
Using a Hopfield Iterative Neural Network to Explain Diffusion 
in the Brain’s Extracellular Space Structure  

Abir Alharbi 
Department of Mathematics, King Saud University, P.o Box 22452, 11495 Riyadh, Saudi Arabia 

Keywords: Hopfield Neural Networks, Point Source Diffusion Equation, Finite Difference, Extracellular Space. 

Abstract: Many therapies for drug delivery to the brain are based on diffusion, and diffusion in this extracellular space 
is based on micro-techniques that can be modelled with classical differential equations such as the point 
source diffusion equation.  In this paper an energy function is constructed using a finite-difference 
approximation to the governing diffusion equation and then minimized by a Hopfield neural network. The 
synergy of Hopfield neural networks with finite difference approximation is promising. The neural network 
approach is capable of giving insight to the complex brain activity better than any other classical numerical 
method and the parallelism nature of the Hopfield neural networks approach is easier to implement on fast 
parallel computers and this will make them faster than the traditional methods for modelling this complex 
problem. Moreover, the effect of the involved parameters on the diffusion distribution and drug delivery in 
the ECS is investigated. 

1 INTRODUCTION 

Diffusion plays a crucial role in brain function. The 
space between cells, Extracellular space (ECS), is 
like a foam and many substances move with in this 
complicated region. Diffusion in this interstitial 
space is modeled with classical differential 
equations and quantified from measurements based 
on micro-techniques. Theoretical and experimental 
approaches rely on classical diffusion theory in 
porous media. The brain is a very complex structure 
of interwoven, intercommunicating cells, and is 
considered an area of research in medical science 
(Sykova, 1997). The classical laws of diffusion 
applied in porous media theory can give an accurate 
description of the way molecules are transported 
through this tissue. Diffusing molecules have 
random movements that cause collision with 
membranes and affect their concentration 
distribution (Nicholson and Tao, 1993). Diffusion is 
an essential link in many processes, ranging from the 
delivery of glucose to cells to intercellular 
communication. Besides delivering glucose and 
oxygen from the vascular system to brain cells, 
diffusion also moves informational substances 
between cells, a process known as volume 
transmission (Nicholson, 2001). Diffusion is also 
essential to many therapies that deliver drugs to the 

brain. In treating brain disorders, where diffusion is 
often compromised, understanding the transport of 
molecules can be crucial to effective drug delivery 
and treatment. The diffusion generated concentration 
distributions of well-chosen molecules also reveal 
the structure of brain tissue. This structure is 
represented by the volume fraction represented by 
(α), which is a dimensionless quantity and is defined 
as the ratio between the volume of the ECS and the 
total volume of the tissue. There is also the 
tortuosity (λ) parameter, which is a hindrance to 
diffusion imposed by local boundaries or local 
viscosity. Analysis of these parameters also reveals 
how the local geometry of the brain changes with 
time or under pathological conditions. Experiments 
has shown that the ECS in adult brain has α = 0.2 
which is about 20% of the total brain volume, the 
tortuosity is defined as 
 

*/ DD  , 
 

where D is a free diffusion coefficient and D* is the 
apparent diffusion coefficient in the brain. As a 
result of tortuosity, D is reduced to the apparent 
diffusion coefficient D*=D/λ2. Thus, any movement 
of a substance diffusing in the ECS is bombarded by 
a number of obstacles or diffusion barriers. 
Moreover, substances released into the ECS are 
transported across membranes by concentration-
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dependent uptake (k′) e.g., cellular uptake, loss 
across blood vessels or washout from brain slices 
(Sykova, 1997).  

The diffusion of substances in a free medium is 
described by Fick’s laws. In contrast to free 
medium, diffusion in the ECS is hindered by the 
presence of membranes, macromolecules of the ECS 
and by cellular uptake. To take into account these 
factors, it was necessary to modify Fick’s original 
diffusion equations (Nicholson and Phillips, 1981; 
Nicholson and Sykova, 1998) to include 
macroscopic diffusion in a porous material  which is 
described by the same fundamental differential 
equation as diffusion in a free medium (Fick’s 
second law)  
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where c(r,t) is the concentration of the diffusing 
substance, and s is the source density.  Equation (1) 
is a model of the concentration of the diffusing 
molecules in the ECS at a radial distance r, it is a 
parabolic partial differential equation studied in the 
theory of some biological context (Berg, 1993). 
Equation (1) plays an important role in drug therapy 
and in curing major brain diseases such as 
Parkinson’s and brain tumours, and solving it with 
different approaches has been an appealing subject 
to many researchers for many years and it proofed to 
be not an easy task to do. Some researchers 
presented analytic solutions as in ([Nicholson and 
Freeman 1975, Saftenku, 2005), and some found 
approximate solutions by numerical methods as in 
(Nicholson 1985, Chen and Nicholson 2000). In this 
paper Eq.(1) is solved by a numerical method based 
on a neural network approach called the Hopfield 
Finite Difference method (HFD) and that is because 
neural networks are dynamic and were originally 
designed to operate in a similar way as the brain 
functions therefore this approach  can give us insight 
on the complex diffusion in the ECS of the brain 
more than any other classical simple numerical 
method. In section 2 a description of the governing 
equation is given, and in section 3 the neural 
network solution to this equation is presented. The 
results will be given and examined in section 4 
followed by conclusions and plans for our future 
studies. 

2 DIFFUSION EQUATION IN 
THE ESC 

Currently, the most widely used diffusion paradigm 
is the release of a substance from a point source into 
the ECS. In this study, the ion source which is an 
ionophoretic electrode or pressure ejection 
approximates a point source. Moreover, assuming 
spherical symmetry and adopting the spherical 
coordinate system, with the source density s = Q 
(source strength in mol/s), Eq. (1) becomes the point 
source equation as given in (Nicholson and Phillips, 
1981)  
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In the source term Q is characterized by Q = n I / F; 
where I (amp) is the iontophoretic current, F is the 
Faraday constant (96485 C/ mol), and n is the 
transport number. Analytic solution to Eq. (2) is well 
known and has the form (Crank, 1975) 
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in which erfc(.) is the complementary error function.  
The common choice of ion for measuring diffusion 
is TMA+ (Nicholson, 1993). One example of its use 
is when research requires the use of experimental 
models in which a defined population of cells can be 
brought together into an epileptic state. One way to 
do this is by locally injecting a drug that causes 
seizure-like activity and after injection the drug will 
diffuse in the ECS with the usual characteristics 
determined by D, α and λ. This leads us to an 
important question, what is the concentration 
distribution that is required to produce an epileptic 
focus? To resolve the distribution problem, two 
types of information are required; the value of D and 
D* for the drug used and a description of the 
concentration distribution at the instant when nerve 
cells begin seizure-like activity. Among agents that 
produce epileptic models are penicillin, valproate 
and pentylenetetrazol (PTZ). In principle, to 
determine the concentration distribution that induced 
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seizure, one would employ appropriate drugs for the 
epileptogenic agent, measure concentration at the 
time that the cells began to display epileptic activity 
and then calculate the drug distribution. 
Unfortunately, such drugs do not perform well and 
are fairly insensitive so they are not suitable for 
work at the low concentrations that produce seizure. 
Consequently, TMA+ was added to the 
epileptogenic agent and both pressure ejected. Then 
the distribution of the TMA+ could be measured 
and, knowing the relative diffusion coefficients of 
TMA+ and the drug, the drug distribution could be 
calculated. It was also shown that values of λ, 
obtained from D and D* from the combination of 
TMA+ and the drug were similar to those previously 
obtained with TMA+ alone. Using this approach 
(Lehmenkuhler et al., 1991) were able to show that 
neurons within a sphere of about 150 μm radius 
must be exposed to penicillin to produce seizure. 
Therefore, studying the diffusion of the ion TMA+ is 
needed, and in our study we will present the solution 
of the point source diffusion equation of the ion 
TMA+ in the ECS of brain, together with an analysis 
of all the involved parameters. 

2.1 The Diffusion Equation in ECS by 
the Hopfield Neural Networks 

Continuous Hopfield neural networks were 
developed by Hopfield and Tank to solve 
constrained optimization problems. The nets are 
recurrent where the weights are fixed to represent 
the constrain and the quantity to be optimized. The 
activations of the units iterate to find a pattern of 
outputs that represent a solution to the problem and 
correspond to the minimum of an Energy function 
(Hopfield, 1982). Hopfield network can be easily 
implemented on fast parallel computers, because of 
its parallel nature. Therefore it is applied to many 
optimization problems where complex computation 
is needed, such as the traveling salesman problem, 
map coloring, space allocation (Hopfield and Tank, 
1985) and many more. Another area for using 
Hopfield nets is combining it with the finite 
difference method to solve partial differential 
equations (PDE), this is done by minimizing an 
energy function constructed to represent the total 
squared error measuring how well the finite 
difference quotients satisfy the PDE. This approach 
is called the Hopfield Finite Difference method 
(HFD), and it has the advantage of working in a 
parallel mode and giving fast and accurate results. 
The HFD method has been used to solve the 
classical Wave, Heat (Diffusion), Poisson equations 

(Alharbi, 1997, 2010, 2012), and to systems of PDEs 
(Alharbi and Alahmadi, 2008). 

We will use the HFD to solve the point source 
diffusion equation in the ECS described in the last 
section. However, before the method is applied there 
are preliminary procedures to be done. First, a neural 
representation of the problem is needed so that the 
neurons in the network model the node points in the 
mesh grid of the finite difference procedure, i.e. each 
unit in the HFD neural net corresponds to a node 
point in the mesh grid, and the activation of unit (i, j) 
gives the approximate solution at (i∆r, j∆t) where i 
and j are integers and ∆r, ∆t are the step sizes in r 
and t respectively. Second, the Hopfield neural net is 
designed to be a fully connected net with symmetric 
weights. The weights are fixed to represent the 
differential equation and the initial conditions. The 
activation function is the identity function since 
continuous range of outputs is desired. The design of 
the HFD neural net goes through two stages: first, 
the finite difference scheme for radial diffusion in 
spherical coordinates is used on the grid points 
denoted ci,j at (i∆r, j∆t), with the equations  
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Substituting these equations in the diffusion 
equation (2) and using the central finite difference 
scheme for the time derivative we get 
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    Second, the finite difference method produces a 
linear system of equations for i=1,2,…n, and 
j=1,2,…,m.  A design for the HFD net is made using 
the energy function representing the total squared 
error from the finite difference quotients, given by 
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where E2 comes from the initial nodes with i=0, 
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We want to update the time step approximation unit 
ci,j , therefore we differentiate the energy function 
with respect to ci,j and consider only the closest 
previously initialized units. The updating equations 
for the activity of unit ci,j are given in   Eq.(8).  
    The HFD net iterates to find the minimum of the 
energy function given in equations (6) and (7) using 
these updating equations given in (8). The net will 
converge to a stable minimum of the Energy 
function whenever the activity of each neuron 
changes according to the equations of motion (8).     
The parameters in the HFD net must be carefully 
chosen to make sure the HFD finds the minimum of 
E and captures all the dynamics of the diffusion in 
the ESC. One of these parameters is the time step δ 
which should be set to a small value, depending on 
the parameters of the problem being solved, and 
usually specified by trial and error. If we use a too 
small value, the learning slows down, increasing the 
number of epochs and the time needed to solve the 
problem. Moreover, if we increase the grid size, then 
δ must be accordingly decreased to maintain a 
balanced updating of the activations.  
 

c
i , j

(p1)  c
i , j

(p)   (1)[
ci , j1 ci, j

t
 D*

ir 2
[(i 1)ci1, j

2ici, j  (i 1)ci1, j ]
Q


 k 'ci , j ]

c0, j
(p1)  c0, j

(p)   (2 )[
c0, j1 c0, j

t
 6D*

r 2
(c1, j c0, j )

Q

 k 'c0, j ]

 

s.t.      1  (
1

t
 2D*

r 2
 k '),       

       2  (
1

t
 6D*

r 2
 k ')

      (8) 

     The choice of initial activations influences the 
rate of convergence. Starting with a suitable range of 
random initialized units decreases the number of 
epochs the net needs to reach the desired activations, 
hence reducing the time consumed in solving the 
problem. On the other hand, choosing an initial state 
that does not fall into the domain of any stable point 

will cause the units to go through more epochs 
seeking the closest minimum and converging. In our 
case the net is initialized with zeros since the 
concentration starts impulsively from rest, and then 
activated seeking a minimum of the energy function, 
by changing according to the updating equations (8). 
The original Hopfield net described by Hopfield and 
Tank uses random order to update the activations of 
the neurons and this technique is utilized here too to 
give the net its randomness similar to real neurons in 
nature. An epoch consists of all units in the system 
updating their activation. The net goes through as 
many epochs as needed for it to converge to a 
minimum,  that is reaching a stable set of 
activations, and hence finding the approximate 
solution of the TMA+ point source diffusion 
equation. 

3 DISCUSSION 

The work done in this paper is theoretical and only 
provides an approximate solution to the modelled 
point source equation given in the last section from a 
mathematical point of view, therefore the values of 
the involved parameters in this model equation were 
set according to an experiment conducted by 
(Nicholson, 1993) in the specialized labs; where the 
transport number of the electrode is 0.5 with the 
effective diffusion coefficient used D* = 5.07 × 10−6 
cm2 s−1, α = 0.2, k’ = 0.0025 s-1 and λ=1.6. The 
Hopfield neural network used in this study is 
designed to minimize the energy function given in 
Eq.(6) with parameters set as :m=15, n=20 , ∆t =10s, 
∆r =10 m, δ =0.005, and Q=0.0005 nmol/s, and the 
net is activated to update the neurons according to 
Eq.(8). After only 500 epochs the net converges to a 
stable set of activations and the approximate solution 
describing the TMA+ concentration c (M) is shown 
in Fig.1. As we can see the results are excellent in 
terms of speed and accuracy compared to the exact 
solution obtained from Eq.(3) and to results 
published by Nicholson 1993. The total squared 
error plot given in Fig. 2 confirms the HFD accuracy 
after only 500 epochs. Table 1 compares results 
obtained from the HFD approach described in this 
work with numerical results obtained by the classical 
finite difference method (FD). 
     As we can see in Table 1 the results are very 
close in terms of accuracy and that makes the HFD 
approach reliable even if it goes through more steps 
and calculations because brain activity is a very 
complex dynamic area and it needs a dynamic 
approach such as neural networks to capture its  
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Table 1: Comparison of results from the Neural networks 
HFD and the numerical method FD. 

At t = 50 s 
and 
Selected 
values of r  

 
c(M) 
in 
HFD 

Total 
squared 
Error in 
HFD 

 
c(M) 
in 
FD 

Total 
 squared  
Error in 
FD 

10 m 1.9625 5 x10-4 1.9626 5.9x10-4 
50 m 0.3924 -1x10-4 0.3923 -2x10-4 
100 m 0.1962 -1.5x10-5 0.1963 5 x10-5 
150 m 0.1308 -1x10-4 0.1306 -3.7x10-4 

 

behaviour rather than a simple classical 
mathematical method such as FD. Neural networks 
have the capability to accurately model the neural 
activities and its different structures and tasks since 
this was the original objective of creating neural 
networks. Another feature of HFD that make it 
exceed other classical numerical methods is that the 
parallelism nature of the Hopfield neural networks 
approach is easier to implement on fast parallel 
computers and this will make them faster than the 
traditional methods for modeling this complex 
problem. 
     To look at the concentration of TMA+ as a 
function of time t, Fig. 3 shows the concentration at 
r= 100, 150, and 300 m. As we can see at closer 
radial distances from the point source (r =100 m) 
the concentration reaches higher values and then 
gradually decreases to values still much higher than 
all the other distances. Moreover, at farther radial 
distances such as r =300 m the concentration does 
not exceed 0.0654 M for all time periods, this 
means if a drug is injected into the brain and allowed 
to diffuse for a few seconds, at a location greater 
than 300 m away from the source, the 
concentration will be very low, and maybe too low 
to activate any receptors or neurons there.  
     Figure 4 shows the concentration as a function of 
radial distance r at times t = 20, 40, and 60s. As we 
expect concentration has a higher value at earlier 
times of the diffusion and gradually decreases as the 
distance from the source grows further. Therefore, as 
an example after just 150 seconds from injecting a 
drug in the ECS at t =0, the drug will diffuse and the 
concentration of the drug will be negligible at any 
spherical distance from the source. The effect of the 
initial concentration or source density on the 
diffusion of TMA+ is shown on Fig.5, with D*=0.5 
x10-5 cm2/s, and r = 150 m. It is evident that the 
higher the concentration initially released the higher 
the values of the concentration at each t. This is 
evident at the highest initial source Q =0.001 nmol/s, 
where a higher concentrations for all t is reached and 
manages to reach the farthest before all of the 
TMA+ diffuses away.  

To study the influence of different diffusion 
coefficients on the concentration of TMA+ Fig.6 
shows plots at Q=0.0005 nmol/s and r =150 m 
away from the iontophoretic source for D* = 0.5, 
0.7, and 0.2 x10-5 cm2/s. As we can see the smaller 
the diffusion coefficient the slower the concentration 
reaches its highest and it takes longer time to 
diffuse. It is also evident the larger D* reaches the 
highest concentration earlier on and decreases 
concentration faster. The diffusion coefficient 
D*=0.7 x10-5 cm2/s starts at a higher concentration 
than the other two but drops faster to lower 
concentrations.  
     From all the observations noted in the earlier 
graphs, and if we consider different combinations of 
initial density source and diffusion coefficients, we 
can conclude that using D*=0.5x10-5cm2/s and 
Q=0.0005 nmol/s starts low in concentration but 
manages to give higher concentrations for a larger 
radial diffusion distance. For that reason, we use this 
combination in most of our study here. Hence, if our 
analysis should present recommendations to efficient 
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Figure 1: The approximate solution of diffusion equation 
by HFD for r = 0 to 150 m and t = 0 to 200 s. 
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Figure 2: The total squared error plot of the HFD solution 
for the diffusion equation. 
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Figure 3: The diffusion of TMA+ at different radial 
distances. 
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Figure 4: The Diffusion of TMA+ at different times. 
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Figure 5: The concentration of TMA+ at different source 
density values. 
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Figure 6: The concentration of TMA+ with different 
Diffusion coefficients. 

drug delivery based on our results, then a carefully 
chosen combination of D* and Q is needed for a 
drug to reach neurons within a sphere of a specified 
radius. Similarly, if the experiment combines the ion 
TMA+ with another drug then a corresponding joint 
D* and Q must be carefully chosen. 

4 CONCLUSIONS 

In this research a solution to the point source 
diffusion equation in the ESC of the brain by a 
Hopfield finite difference neural network. A finite 
difference approximation in spherical coordinates is 
used to form an energy function which represents 
how well these approximations model the problem. 
A Hopfield neural network is then designed to 
minimize this energy function. Results obtained 
from the Hopfield neural networks showed excellent 
performance in terms of accuracy and speed.  Our 
study is done in a theoretical frame and is compared 
to actual results published by Nicholson 1993,  and 
it needs to be extended by researchers in the drug 
therapy field to conduct the actual experiments and 
take these results to the next level of testing, 
experimenting and reaching the desired 
recommendations. 
    Our study of the effect of the parameters on the 
solution showed that if a drug is delivered to the 
brain by injection separately or with an ion, it will 
diffuse in the region and activate all nearby neurons 
with in a small sphere radius, and depending on the 
concentration value needed to activate these 
neurons. For example, if the ion TMA+ was added to 
the drug and both were pressure ejected. Then the 
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distribution of the TMA+ could be measured and, 
knowing the relative diffusion coefficients of TMA+ 
and the drug, the drug distribution could be 
calculated. From our results we showed that neurons 
within a sphere less than 300 μm radius away from 
the point source must be exposed to the drug and 
they will produce a respond, and all neurons outside 
this area will be exposed to almost negligible 
concentrations and probably the drug will not show 
an effect on them. 
    Therefore, our study may help doctors and 
patients to attain efficient drug delivery, i.e. by 
choosing the appropriate drug knowing its density 
and diffusion factor and the location of the injection. 
Apart from the clinical relevance of these studies, 
they also provide a paradigm of how diffusion 
analysis can be used to address other types of 
question by using the co-diffusion of substances, one 
of which has a ‘reporter’ role. A major reason for 
introducing drugs is to fight cancerous tumors and 
many studies have involved chemotherapy agents. 
Tumors often have diffusion characteristics that 
differ from normal tissue and this has made it 
difficult to introduce many drugs that show an effect 
on them, including large antibodies, that could 
otherwise be effective agents (Lehmenkuhler et al., 
1991). The delivery of Dopamine to alleviate 
Parkinson’s disease is another area where much 
work has been done. Dopamine alleviates the effects 
of Parkinson’s disease but, sadly, the treatment does 
not offer a permanent cure because, for unknown 
reasons, the treatment becomes ineffective after a 
period of some months or years. This led to attempts 
to implant sources of Dopamine in the brain directly, 
most notably grafts of tissue or encapsulated 
populations of dopamine-producing cells. Recently 
there has been interest also in the delivery of 
substances like nerve-growth factor (NGF) that may 
be capable of reversing some of the effects of 
Alzheimer’s disease (Krewson et al., 1995). All of 
these reasons give us motivation for future work to 
conduct more research on the diffusion equation in 
the ECS, and on the concentration distribution with 
different parameter values and with different drug 
therapies and extend this work with specialists in the 
drug therapy research labs to transform these 
theoretical results to actual experimental results. 
Furthermore, the neural networks are originally 
designed to operate similarly to the brain’s functions 
and that can give us more insight on diffusion in the 
ECS of the brain than any other numerical method, 
hence it will be beneficial in future work to use 
different neural networks as models of the ECS 
activities in the brain and fully make use of the 

dynamics and full potentials of neural networks in 
this area . 
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