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Abstract: Scalability and elasticity are key capabilities to tackle the variable workload of a service. Cloud elasticity
offers opportunities to manage dynamically the underlying resources of a service and improve its scalability.
However, managing scalability of cloud-based systems may lead to a management overhead. Self-adaptive
systems are a well-known approach to tame this complexity. In this position paper, we propose an approach
for the continuous design and management of scalability in multi-cloud systems. Our approach is based on a
three-layer architecture and relies on two existing frameworks, namely SCALEDL and CLOUDMF.

1 INTRODUCTION

Scalability and elasticity are key capabilities required
to tackle the variable workload of a service. In par-
ticular, scalability is the ability of a service to sustain
variable workload while fulfilling quality of service
(QoS) requirements, possibly by consuming a vari-
able amount of underlying resources. By contrast,
elasticity is the ability of a service to rapidly provi-
sion and deprovision underlying resources on the fly.
Note that both scalability and elasticity are required
because one does not guarantee the other.

Cloud computing offers opportunities to improve
the scalability of services by enabling the dynamic
management of platform and infrastructure resources.
Within the scope of the CloudScale1, MODAClouds2,
and PaaSage3 projects on cloud computing, specific
work has been done to address long-term workload
variations (e.g., the workload increases linearly over
a year) as well as short-term ones (e.g., the work-
load has a sudden peak). The CloudScale’s Scal-
ability Description Language (SCALEDL) (Brataas
et al., 2013) is a language for characterising scala-
bility aspects of cloud-based systems in a provider-
independent way. SCALEDL facilitates reasoning
about long-term workload evolution in a proactive
way. The MODAClouds’ and PaaSage’s Cloud Mod-
elling Framework (CLOUDMF) (Ferry et al., 2013b;
Ferry et al., 2013a) consists of the Cloud Modelling

1http://www.cloudscale-project.eu
2http://www.modaclouds.eu
3http://www.paasage.eu

Language (CLOUDML) for specifying the provision-
ing and deployment of multi-cloud systems at design-
time, as well as a models@run-time engine for en-
acting the provisioning, deployment, and adaptation
of these systems at run-time. CLOUDMF facilitates
handling short-term workload evolution in a reactive
way.

Reasoning about long-term workload evolution
proactively and handling short-term workload evolu-
tion reactively are typically treated as two indepen-
dent activities. In order to improve management of
workload evolution, these two activities must be com-
bined. This position paper proposes an architecture
inspired by self-adaptive systems for self-managing
scalability of multi-cloud systems. This architecture
consists of three layers: a layer for long-term adapta-
tions that leverages upon SCALEDL, a layer for short-
term adaptations that leverages upon CLOUDMF, and
an intermediary layer for handling mid-term adapta-
tions that bridges the gap between the other two lay-
ers. The proposed approach spurs to a new separa-
tion of concerns between mechanisms to handle short-
, mid- and long-term scalability, enabling the contin-
uous design and management of scalable cloud-based
systems.

The remainder of the paper is organised as fol-
lows. Section 2 outlines a motivating example which
is used throughout the paper. Section 3 introduces
the three-layer architecture for self-managing scala-
bility of multi-cloud systems. Section 4 and 6 outline
SCALEDL and CLOUDMF as the foundation for the
long-term and short-term adaptations, respectively.
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Section 5 presents the new, intermediary layer for
handling mid-term adaptations that bridges the gap
between SCALEDL and CLOUDMF. Section 7 com-
pares the proposed approach with related works be-
fore Section 8 draws some conclusions.

2 MOTIVATING EXAMPLE

SENSAPP4 is an open-source, service-oriented appli-
cation for registering sensors, storing their data, and
notifying clients when new data are pushed (Mosser
et al., 2012).

SENSAPP is currently employed in the CITI-
SENSE5 EU project, which aims at providing a
community-based environmental monitoring and in-
formation system. In particular, SENSAPP is adopted
for collecting environmental monitoring data (air
quality, noise level, etc.) in public spaces where
the workload of SENSAPP may vary significantly
throughout a year. In particular, we assume the fol-
lowing predicable variations at various time scales:

Daily The workload has regular peaks at mornings
and evenings, when people commute daily.

Weekly The workload has regular peaks on Friday
evenings, Sunday nights, and Monday mornings,
when people commute for the weekend.

Yearly The workload has gradual increase and de-
crease before and after Summer and Christmas
holiday seasons.

We also assume the following unpredictable vari-
ations:

Snow storm and cold wave The workload has an ir-
regular peak due to a snow storm and cold wave,
such as the one in Europe on 27 January 2012,
which led to the disruption of European air and
surface traffic for two weeks.

Volcanic eruption The workload has an irregular
peak due to a volcanic eruption, such as the one
of the Eyjafjallajkull volcano on 14 April 2010,
which led to the stop of all European air traffic
and increase of surface traffic for one week.

This scenario is going to be used as a running ex-
ample throughout the paper in order to illustrate how
the proposed approach handles these predictable and
unpredictable variations.

4http://sensapp.org
5http://www.citi-sense.eu

3 ARCHITECTURE

The proposed architecture for self-managing scala-
bility of cloud-based systems is based on the ref-
erence three-layer architecture for self-adaptive sys-
tems (Kramer and Magee, 2007). This architecture is
organised as a three-layer stack, where each layer de-
notes a particular level of abstraction, complexity, and
dynamic, i.e., how fast the layer can react to a varia-
tion. Note that these layers retain a certain degree of
independence so that each of them can pursue its own
dynamic.

Long-­‐term	
  layer	
  
Specify	
  the	
  architectural	
  model	
  and	
  workload	
  evolu6on	
  profiles	
  

Mid-­‐term	
  layer	
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  the	
  appropriate	
  usage	
  evolu6on	
  profile	
  and	
  deployment	
  model	
  

Short-­‐term	
  layer	
  
Monitor	
  and	
  manage	
  the	
  deployment	
  of	
  the	
  running	
  system	
  

Figure 1: A three-layer architecture for self-managing scal-
ability of multi-cloud systems.

Figure 1 outlines the proposed architecture. From
the most abstract to the most concrete (i.e., from the
farthest to the closest to the running system), the three
layers are described as follows:

Long-term layer. The designer specifies the archi-
tectural model of the system as well as usage evo-
lution profiles within different time frames: day
(e.g., rush hour), week (e.g., weekend), and year
(e.g., holiday season).

Mid-term layer. The mechanisms of this layer se-
lect the appropriate usage evolution profile and
deployment model based on the current workload
and context of the running system.

Short-term layer. The mechanisms of this layer
monitor and manage the deployment of the run-
ning system.

For each layer, the considered time frames are up
to the designer and may vary. However, these have to
be organized hierarchically (e.g., short-term: current,
mid-term: week, long-term: year).

The independence between the layers enables the
continuous evolution of the cloud-based system. The
design process at the long-term layer can be done
whilst the two other layers continue adapting the run-
ning system. This way, the design of the self-adaptive
system does not need to be achieved beforehand, but
can be done iteratively. Similarly, while the mid-
term layer selects a new deployment model, the short-
term layer can still manage minor workload evolution.
This feature enhances the practicality of the approach
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as well as the design and management of the self-
adaptive system.

All these layers are built upon model-driven engi-
neering (MDE) techniques and methods. MDE is a
branch of software engineering that aims at improv-
ing the productivity, quality, and cost-effectiveness
of software development by leveraging upon models
and model transformations. This approach, which is
commonly summarised as “model once, generate any-
where”, is particularly relevant when it comes to the
provisioning and deployment of applications across
multiple clouds, as well as their migration from one
cloud to another.

4 LONG-TERM LAYER: ScaleDL

The long-term layer leverages upon SCALEDL, a
family of four sub languages to characterise scalabil-
ity of cloud-based systems (Brataas et al., 2013). In
particular, this layer adopts SCALEDL USAGE EVO-
LUTION, which facilitates the specification of scala-
bility requirements by characterising how the work-
load of a service changes over time. Note that these
models are technology- and provider-agnostic so that
they can be applied to multi-cloud systems.

As a first task, a designer must specify initial us-
age evolution profiles (Brataas et al., 2013) for all the
operations provided as a service by the application.
In the motivating example (see Section 2), the follow-
ing initial usage evolution profiles of SENSAPP are
specified: (i) Browse, where consumers are looking
for some sensors registered in SENSAPP, (ii) Moni-
tor, where consumers request data from sensors and
(iii) Push, where sensors are pushing data into SEN-
SAPP. These specifications include:

Work. The amount of data processed by the opera-
tion; e.g., the work of the Push operation may be
100KB of data.

Load. The number of requests to the operation dur-
ing a specified time interval; e.g., the load of the
Push operation may be an average of one request
per second during regular work days, two requests
per seconds during regular weekends, and four re-
quests per seconds during snow storms and cold
waves.

Quality metric and threshold. The measure of
quality of the operation along with the corre-
sponding threshold; e.g., the quality of the Push
operation is measured in terms of the average
response time and the corresponding threshold is
100 ms.

The initial usage evolution profiles will then
evolve over time. SCALEDL USAGE EVOLUTION
supports three forms of usage evolution (Brataas
et al., 2013): stable and gradual changes as well as
spikes. In the motivating example (see Section 2), the
usage evolution before and after holiday seasons is
modelled using the gradual change usage evolution.
Here, both the work and load will have a gradual
change, but not necessarily with the same increase
or decrease rate; e.g., the amount of data pushed by
each sensor increase faster than the number of sensor
pushing data. Similarly, the usage evolution of a snow
storm and cold wave or volcanic eruption is modelled
with a spike. Here, the duration of the spike as well
as its impact on work and load may vary.

In addition to the three forms of usage evolution
above, it is possible to specify the expected usage evo-
lution for a particular recurring time frame; e.g., daily,
weekly, or yearly. In the motivating example (see Sec-
tion 2), the usage evolution profile of a working day
specifies low load during the night, high load during
rush hour, and normal load otherwise.

In addition to the usage evolution profiles, the
long-term layer is used to specify architectural mod-
els. These models follow a service-oriented architec-
ture where applications are defined as an orchestration
of reusable services.

5 MID-TERM LAYER

The mid-term layer is responsible for bridging the gap
between reasoning about long-term workload evo-
lution proactively and handling short-term workload
evolution reactively.

The usage evolution profiles and architectural
models from the long-term layer are provided to
the mid-term layer, where the responsible mecha-
nisms select a usage evolution profile, predict the fu-
ture workload, and evaluate if the quality metric and
threshold are fulfilled. In particular, the mechanisms
of this layer iterate the following process (see Fig-
ure 2):

1. The Usage Evolution Manager selects a usage
evolution profile based on the current workload
and context of the running system, e.g., work-
ing day profile. This selection relies on event-
condition-action rules, e.g., on Monday (event), if
this is a working day (condition), then select the
working day profile (action). In case a designer
wants to extend or refine the usage evolution pro-
file for a shorter time frame, she can edit it before
initiating the next task.
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2. The Workload Predictor predicts what the work-
load will be at the time t + 1 based on the work-
load at the current time t.

3. The Workload Comparator compares the current
workload with the predicted one.

4. The Architecture Selector selects the most suit-
able architectural model from the the set of possi-
ble architectural models based on the current and
predicted workloads.

5. The Deployment Selector selects the most suitable
deployment model based on the corresponding ar-
chitectural model.
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Manager	
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Figure 2: Architecture of the mid-term layer.

An iteration of this process can be triggered in two
cases: (i) when the Workload Predictor anticipates
that the workload is going to change; (ii) when the
Workload Comparator detects that current workload
does not correspond to the predicted one. In the lat-
ter case, a notification is raised to the long-term layer,
which may alter the workload predictions.

In the motivating example (see Section 2), this
process handles the following mid-term adaptations:

� In the event of snow storm and cold wave, the
short-term layer reports the handling of the un-
predictable workload to the mid-term layer, which
analyses it and concludes it is an acceptable devia-
tion from the prediction and hence does not report
it to the long-term layer. This is because during
winter one can anticipate that snow storms may
occur and their average impact.

� In the event of volcanic eruption, the short-term
layer reports the handling of the unpredictable
workload to the mid-term layer, which analyses
it and concludes it is an unacceptable deviation
from the prediction and hence reports it to the

long-term layer, which in turn alters the predic-
tion. This is because, for instance, the predicted
load in the usage evolution profile is two requests
per second, while the current load is four. In ad-
dition, the load has been twice the predicted also
during the two previous hours. Therefore, it may
be reasonable to assume that the load will be twice
the predicted also during the next hours, so the
usage evolution profile for the next hours may be
changed accordingly.
In case the duration of the workload is expected

to be short, and considering the fact that adapting
the deployment of a multi-cloud system may take
some minutes, the deployment model may already
be able to handle a range of variations of work-
load. For instance, this may lead to the inclusion of
load-balancing mechanisms in the deployment model.
These mechanisms are managed by the short-term
layer.

6 SHORT-TERM LAYER:
CloudMF

The short-term layer leverages upon CLOUDMF,
a framework facilitating the management of multi-
cloud systems. It consists of: (i) CLOUDML, a tool-
supported, domain-specific language for specifying
the provisioning and deployment of multi-cloud sys-
tems at design-time; (ii) a models@run-time engine
for enacting the provisioning, deployment, and adap-
tation of these systems at run-time.

The deployment model from the mid-term layer is
provided to the short-term layer, where the responsi-
ble mechanisms will adapt the running system.

CloudML
The deployments models are specified with
CLOUDML. As mentioned, CLOUDML enables
modelling the provisioning and deployment of
multi-cloud systems. Note that CLOUDML is
technology-agnostic, meaning that the multi-cloud
systems can be designed and implemented based
on arbitrary paradigms and technologies. In partic-
ular, CLOUDML allows expressing the following
concepts:
Cloud Represents a collection of virtual machines on

a particular cloud provider.
Virtual machine Represents a reusable type of vir-

tual machine.
Application component Represents a reusable type

of application component to be deployed on a vir-
tual machine, or an external service. This element
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can be parameterised by elasticity requirements
(e.g., SENSAPP can be instantiated from one to
four times).

Port Represents a required or provided interface to a
feature of an application component.

Relationship Represents a communication between
ports of two application components, or the con-
tainment of an application component by another.

The interested reader may consult (Rossini et al.,
2013) for a more detailed description of CLOUDML.

In the motivating example (see Section 2), SEN-
SAPP is deployed on three different cloud providers.
Figure 3 shows a snapshot of the deployment model
of SENSAPP to be used when the workload is low: the
MongoDB database and the Dispatcher of SENSAPP
are deployed behind the corresponding load balancers
(depicted by LB in the figure) on a private OpenStack
cloud, while the Notifiers (i.e., the services that no-
tify consumers about new sensor data) are deployed
on the Amazon and Flexiant public clouds.

Amazon	
  [loca+on:	
  US]	
   Flexiant	
  [loca+on:	
  UK]	
  

SINTEF	
  (OpenStack)	
  [loca+on:	
  NO]	
  

LB	
  

LB	
  
LB	
  

1:No+fier	
  

2:Tomcat	
  

2:No+fier	
  

4:Tomcat	
  

1:ML	
  

1:No+fier	
  

1:JeHy	
  

1:SL	
  

1:Dispatcher	
  

1:Tomcat	
  

2:Dispatcher	
  

3:Tomcat	
  

1:LL	
  

1:MongoDB	
   2:MongoDB	
  

[compute cores: 12, 
memory: 24 GiB] 

Figure 3: Snapshot of a SENSAPP deployment.

Models@run-time engine
The deployment models are enacted by the
CLOUDMF models@run-time engine. Models@run-
time is an architectural pattern for dynamic adaptive
systems that proposes to leverage models during
their execution (Morin et al., 2009). In particular,
models@run-time provides an abstract representation
of the underlying running system, which facilitates
reasoning, simulation, and enactment of adaptation
actions. A change in the running system is automat-
ically reflected in the model of the current system.
Similarly, a modification of this model can be enacted
on the running system on demand.

Figure 4, inspired by (Morin et al., 2009), shows
a classical architecture to realise models@run-time.
The current model can be consumed by a reasoning

system (e.g., the mid-term layer) that produces a tar-
get model. The adaptation is then enacted by the
adaptation engine and the target model becomes the
current model.

Models@run-­‐,me	
  

Running	
  system	
  

Current	
  
deployment	
  
model	
  

Adapta,on	
  

Target	
  
deployment	
  
model	
  

Mid-­‐term	
  layer	
  

Diff	
  

Figure 4: Models@run-time engine.

Adaptations of the model can result in: (i) modi-
fication of the provisioning and deployment topology
or (ii) modification of the status of each element of the
system. As part of the possible adaptation, a classi-
cal solution to handle elasticity requirements is to use
load balancers. The models@run-time engine is then
responsible for deploying a load balancer and config-
uring it to manage communications to a group of ap-
plication components on a defined port.

The monitoring of the running system consists in
providing the status of the current deployment to-
gether with the quality metrics (see Section 4) so
that the current workload and context can be matched
against the ones predicted in the long-term layer.

7 RELATED WORK

Elasticity is one of the key features to make cloud-
based systems scalable and has been extensively in-
vestigated over the past few years. Elastic infras-
tructure are supported either by provider-specific fea-
tures such as the Amazon Elastic Load Balancing,
or by network level’s components such as NGinx.
Map/reduce platforms form another level of elastic-
ity provided also as provider-specific services. While
these techniques are now mature, they require recur-
rent management activities through the lifespan of a
cloud-based system, as the workload evolves.

The management of cloud-based systems, includ-
ing their scalability, can be facilitated by various
tools. Industrial frameworks such as Cloudify6, pup-

6http://www.cloudifysource.org
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pet7, or Chef8, as well as research projects such as
Reservoir9 or ARTIST10, provide capabilities for the
automatic deployment and management of cloud sys-
tems, including load-balancing mechanisms. How-
ever, such frameworks do no support the long-term
adaptation of elasticity policies, as does the proposed
long-term layer.

Scalability management can also be addressed
with performance analysis techniques. Palladio and
SimuLizar (Becker et al., 2013), for instance, capture
both the system and the scalability logics and pro-
duce performance predictions, which can be matched
against performance requirements, leading to gradual
improvements. However, this is a pure design-time
activity which does not leverage run-time informa-
tion, as does the model@run-time engine in the pro-
posed short-term layer.

The Topology and Orchestration Specification for
Cloud Applications (TOSCA) (Palma and Spatzier,
2013) standard is a related specification developed by
the OASIS. TOSCA provides a language for specify-
ing the components comprising the topology of cloud
applications along with the processes for their or-
chestration. However, this standard currently lacks
a models@run-time representation that enables the
continuous evolution of multi-cloud systems.

8 CONCLUSION AND FUTURE
WORK

In this position paper, we outlined an approach
to self-managing scalability of multi-cloud systems.
The proposed solution combines SCALEDL and
CLOUDML into a three-layer architecture. In the
long-term layer, the designer specifies the architec-
tural model of the system as well as SCALEDL usage
evolution profiles. In the mid-term layer, the respon-
sible mechanisms select the appropriate usage evolu-
tion profile and deployment model based on the cur-
rent workload and context of the running system. Fi-
nally, in the short-term layer, CLOUDMF monitors
and manages the deployment of the running system.

The realisation of this three-layer architecture
is an ongoing joint work between the CloudScale,
MODAClouds, and PaaSage projects. Future research
directions include: finalising the implementation and
validation of the proposed approach, and designing a
mechanism for collecting past load variations to im-

7https://puppetlabs.com
8http://www.opscode.com/chef
9http://www.reservoir-fp7.eu/

10http://www.artist-project.eu/

prove the accuracy of load predictions by means of
statistical analysis.
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