag€+ (Sergot, 2004) is a mem-
reached after, for example, the execution of policy ber of the family of action languages (Gelfond and
administration actions (Li and Tripunitara, 2006), ac- Lifschitz, 1998). C+ has explicit transition sys-
cess requests (Becker and Nanz, 2007), or general actem semantics and allows a natural expression of
tions (Craven et al., 2009). Dynamic analysis thus many things such as inertia, concurrent actions, non-
checks the satisfaction of the desired policy properties determinism and ramifications. The practicality of
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C+ is demonstrated by its use in diverse application dynamic | aw CAUSEDF IF G AFTERH
domains (Armando et al., 2009; Armando etal., 2012; actjon dynanic law. ~ CAUSEDa IF H

Artikis et al., 2007; Son et al., 2012; Dworschak et al.,

2008; Artikis and Sergot, 2010). Several planning and whereF andG are formulas ot’ such thatr does
model checking tools for the automated analysis of notinclude any statically determined fluent constants,
C+ specifications are available (CCa, ; iCC, ; Lifs- a is an action formula an#li is any combination of
chitz, 1999; Gebser et al., 2010; Casolary, 2011; Babb fluent and action constants. sAatic lawspecifies that

and Lee, 2013). if Gistruein a state, thea is caused to be true. Thus,
For the description of dynamic domaii} pro- static laws describe relationships between fluent con-

vides two disjoint non-empty sets of atoms, namely stants in an individual state. dynamic lawdescribes

a set ofsimple actiong4) and a set ofluents(¥). relationships between actions and fluents in state tran-

Intuitively, fluents are propositions used to describe sitions: in a transition from a stageto another state
the state of the world. Actions are used to representsy1, constants ik andG of a dynamic law are eval-

events that change the state of the world. uated ors ;. 1, fluent constants il are evaluated og
and action constants i are evaluated on the transi-
2.1 Basic Definitions tion itself. An action dynamic law specifies that when

Gis true in a state, then when the system evolves from
that state, it must do so in a way which makesue,
namelya is evaluated on the transition. The formula
F of a causal law is called itsead In the following,
the keywordcAausebpwill not be used for readability.

Several commaon abbreviations Gt proposi-
tions are used to model action preconditions, action
non-determinism, fluents with default values, inertial
and exogenous fluents. Abbreviations@f propo-
sitions used in this paper are shown in Table 1. Note
that theif part of a rule may be omitted if it isue.
Also, similarly to fluents in Table 1, action constants
can be exogenous. An exogenous action may occur at
any state.

Definite action descriptionare the most practical
ones since it is straightforward to find runs through

A multi-valued propositional signaturis a seto of
symbols callecconstantswhere each constante o

is associated with a non-empty set of symbols, dis-
joint from g, called thedomainof c. An atomof sig-
natureco is an expression of the form= u, where

c € 0 andu € dom(c). For instance, a Boolean con-
stant is one whose domain is the set of truth values
{t,f}. Whenc is a Boolean constant, =t is sim-

ply written asc andc = f is written —c. A formula

¢ of signatureo is any propositional combination of
atoms ofg. An interpretation | of g is a function
that maps every constantanto an element of its do-
main. An interpretation satisfiesan atomc = u if

[(c) = u. The satisfaction relation is extended from
atoms to formulas, according to the standard truth ta- > X .
bles for the propositional connectives. Modelof a  transition systems defined by them. An action de-
setX of formulas of signature is an interpretation ~ SCriptionD is definite if:

of o that satisfies all formulas iX. If every model of 1. the head of every causal lawBfis an atom orl;

a setX of formulas satisfies some formugathen 2. no atom is the head of infinitely many causal laws.
entailsg, written asx = @.

2.3 C+ Semantics
2.2 C+ Syntax
o ) - _ A C+- action descriptio defines a labeled transition
An action signaturga’,6?) is partitioned into anon-  systemT S= (S, L, —), whereSis a set of stated, is
empty setc’ of fluent constants and another non-  3'set of labels ane»C Sx L x Sis a transition rela-
empty seto® of action constants. Fluents are fur- tion between states. The set of states and the labels
ther divided intostatically determinedluents €%) of TSare interpretations o' ando?, respectively.

andsimplefluents ¢*). Fluent constants are sym- The states and transitions ®fS are constrained by
bols characterizing atate whereas action constants  the causal laws i in the following way:

characterizatate transitions

An action description Dis a non-empty set of
causal laws Causal laws of an action description
define a transition system by specifying relationships
between fluents and actions. A causal law is a propo-

sition of one of the following forms: {s} ={d el(c") | ¢ = Tx(s) USimplds)}

« A states of T Sis an interpretation o6 iff ssat-
isfies the set of formula%s(s) U Simpléds) and
there is no other interpretation of which satis-
fies this set, i.e.,

static |aw CAUSEDF IF G « Alabelis an interpretation(c?) of o2.
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Table 1: Common Abbreviations for Causal Laws.

Abbreviation Expanded Form Informal Meaning

NONEXECUTABLEH IFF 1 AFTERH AF F is a precondition oH

H cAuSsESF IF G FIF T AFTERGAH F is true afteH is executed in a state in whichis true
INERTIAL F F IFF AFTERF, F keeps its value after a transition if its value is not affdcte

—F IF =F AFTER—F by the transition

DEFAULT F FIFF F is true in the absence of information to the contrary
EXOGENOUSF DEFAULT F, DEFAULT —=F  F may be true or false in any state

FIFFG F IF G, DEFAULT —F F is true only ifG is true
« Atransition(s,e s) is a transition ofl Siff both s Table 2: Fluent Constants.

ands’ are states ob, eis label ofD and Fluent Constant Informal Meaning

{SI} = {5” €l (Uf) | s’ = Tst(g) UE(s, e,S')} ad-window the ad-window is open.
- a paymeniwindow the payment-window is open.
{e} - {e( €l(o ) | ¢ ': Als, e)} termswindow the terms-window is open.
. ! . termsaccepted  the application terms are accepted.
whereTs, E, A andSimpleare defined as follows: userrole the role of the user requesting access.
T (S) {F “EIEG" €D S|: G} state the movie application state.
st = )
E(ses)={F|“FIFGAFTERH" €D, §EG, Table 3: Action Constants.
sUueEH} Action Constant  Informal Meaning
A(s,e) ={A[“aIFG" €D,sUe= G} turn_on turns on the application.
; i~ si _ quit quits the application.
Simplds) = {c=v|cec”, sEc=v} Sy plays a movie.
An example description of a labeled transition system  Stop stops the movie.
usingC+ is presented in the appendix acceptterms accept the application usage terms.
' pay pay for a movie.
closead closes the ad-window.

3 POLICY SPECIFICATION

To formally describeX, we consider araction
descriptionwith a signature that includes tlertial
fluent constants shown in Table 2 and action constants
shown in Table 3. All fluent constants in the signature
are Boolean with the exception state whose do-

Our approach for the dynamic analysis of usage con-
trol policies is composed of two steps: the target do-
main is first described as an action descriptivand

its usage control policR, is separately specified us- L :
ing the usage control policy language presented in main !S{Oﬁ’ on, plz?\y_mg, anduseL.roIe, Whose.do-
Section 3.1. Given the target action description and main is {regular, privileged, blacklisteH All action

its usage policies, a new action description, denoted con;t?_nts ari (:ﬁoger;pusa - d thei

D4, , is constructed to model the target domain when ctions of e action description and their exe-
the specified usage policies are enforced in it, as eX_cutablhty conditions are described using causal laws.

plained in Section 4. GiveD,, we are able to auto- For example, the following rules specify that the ex-

mate the verification of usage control policy proper- ?cutlon of trt]e dactlomc(:jc?rf)tt(;,\lrmiarr&?kgsdtheffIIuer]t
ties as discussed in Section 5. ermsacceptedrue and the fluenad. windowtaise,

To illustrate our approach, we use as running ex- and that the actioaccepttermscannot be executed if

ample a movie player applicatioX. The users oiX thepaymentwindowis not active:

can turn the application on, play movies and turn the accepttermscAusEstermsaccepted
application off. The users can also accept the appli- accepttermscAUSES—ad.window
cation usage terms, pay for movies and close an ad
window that appears when a movie is played. Users
of iX may have different roles, e.g., a user can be a The full action description is given in the appendices.
privilegeduser or alacklisteduser. In the following, In the following, the set of fluents and actions of the
this example is referred to as Example 1. action description of the target domain will be de-

NONEXECUTABLE accepttermsiF —-termswindow
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noted by# andA4, and will be called the domain flu-  An authorization rule of the form (1) ((2)) specifies

ents and the domain actions, respectively. that the execution oAy, is allowed (denied) if the flu-
ent formulak, holds. A usage rule (3) states that a
3.1 Usage Policy Language usage session is initiated by the domain acfieand

terminated byAe. Ag is called thestart actionof the
The language for the specification of the usage control usage session anit is called theend actionof the
policy of the target domain includes permissions, pro- usage session. The usage controls applicable for a
hibitions, action obligations and state obligations. We usage sessiojis, A¢| are the set of obligationssL.
first clarify concepts underlying usage control to pro- These obligations can define either a pre-obligation or
vide justification for elements of the policy language. an ongoing-obligation requirement. Pre- and ongoing
obligation requirements can be either action or state
obligations. Obligation are specified in the language
using propositions having one of the following forms:

Usage Session.Usage controls specify constraints
that should be satisfied before, while and after a usage
session. Figure 1 shows tphasef a typical usage
control session (explained below) aactionsrelevant PRES An IF Fp action pre-obligation (4)
to each. Actions in a usage session can be classified  prg, R, IF R, state pre-obligation (5)
into user actiongthe actiondryaccesandendaccess d . . L
in Figure 1) anccontroller actions(the actiongdeny- ONz AnIF R, ongoing action obligation (6)
accesspermitaccessrevokeaccesandprecontrolin ONm P IF R, ongoing state obligation (7)
Figure 1).

Admission Controis the first control phase in a usage
session; it checks whether the requested accessis a
thorized by the policy. Three possible decisions may

be reached after policy evaluation: (1) access should pose a restriction that is that any domain actdn D

be denrlled,ld(zb) aCITeSSdShOUqubZ a;:loweq ?r E3) acf- can start only one usage session, i.e., there may be at
cess should be allowed provided the satistaction of ., one ysage rule (3) withas its start action. Oth-

SOME pre-access req_uire_ments, e.g., to accept the USarwise, it would be unclear which set of usage con-
age terms of the application.

P C k t dmissi if trols applies for usage sessions initiatedAyAlso
re-usage Controstarts after admission control it~ jeagjines are not intended to represent real temporal

f . During this oh Headlines but to specify a relative temporal ordering
of some pre-access requirements. During this phasey,qyyeen obligations. Therefore, a limit is imposed on

the fulfilment of the pre-access requirements is mon- the maximum deadline value. However, this is gen-

itored: if they are successfully fulfilled, access is a1y sufficient to correctly model the target domain
granted, otherwise access is denied. o by ensuring a timely violation of obligations. The
Ongoing-usage Controd_;tarts after the_ sat|s_fact|on management of obligations and their deadlines is ex-
of the pre-access requirements. During this phase, lained in Section 4.3.

ongqing—access requirements are monitored: chesg The following rules specify a usage control pol-
continues as long as the requirements are satlsﬁedk:y for the applicatioriX: a user is allowed to play a

OFPLerW|se access 1S Ir(e\(/joked.h Th'sh phas_e ends \_/vhe ovie if he is not blacklisted. The actignay starts a
either access Is revoked or when the action terminat- usage session that requires the fulfilment of a condi-

ing the usage session is taken. tional pre-obligation to accept the usage terms within
Usage Controls. The threedecision factorsof us- two minutes (unless they have been already accepted)
age control are authorizations, obligations and condi- and an unconditional obligation to pay for watching
tions (Sandhu and Park, 2004). They are evaluatedthe movie within three minutes. The usage policy also
before and while access. Our usage policy languagespecifies a conditional ongoing obligation specifying
aims at covering the expression of these elements. Athat the user has to keep the ad window open during

whereAy, is a domain actiorfy, andF, are fluent for-

mulas andl is a positive integer representing the obli-
L'gation deadline. In a rules, and A, are called the
head andr, the body of the rule respectively. We im-

usage control policy®, for an action descriptioD is the session (unless he is a privileged user). The usage

therefore a set of the following propositions: session is ended when the actgiopis taken.
PERMITTED A IF Ry (1) _
PROHIBITED Ay IF Ry @) PERMITTED play IF —userrole = blacklisted

USAGE [As— Ac{ [0oBL |" } A3) USAGE [play—stog{

. . PRE, accepttermsiF —termsaccepted
whereh, is a fluent formula composed using the do- Eg P P

main fluents andy,, As and Ae are domain actions.
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tryaccess precontrol

Admission
Control

denyaccess

permitaccess

Pre
Control

denyaccess

endaccess
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Ongoing
Control

revokeaccess

Figure 1: Usage Control Session.

PRES pay|F true
ONp ad_windowIF —userrole = privileged}

In the following, we usd (X) to denote the body of

a rule whose head i¥. It will be also called the acti-
vation condition of the corresponding rule. The set of
pre-obligations and ongoing obligations of some us-
age sessiofAs, Ag] will be denoted ap(As, Ac) and
0(As, Ac), respectively.

4 'USAGE-CONTROLED
DESCRIPTIONS

Table 4: Fluent and Action Constants.

Fluent Constant Domain

session(play-stop) {initial, requesting, waiting,

accessing, ended, denied, revoked

session(stop-none) {initial, requesting, waiting,

accessing, ended, denied, revoked

Action Constant Description

denyaccess(play) deny access

permitaccess(play) start ongoing-usage controls

precontrol(play) activate pre-usage controls

revokeaccess(play) revoke access

To study the effects of the enforcement of a usage
policy R, on the target domain, the action descrip-
tion of the target domail is extended into a usage-
controled action descriptioBg,, modeling the tar-
get domainD after the enforcement of the policy
ARy init. The extended action description is con-
structed as follows: First, every domain actiérin
D is replaced by two actions iB4,: atryaccess(A)
action (to represent a request to execAjeand a
permitaccess(Adction (to represent the execution of
A). Thetryaccess(Apction has the same executabil-
ity conditions of A, and the execution of the ac-
tion permitaccess(Apas the same effects &f The
tryaccess(Apctions are calledser actionsn the fol-
lowing discussions.

A number ofpolicy fluentsandpolicy actionsare

The sets of policy fluents and actionsdf, are de-
noted by7p and 4p, respectively.

4.1 Extending the Language Signature

Controller Actions and Usage Sessiongigure 2
shows an abstract representation of a usage ses-
sion. A usage session may be in one of the
states{idle, requesting, waiting, accessing, revoked,
denied, ended Change in the state of a us-
age session is caused by either a user acfion
{tryaccess, endaccegss.e. actions that start or end

a usage session; or a session management action
A e {permitaccess, precontrol, denyaccess, revokeac-

. . cesy, i.e. actions that update the usage session state.
also added to the signature to model usage policy en- 3 b 9

forcement. These elements are necessary to reasorllJ saE\éeersici);]walrg ariztlsoenr’?tler:j lei?w azsooclliitef(lju\ézvrl:thv?/hen
about the effects of the application &f on the do- 9 . fep g apoficy '

main D. In particular, policy fluents are used to de- Alis the start action of a usage rule (6) in the speci-

' : : fied usage control policy, e.g., the actiptay, then
scribe thepolicy state e.g., they describe the state of : ; p
usage sessions and usage controls in the system. O h,'?s E{’ﬁg?’cfilgsrt];]:tajntdhset:]Zrzssesséo:ég%nw&?ere
the other hand, the policy actions define the opera- g  SLOR

tions used to update and manage the usage controwhenA Is not the start action of any usage rule (6),

policy state. The effects of policy actions on policy e.g. the actiorstop then t_he poh_cy fluent has the
. o . . form session(A,none)A policy action is also added

fluents is formally specified using causal laws, clari- . . N

. . for every session management action appearing in
fying the update of the usage control policy after the Figure 2. Table 4 shows the action and fluent con-
execution of policy management actions. The policy stgnts added for the domain actigriay andsto
management causal laws are called piodicy man- y P
agement rulesThe action description extended with  Authorization Fluents: Authorization rules of the
the aforementioned actions, fluents and causal lawsform 4 or 5 in the policy are represented using stati-
define the usage-controlled action descriptiog, . cally determined fluents that hold only when their ac-
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Figure 2: Usage Control State Model

tivation conditions hold:

perm(An) IFFT'(An)  proh(An) IFF T (An)

For example, the permission to execute the action

playin Example 1 is represented as follows:

perm(play) IFF —userrole = blacklisted

Obligation Fluents: Every action obligation in the

in A, according to the obligation type as follows:

preobl([As, A, An) IFF T (Ay)  action pre-obligation
preobl([As,A],Fn) IFFT(F,)  state pre-obligation
onobl([As, A¢],An) IFET (A,)  action on-obligation
onobl([As, Ag], Fn) IFF T (Fp) state on-obligation

usage policyR; is denoted using a separate policy

fluent of the formobld(A)!. The domain of this flu-
ent is {inactive, active(X), violated, fulfillddwhere
Xe{l,..

its policy fluent is of the formobls(F) and its do-
main includes the valueSnactive, activé. Violated

and fulfilled state obligations are represented using

Obligations in Example 1 are linked to the usage ses-
sion [play,stop as follows:

,&, representing the possible states of the
obligation. When the obligation is a state obligation,

preobl([play, stod, pay) IFF T
preobl([play, stod,accepttermsg IFF -termsaccepted
onobl([play, stog,ad-window) IFF

—usecrole = privileged

two statically determined boolean fluents of the form

obls(F)=fulfilled and obls(F)=violated, respectively.

4.2 Usage Control Management

Action and state obligations are represented differ-

ently since the fulfilment/violation of a state obliga-

Usage policy management rules are causal laws, in-

tion is defined in terms of state conditions whereas the cluded into the usage controlled action description

fulfilment/violation conditions of action obligations is

D4, . Inthis section, the notatiasbl(X)is used to rep-

caused by action occurrences. This will be clarified resent both an action obligati@bld(X) and a state
in Section 4.3. Table 5 shows the fluents used corre-obligationobls(X) when their management rules are

sponding to obligations in Example 1.

Table 5: Obligation Fluent Constants.

Fluent Constant Domain

obl2(acceptterms) {inactive, active(2), active(1),
fulfilled, violated}
obB(pay) {inactive, active(3), active(2),

active(1), fulfilled, violated

obls(ad.window) {inactive, activé

obls(ad.window)=violated boolean

obls(ad.window)=fulfilled

boolean

Pre-usage and Ongoing Usage Controls link pre-

specified similarly. Figure 3 illustrates the main pol-
icy management operations discussed in this section.

Admission Control:lt starts after an access request,
i.e., when aryaccess(Apction occurs, and consists

of an evaluation of the policy: the request is denied
by taking the actionlenyaccess the action is not au-
thorized and, consequently, the usage session state be-
comedglenied Otherwise, if the action does not start a
usage session, then access is immediately granted (the
actionpermitaccess(Aip taken) and the session state
returns toidle. If the action starts a usage session,
then the actiomprecontrolis initiated to start the pre-
usage control phase, making the usage sesgaita

obligations and ongoing obligations to usage sessions,ing. The following causal laws define this policy en-
we use a boolean statically determined fluent that forcement paradigm, illustrated in Figure 3. Note that
holds only when the activation conditions of the obli- Figure 3 does not show the effects of the policy man-
gation hold. This fluent is defined for each obligation agement actiondenyaccess(Ajndrevokeaccess(A)

BT _ _ due to space limitation.
1we slightly abuse the notation and use subscripts and

superscripts when writing obligation fluents for clarity.
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tryaccess(ALAUSESsession(Ad)=requesting
IF session(Ad)=idle
denyaccess(AF session(A)=requesting&
—allowed(A)
denyaccess(A)AUSESsession(Ad)=denied
precontrol(A,A)IF session(A,A")=requestingy
allowed(A)
precontrol(A)cAUSESsession(A,A’)=waiting
IF session(A,A’)=requesting
permitaccess(AF session(A,none)=requesti&g
allowed(A)
permitaccess(AyAUSESsession(A,none)=idle
IF session(A,none)=requesting

whereA andA’ are variables ranging over the set of
domain actionsA is a variable over the sétJ{none
andallowedA) is a statically determined fluent defin-
ing the admission control policy evaluation strategy.
The following strategies may be considered:

allowed(A) IFF permA) closed-policy
allowed(A) IFF —proh(A) open-policy
allowed(A) IFF perm(A) & —proh(H)  precedence

Theclosed-policopen-policy strategy states that an
action is allowed only if there is an explicit permission
(prohibition) authorizing (forbidding) it. Therece-

dencestrategy specifies that an action is authorized

only if it is explicitly permitted and not prohibited.

Pre-usage Controls ActivationThe start of the pre-

usage control phase, i.e., the execution of the ac-

tion precontrol(A) activates the pre-obligations de-
fined for the usage session that is started\bjction
and state obligations are activated as follows:

precontrol(A,A"CcAUSESobls(P)=activelF preobl([A,
A'],P) & obls(P)=inactive where R p(A,A")

precontro[A,A’) cAUSEsobld (An)=active(d)IF preo-

bl([A,A'],An) & 4(An)=inactive where 4 € p(A,A")

The previous rules specify thatecontrol(A)activates
a pre-obligationX € p(A,A) if X is required, i.e.,
preobl([A, A’], X) holds and the obligation isactive
Pre-usage Controls Monitoring:Activated pre-
obligations are monitored in the stataiting as fol-
lows: if any of the pre-obligations is violated, then
denyaccess(Als initiated to end the usage session.
Access is granted whenever all tmequired pre-
obligations are satisfied. This occurs when all pre-
obligations are in either thiellfilled or inactivestate.
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This is specified using the following rules:

denyacces®\) IF sessiofA, A') = waiting &
\/ obl(P) =violated
Pep(AA)
permitaccesd ) IF sessiofA,A') = waiting &

/\  (obl(P) = inactive v obl(P) = fulfilled)
Pep(AA)

Pre-usage Control Satisfaction/Violatiorfhe satis-
faction of the pre-usage controls starts the ongoing-
usage control phase, i.e. session state bec@nes
cessingActive pre-obligations are canceled, i.e. their
state becomeimactiveafter the end of the pre-usage
control phase as follows:

permitaccess(AFAUSESsession(A,A’)=accessing

IF session(A,A’)=waiting
denyaccess(A)AUSESsobl(P)=inactive

IF —obl(P)=inactive
permitaccess(AgAUSESObI(P)=inactive

IF —obl(P)=inactive where R= p(A,A)

Ongoing Usage Controls Activationfhe permitac-
cess(A)ction starts the ongoing-usage control phase
and activates the session’s ongoing obligations
o(A,A) as follows:

permitaccess(A)AUSESobls(O)=active
IF onobl([A,A’],0) & obly(O)=inactive

permitaccess(A)AusEsobld (O)=active(d)
IFonobl([A,A’],0) & obld(0) = inactive

Ongoing Usage Controls Monitoring: In state
accessingongoing obligations are monitored. If any
of the ongoing obligations is violated, then the usage
session is revoked.

revokeaccess(AF session(A,A’)=accessing

\/ obl(O)=violated
Oco(A,A)

Ending of the Usage Sessioifthe usage session is
ended if either access is revoked or the end action
of the usage session is executed. In the former case,
the usage session state becomm®ked In the lat-

ter case, the usage session state becemesd Af-

ter the end of a usage session, all ongoing-obligations



(Access Request)
session(a,a)= tryaccess(a) session(a,d)=
idle requesting

(Admission
Control)
(Session State Update)
session(a,a")= precontrol(a) session(a,a')=
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Figure 3: Usage Control Enforcement.

O € o(A,A’) are canceled.

revokeaccess(A)AUSESsession(A,A’)=revoked
IF session(A,A’)=accessing
revokeaccess(A)AUSESODbI(O)=inactive
IF —obl(O)=inactive
permitaccess(ATAUSESsession(A,A)=ended
IF session(A,A’)=accessing
permitaccess(ATAUSESObI(O)=inactive
IF —obl(O)=inactive

4.3 Obligation Management

Usage controls are either action or state obligations.
This section formalizes the violation/fulfilment con-
ditions of obligations and the update of their state.
State Obligation Fulfilment/ViolationState obli-
gations are fulfilled (violated) if they aractive and
their required state conditions hold (don’t hold). The
fulfilment and violation of a state obligation of the
form (8) or (10) is defined in terms of the fluents
obl(F,)=violated andobl(F,)=fulfilled as follows:

obls(Fy,)=fulfilled IFF obls(Fy)=active& F,
obls(Fy)=violated IFF obls(F,)=active& —F,
The following rules define the fulfilment and violation
of the ongoing obligations in Example 1.
obls(ad window)=fulfilled
IF obls(ad-window)=active& ad window
obls(ad_window)=violated
IF obls(ad.window)=active& ~ad . window

State Obligation Cancellation:Obligations are
contextual. Therefore, an obligation is canceled when

its conditions no longer hold. This is specified as fol-
lows for state obligations of the form (8) or (10):

obls(Fp)=inactive IF —I" (F)

Forexample, the following rule specifies when the on-
going obligation in Example 1 is canceled.

obls(ad-window)=inactivelF —userrole=privileged

Action Obligation Fulfilment: An active action
obligation of the form (7) and (9) is fulfilled after the
execution of its action as follows:

obld(A,)=fulfilled AFTER obls(An)=active(N)&
permitaccess(#) where Ne {1,...,d}

The fulfilment of action obligations in Example 1 is
defined as follows:

oblg(accepiterms):fulfiIIed|F true

AFTER obl3(acceptterms)=activéN;) &
permitaccess(acceperms) where Ne {1,2}

oblg(pay)=fulfilled IF userrole=privileged
AFTER obl(pay)=activéN;) &
permitaccess(pay)whereld {1,2,3}

Action Obligation Cancellation:An action obli-
gation is canceled if its conditions do not hold and the
obligation was not yet fulfilled.

obld(An)=inactive IF —I (Ap)
AFTER —permitaccess(8

The cancellation of the action obligations of Exam-
ple 1 is defined as follows:

0blg(acceptterms)=inactive|F —true
AFTER —permitaccess(acceperms)
obl3(pay) = inactivelF userrole = privileged
AFTER —permitaccesgay)
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Note that——f is equated withf and that the obliga- 5 POLICY ANALYSIS
tion to accept terms can not be canceled since its can-
cellation conditions can never be true, nametyue. The use ofC+ enables the use of model check-
Action Obligation Violation: An active action ing techniques for the verification of properties of
obligation is violated after the elapse of the period labeled transition systems described by action lan-
specified in its deadline. An action obligation can guage descriptions. This section identifies and for-
be in differentactivestates according to the time that malizes some important usage control policy prop-
is left before its deadline elapses. In particular, an erties using Action-based Computational Tree Logic
obligation Obld(A) is in the stateactive(d)when it (ACTL) (Bouali et al., 1994), enabling their verifica-
is activated, as presented in Section 4.2. The pas-tion using standard ACTL-model checkers. The au-
sage of time is simulated using axogenousction tomated verification of usage control policies ensures
clock whose occurrence updates an obligation in the the correctness of usage control policies before their
stateactive(n) to the stateactive(n’) by decreasing deployment. For example, it enables to ensure re-
the value ofn by one, i.e.,” =n—1. The obliga-  sourceavailability, i.e. that the specified security con-
tion is violated after an occurrence of the actabock trols do not make system resources inaccessible. It
when the state of the obligation &tivg(1l) and the  also ensures that security controls cannot be circum-
obligation has not been canceled nor fulfilled. This is vented, i.e. that resources can only be accessed after
specified using the following rules for action obliga- the satisfaction of the specified security controls. The
tions of the form (7) or (9): complexity of model checking algorithms for ACTL
obld(An)=violated IF F(An) AFTER 0blE (An)= formulas is linear in the state space of the system

active(1)X clock& —permitacces#\y,) model and the formia.
Al Labeled Transition System of an Action Descrip-

clockcAUSESObIY(An)=active(d’) IF obly(An)= tion. An action descriptiorD defines a labeled tran-
active(d) where @ 1,d’ isd— 1 sition systemTS= (S L,—) as described in Sec-
tion 2.3:

State Update.The update of state as aresultofaccess * f 9 € S'is a state andA c L is an action,
enables, for example, to change a subject's attributes ~ Ra(@) denotes the set of actions that the state
after access revocation (Sandhu and Park, 2004). In 4 can take, ie., the se{q|there existm €
our framework, state update is specified as post ef- A suchthatg,a,q) e—}. R(q) denotesR (q).

fects of the usage session management actions. For « A path in TSis a finite or infinite sequence
example, access revocation may cause the role of the  ¢;,qp,... such that everg;1 € R(qi);

user to becomblacklistedas follows: « We denote the set of paths starting from a stpte

revoke(play)Ausesuserrole=blacklisted by M(q), and uses, @, ... to range over paths;
Similarly, the state can be updated after access accep- * A path ismaximalif it is infinite, or finite and its
tance and denial using the actiopsrmitaccessh) last statey’ has no successor states, iIRq') = 0;
anddenyacces#\) respectively. Note that it is simi- « If g is infinite then|o| = w; if 0 = q1,0p, ..., 0,
larly possible to activate obligations after the execu-  then|o| = n— 1. Moreover, ifjo| > i — 1, then

tion of usage session management actions. This al- (i) denotes thé" state in the sequence.
lows specification of post-obligations in our frame-
work, i.e. requirements that should be satisfied after
the end or revocation of access. The support of post-
obligations is however not discussed in this paper due Xu=T|b|-X|XVX
to space limitations.

Multiple Sessions.In Figure 2, the statedenied re-
vokedandendedare terminal states. To support mul-
tiple usage sessions, the session state is resetto the =T always
stateidle when a terminal state is reached by initiat- atb iff a—b
ing the policy management actiogsetsession )

aE-Xx iff notal X

aEXVvX iff aEXoraEX

Action Formulas. Letb e L. The language (L) of
action formulas o is defined as follows:

wherebranges ovek. The satisfaction relatiof- for
action formulas is defined as:

resetsession(A,A’)F session(A,A)=denied
session(A,A’)=ended session(A,A’)=revoked

resetsession(A,A’LAUSESsession(A,A))=idle Let X be an action formula, the set of actions satisfy-
ing X is characterized by the functide £(L) — 2-
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as follows:
k(T) L
k(b) = {b}
k(=X) = L\K(X)
k(x v x") = k(X)Uk(X)

ACTL Syntax. ACTL is a branching-time temporal
logic of state formulas (denoted gy, in which a path
guantifier prefixes an arbitrary path formula (denoted
by ). The syntax of ACTL formulas is given by the
following grammat:

¢
I

T|oAQ| ~@| En| Al
Xx@ | oxU@ | oxUx@

whereX andX’ range over action formulag, andA

are the existential and universal path quantifiers, re-
spectively. X andU are the next and until operators,
respectively. The following is a set of common abbre-
viations of other modalities: the eventuality operators
EF@ <« E(TTUx@) andAF@ <+ A(TtUx); the al-
ways operatorE G <> =AF=@andAGY > =EF—q.
ACTL Semantics. The satisfaction relation for
ACTL formulas is defined as follows:

sET always

sEoA ¢ iff skE=@andskEd;

Sk iff notsk=@;

sE=Emn iff there exists a patls € IN(s)
such thato =15

sk=An iff for all maximal pathso € M(s),
oETE

SEXx0 iff |o] >1ando(2) € Rgx)(a(1))
ando(2) =@

skEo@yUg  iff there exists > 1 such thato(i) |= ¢f
andforalli<j<i—-1,0(j) o
ando(j + 1) € Ry (0());

sk @yUyq iff there exists > 2 such thato(i) |= ¢f

a(i—1) =, 0(i) € Rexr)(a(i— 1))
andforalli<j<i-2
o(j+1) € Rqxy(a(i))-

Analysis. Table 6 identifies and summarizes some
important usage control policy properties in the form
of ACTL formulas, enabling the automation of their
formal verification.

System AccountabilityA system is said to bac-
countableif obligations assigned by the system can

2Note that we omii@ from its original syntax descrip-
tion, as actiong do not play a role in our formulation.

Dynamic Analysis of Usage Control Policies

be fulfilled (Irwin et al., 2006). In our work, two fac-
tors impact system accountability, namely authoriza-
tion policies and action executability conditions.

« An action obligation can only be fulfilled if it is
allowed by the specified authorization policies.
An obligation action can be allowed throughout
or only partially during the activation period of
the obligation. These properties can be specified
using the ACTL formulas (1) and (2) in Table 6
respectively for the actiohy, of a pre-obligation
of the form (7) in some usage ru|&, A] in the
usage control policy.

Action Executability: An actior is executableat

a state if the actioftryacces§A) can be taken in
this state, i.e., that the action preconditions hold.
Similarly to action allowance, the action of an
obligation may be executable throughout or only
partially during the activation period of the obli-
gation. Formulas (3) and (4) in Table 6 enable the
verification of these properties for the actiép

of a pre-obligation of the form (7).in a-usage rule
[A,A'Tin the policy.

A system is strongly accountable only if the ac-
tion of every obligation in the policy is both allowed
and executable during the obligation lifetime. It is
weakly accountable if every obligation action is both
allowed and executable sometime during the obliga-
tion lifetime. The formulas (5) and (6) in Table 6 de-
fine when the system is accountable with respect to
the actionAy, of a pre-obligation of the form (7) in a
usage rulgA A’] in the usage control policy. Global
system accountability is checked by verifying these
properties for every pre-obligation action and every
ongoing-obligation action in the usage control policy.
We do not present the formulas for verifying global
accountability nor formulas corresponding to ongoing
obligations due to space limitation.

State Obligation Satisfiability and Violationt is
sometimes necessary to verify that a state obligation
is satisfied at the moment of its activation and that
the obligation may later be violated. For example,
the activation of an ongoing obligation to keep an ad
window open may be unreasonable if the ad window
is not open at the moment the obligation is activated;
also there should a path where the obligation is vio-
lated after its activation; otherwise the obligation is
unnecessary (void). The ACTL formulas (7) and (8)
respectively in Table 6 check whether the condition
F, required by an ongoing state obligation of the form
(10), in a usage rulfA, A'] in the usage control pol-
icy, is satisfied after the activation of the obligation
and that this condition may later become false during
the obligation lifetime respectively.
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Table 6: ACTL Formulas for Verification of Usage Control RglProperties.

Property ACTL Formula
1  Pre-Obl. Action Fully Allowed AGsessionA,A')=waiting A obld(A,)=active) — allowed(A,))
2 Pre-Obl. Action Partially Allowed AG(sessionA,A’)=waiting A obld (An)=active) —
E(sessiofA A') = waitingr U allowed(A,))
3 Pre-Obl. Action Fully Executable AGsessiofA,A’)=waiting A obld (A)=active) — EXryaccesga,) T)
4 Pre-Obl. Action Partially Executable AGsessionA,A’)=waiting A obld (A, )=active) —
E(sessioA, A') = waitingr U EXqyaccesga ) 7))
5  System Strong Accountability AGsessiofiA,A')=waiting A obld (Ay)=active) —
(allowed(Ay) A Extryacces(sAh)T))
6  System Weak Accountability AGsessionA,A')=waiting A obld(A,)=active) —
E(sessiofA,A') = waitingy U (allowed(4,) A EXryaccesa) 7))
State On-Obl. Satisfaction AXpermitaccessr) (Fn)
8  State On-Obl. Violation AG(sessiofA,A’)=accessing\ obls(F,)=active) —

E(sessiofA, A') = accessing U —F,))

We have identified and formalized other important clude authorizations and obligations is presented in
usage control specific properties such as consistency(Craven et al., 2009). In this framework, domains
of controls, usage session termination and access defegulated by policies are formalized using the event
nial and revocation. They are however not discussed calculus (Shanahan, 1999), enabling formal analysis
in this paper due to space limitations. of the target domain and its security policy. A meta-

model for the analysis of authorization systems with
obligations is introduced in (Irwin et al., 2006). This
paper focuses on the study of thestem accountabil-
6 RELATED WORK ity problem, i.e., ensuring that assigned obligations
will be fulfilled if system subjects are diligent. The
A classification of policy analysis techniques can be aforementioned works dieot consider usage control
made according to the type of security policies con- Systems where authorizations, obligations and usage
sidered, e.g., access control, obligations or usage con-sessions interact.
trol policies, and the type of analysis targeted, i.e., UCONagc (Sandhu and Park, 2004) is formal-
static or dynamic. The static analysis of access con-ized in (Zhang et al., 2005) using Lamport’s Tempo-
trol policies is by far the most studied. An overview ral Logic of Actions (TLA). The safety analysis of
of access control policy conflicts and their resolution UCON, positive authorization policies is presented
techniques is presented in (Lupu and Sloman, 1999;in (Zhang et al., 2006). This work is generalized in
Samarati and de Vimercati, 2001). (Ranise and Armando, 2012). In comparison, we sup-

The dynamic analysis of access control policies port analysis of usage policies that include authoriza-
is supported in (Becker and Nanz, 2007), which in- tions, prohibitions and obligations. The model check-
troduces a non-monotonic extension ddtalog al- ing of policies specified using the Obligation Speci-
lowing specification of action effects in access con- fication Language (OSL) (Hilty et al., 2007) is stud-
trol policy rules. A goal-oriented algorithm is used ied in (Pretschner et al., 2009). OSL is a temporal
to find minimal action sequences that lead to a spec-logic with explicit operators for cardinality and per-
ified target authorization state. In (Li and Tripuni- missions whose semantics is defined over traces of
tara, 2006), th&RBACpolicy scheme (Ferraiolo et al., parameterized events. In comparison, our work en-
1995; Sandhu et al., 1996) is modeled as a state-ables the formal description of the target domain and
transition system, where changes occur via adminis- the automated verification of properties of usage con-
trative operations. Security analysis techniques an-trol policies in their target domain. Furthermore, our
swer questions such as whether an undesirable state isvork formalizes the management of usage controls
reachable and whether every reachable state satisfiegand usage sessions, concepts that are not considered
some safety or availability properties. A framework in (Pretschner et al., 2009). Th€ACML language
for the dynamic analysis of security policies that in- and architecture are extended in (Li et al., 2012) to
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add support for access control policies with obliga- Bouali, A., Gnesi, S., and Larosa, S. (1994). The integnatio

tions and a framework for the specification and en- project for the JACK environementBulletin of the
forcement of data handling policies is presented in EATCS54:207-223.

(Ardagna et al., 2008). These works do not address Casolary, M. (2011). Representing the language of the
the dynamic analysis of usage control policies. causal calculator in answer set programminghD

thesis, Arizona State University.
Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E., and Ban-
dara, A. (2009). Expressive policy analysis with en-

7 CONCLUSION hanced system dynamicity. WSIACCSpages 239—
250. ACM.

Craven, R. and Sergot, M. (2005). Distant causation in C+.
Studia Logica79(1):73-96.

Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., and
Selbig, J. (2008). Modeling biological networks by

This paper introduces an approach for the formal
analysis of usage control policies and study of their
application on target domains. Thus, our work is a

fIrSt Step |n prOVIdIng p0|lcy Of'flcerS avaluable means action |anguages via answer set programmiﬁ@n_
to formally verify the correctness of specified poli- straints 13(1-2):21-65.
cies before their deployment. Furthermore, we have Elrakaiby, Y., Cuppens, F., and Cuppens-Boulahia, N.
identified and formalized several usage control spe- (2012). Formal enforcement and management of obli-
cific properties and automated their verification. gation policies.DKE, 71(1):127 — 147.

This work can be extended to support structured Ferraiolo, D., Cugini, J., and Kuhn, D. R. (1995). Role-
policies with pre-defined sets of basic entities (El- based access control (rbac): Features and motivations.

InN ACSAC pages 241-48. ACM.
Gebser, M., Grote, T., and Schaub, T. (2010). Coala: a
compiler from action languages to ASP. llngics in
Artificial Intelligence pages 360—364. Springer.
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APPENDIX

Action Description Example

Consider a signature that includes the two simple flu-
ent constantgp, g}, the statically determined fluent
constant and the two actiongal, a2. The causal
laws below specify that the flueqtis inertial, i.e., its

value persists unless it is changed by an action occur-

rence;p is false by default but holds after the occur-
rence ofal; r is a statically determined fluent, i.e., its
truth depends on other fluents, that holds only when
andqgare true. The actioalis exogenous, i.e., it may
occur at any statgg2, on the other hand, has to occur
in every transition from a state wherds true. The
execution o2 causep & —qto be true. Finally, we
specify that a void transition, i.e., the transition not
includingal noraz, is not executable.

al & a2

OO S-0n®

Figure 4: C+ Labeled Transition System Example.
Figure 4 shows the labeled transition system de-

scribed by this action description. Note that we con-
sider boolean fluent constants. A state in Figure 4 is
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labeled with the set of fluents that are true in it.

INERTIAL Q. DEFAULT —p.
DEFAULT . rrF p&aq.

EXOGENOUSal. DEFAULT —a2.

a2IFr. p& —Q AFTER a2.

p AFTERAl. NONEXECUTABLE —al & —a2.

Running Example

The description of th&X movie player example con-
sists of a declaration of sorts and variables, fluent con-
stants, action constants and causal laws.

Sorts Fluents Actions
statgready). fc(state. ac(turn_on).
statgof f). domair(state PS). ac(turn_of f).
statg playing).  fc(accepttermswindow). ac(play).

PS:: statgPS).  fc(paymentwindow). ac(acceptterms.
fc(ad_.window). ac(pay).
fc(termsaccepteg. ac(closead).
fc(paymentaccepted.

Causal Laws:

exogenoud) : — ac(A).

inertial FC : — fc(FC).

CAUSEDSstate= readyAFTERtUrn_on.
CAUSEDaccepttermswindow|F —termsacceptedaFTERturn_on.
CAUSED paymentwindow|F — paymentacce ptedAFTERturn_on.
CAUSEDad_windowAFTERturn_on.

NONEXECUTABLEtUrn_onIF — state= off.

CAUSEDstate= playingAFTER play.

NONEXECUTABLE play IF — state= ready

CAUSEDstate= off AFTERturn_off.

CAUSED — paymentwindowAFTERturn_off.

CAUSED — accepttermswindowAFTERturn_off.

CAUSED — ad_windowAFTERturn_off.
NONEXECUTABLEturn_off IF state= off.
CAUSEDtermsacceptedaFTER acceptterms

CAUSED — accepttermswindowAFTER acceptterms
NONEXECUTABLEaccepttermsiF — accepttermswindow
CAUSED paymentacceptedaFTER pay.

CAUSED — paymentwindOWAFTER pay.

NONEXECUTABLE payIF — paymentwindow
CAUSEDaccepttermswindowIF —termsacceptedaFTERtUrn_on.
CAUSED paymentwindow|F — paymentacce ptedAFTERturn_on.
CAUSED — ad_windowAFTER closead.
NONEXECUTABLEclosead IF —ad_window

CAUSED falselF ad_window& state= off.

CAUSED falselF paymentwindow& state= off.

CAUSED falselF accepttermswindow& state= off.



