
Mjolnirr: A Hybrid Approach to Distributed Computing
Architecture and Implementation

Dmitry Savchenko and Gleb Radchenko
System Programming Department, South Ural State University, Chelyabinsk, Russia

Keywords: Cloud Computing, Cloud Middleware, PaaS, Private Cloud, Mjolnirr.

Abstract: A private PaaS enables enterprise developers to leverage all the benefits of a public PaaS to deploy, manage,
and monitor applications, while meeting the security and privacy requirements your enterprise demands. In
this paper we propose the design and implementation of a Mjolnirr private cloud platform for development
of the private PaaS cloud infrastructure. It provides means for custom applications development which uses
resources of distributed computing environment.

1 INTRODUCTION

Cloud computing became very popular during the
last few decades (Mell and Grance, 2011). This type
of resource provisioning offers convenient access to
computing resources, which makes it easy to use
them for custom services development.

Before the introduction of the cloud computing
concept, there was another distributed computing
concept called “grid computing” (Foster and
Kesselman, 2003). It is used by the scientific
community while solving extra-large and resource-
intensive scientific tasks. The name “grid”
originated from the metaphor of the power grid.
However, unlike electricity, integration of new
resources to the grid computing environment is not
trivial.

Meanwhile, PaaS (Platform as a Service)
solutions provide the ability to create custom cloud
applications much easier. But the problem is that the
most PaaS solutions are deployed on remote hosting
company servers. The owner of the application may
not know exactly where his information is stored, as
well as he cannot be absolutely sure about the safety
and security of the information. These issues might
be solved by the private PaaS platform (Fortis,
Munteanu and Negru, 2012).

In this paper, we propose the design and
implementation of the private cloud platform called
“Mjolnirr”. It provides a service which is
comparable with existing cloud platforms. There are
several solutions that provide private PaaS (Yandex

Cocaine, AppFog, Stackato) levels of service.
Comparing to these solutions, main features of our
approach are integrated messaging subsystem,
flexible workload management and UNICORE
(Streit, 2009) grid environment integration module.

The article contains the following sections. In
section 2 we present the main goals of the Mjolnirr
cloud platform development. In section 3 we
describe the results of the analysis of existing cloud
platforms and compare them with our platform. In
section 4 we describe the structure of the Mjolnirr
platform and the component communication
protocol. In section 5 we describe the
implementation of the Mjolnirr platform. In section
6 we describe the platform performance evaluation.
In section 7 we summarize the results of our
research and further research directions.

2 MJOLNIRR PLATFORM
CONCEPT

The main goal of the project is to create the cloud
platform for development of a private PaaS cloud
infrastructure. Mjölnir is the name of the hammer
of Thor, a major Norse god associated with thunder.
Therefore, we have chosen the “Mjolnirr” name as
metaphor of a powerful tool linked with thunder and
clouds.

Java-based application or library can be
implemented as a Mjolnirr-based service. The
Mjolnirr platform provides infrastructure for cloud

445Savchenko D. and Radchenko G..
Mjolnirr: A Hybrid Approach to Distributed Computing - Architecture and Implementation.
DOI: 10.5220/0004958704450450
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 445-450
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

applications development, including software
developer kit, message brokering system and
browser support. For a developer, a Mjolnirr
application is represented as a collection of
independent components communicating by
message passing. This approach allows to develop
flexible and scalable cloud applications.

Mjolnirr also provides integration with the
UNICORE grid environment (Streit, 2009) through
the DiVTB (Radchenko and Hudyakova, 2013)
platform. The DiVTB (Distributed Virtual Test Bed)
platform provides a task-oriented approach for
solving specific classes of problems in computer-
aided engineering through resources supplied by
grid computing environments. Thus, Mjolnirr can be
used both to provide infrastructure for scientific
projects with the grid systems and in a business
infrastructure.

During our research, we should:
1. analyse technologies of private cloud platforms

development;
2. develop Mjolnirr platform architecture;
3. implement Mjolnirr platform;
4. evaluate the performance and scalability of the

Mjolnirr platform.

3 ANALYSIS OF EXISTING
SOLUTIONS

An investigation shows that C-level executives and
IT managers in enterprise companies have concerns
with integration of cloud computing in their data
processing (Avanade.com, 2014). One of the most
serious concerns is the possibility of data breaches.
A cloud provider can give access to the company’s
private data (accidentally or intentionally) or may
bring harm to the data owner.

It is possible to use the encryption of data stored
in the cloud, but this is effective only when cloud is
used only for storage. If the data is processed in the
cloud, it become available decrypted in the memory
of the host, where the processing occurs. In addition
to this drawback, the owner of the data does not
control the location of his virtual machine, so it can
be moved to the physical computer with the virtual
machine that contains malware. It means that they
will have the same IP address. It may cause the
block of the virtual machine or forfeiture of
computer containing these virtual machines.

Nowadays, there are two ways to ensure the data
security in the cloud. The first way is called “trusted
computing”. It ensures security of virtual machines

in the cloud (Christodorescu et al., 2009). But user
data cannot be completely safe. In IaaS clouds, the
virtual machine can be moved to the other host, but
the concept of trusted computing provides security
only for virtual machines running on the same host.
Otherwise, the concept of Trusted Cloud Computing
Platform (Garfinkel et al., 2003) solves this problem
by creating the safe environment for running virtual
machines. But neither of these approaches solves the
problem of VMs placement on the same host with a
malicious VM.

Another way to deal with the security issue is to
deploy the cloud infrastructure on the private
hardware. But buying and maintaining of the
hardware is more expensive than rent of computing
resources.

The simplest way is to create a private cloud
system, and there are several different platform
(PaaS) solutions existing in this area.

Yandex Cocaine and AppFog platforms provide
the ability to create private PaaS solutions based on
application containers (Api.yandex.com, 2014;
AppFog, 2013). These platforms allow creation
Heroku-like application hosting. They provide a
number of built-in modules and a server
infrastructure. Stackato (Activestate.com, 2014)
shows all advantages of the already mentioned
solutions and provide local application store.
However, all of the above solutions consider custom
applications as a monolith and ignore its internal
structure, that’s why it is not possible to
automatically and effectively balance the load on the
individual subsystems applications. In addition to
this drawback, none of these solutions considers
end-user workstations as computing resources
providers.

We decided to create a Mjolnirr cloud platform,
which solves these problems as follows:
1. Cost reduction will be provided by using popular

open source libraries and programming
languages, as well as the opportunity to work not
only on the server platform, but also on the
personal computers, using idling resources of the
computer system.

2. Ease of application development will be
provided by using popular programming
languages, developer tools and SDK.

3. Integration of new resources ease will be
provided by the application architecture
modularity and custom components reusability.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

446

Figure 1: Mjolnirr platform architecture.

4 MJOLNIRR ARCHITECTURE

Mjolnirr platform architecture is shown at the
figure 1.

The Mjolnirr platform includes the following
components:
1. Proxy provides access to the cloud system for the

external clients and manages the communication
between cloud application components. It also
hosts all of the system services (built-in modules
for user authentication, distributed file system,
database access etc.). Proxy is the only
component that accessible from the external
network.

2. Container is responsible for hosting of cloud
applications components and message
transmission. It can be deployed both on personal
computers and on the computing server nodes.

3. Components are custom applications, developed
to run in Mjolnirr cloud environment. Each
component has a unique name. UI components
(applications) are multi-page applications.

4. Clients. All client applications use encrypted
channel to communicate with the proxy. Each
client should use certificate for authentication.

4.1 Proxy

The Proxy (see fig. 2) provides access to Mjolnirr
system from the external network. The Proxy
performs the following actions:
1) it stores and provides static resources (page

layout descriptions, images etc.) of the deployed
cloud applications in the Static Storage;

2) it provides a Component Repository to all of the
containers;

3) it provides a Message Server for the components
of cloud applications;

4) it handles client’s requests to the Client
Interface;

5) it performs the authorization and authentication
of users;

6) it hosts all of the system services (users
management, distributed file system, database
access, etc.). System services act like a custom
component and can be called in a standard way
(see section 4.3).

The external Proxy interface exposes the following
RPC methods:
1) String getUI (component, page) - returns the

layout description of the page “page” of the
component “component” as a plain text;

2) byte[] getResourceFile (applicationName,
resourceName) - return the required resource file
(image, script file) in binary format;

3) String processRequest (componentName,
methodName, args) processes a client request,
redirecting it to the first free suitable component
instance. This method can be called directly from
the application page, from script scope. Returns
serialized plain object as an execution result;

4) void uploadComponent (content) – upload the
custom component to the proxy. Component will
be added to the Component Repository and
immediately distributed to the running
containers.

4.2 Container

The container provides cloud application component
hosting and API for remote components instances
method invocation. The Mjolnirr installation can
have any number of containers.

Mjolnirr:�A�Hybrid�Approach�to�Distributed�Computing�-�Architecture�and�Implementation

447

Any Mjolnirr-based application consists of
independent components, which use a built-in
messaging system, implemented in the basis of the
Publisher-Subscriber pattern. The Proxy is
responsible for message queue maintenance. The
Message Server of the Proxy provides publisher-
subscriber messaging service for cloud application
components. Mjolnirr Containers subscribe to
Message Channels that operate as a broadcast
delivery – any message sent to the Message Channel
will be transmitted to the subscribers of this channel.
Each cloud application instance is subscribed on two
types of Message Channels:
1) Component Public Channel: every instance of

the cloud application component is subscribed on
this public channel. This a listener channel –
when any message come to this channel, the
appropriate component instance will be invoked.

2) Instance Private Channel: provides direct
communication between instances.

When container starts, it performs several
initialization steps. The order of the container
initialization:
1) Container registers on the proxy and receives a

list of components to load in response;
2) For each component from the list:

a. The container checks it’s local cache, for
each missing package container and
downloads it from the proxy’s Component
Repository;

b. Container initializes the component instance;
c. Container subscribes the component instance

on the Component Public Chanel and
Instance Private Channel.

Container provides messaging API to all the hosted
component instances. Typical message transmission
sequence looks like shown below:
1) When a component instance calls another

component, it sends the call to a Component
Public Channel.

2) The first available instance of the component in
the cloud system processes the request.

3) The response is returned to an Instance Private

Channel of the instance that sent a message.

In addition, a container has an opportunity to work
in stand-alone mode. In this mode, the container
does not support communication with other
containers and acts as a stand-alone computing
system (container and proxy at the same time).

4.3 Components

From the developer’s perspective, Mjolnirr cloud
application is a collection of independent
components communicating by message exchange.
Components are represented as a package that
contains the following information:
1) manifest, that provides the interface of the

component, including description of provided
methods and their parameters;

2) executable to handle incoming requests;
3) static files, used in pages rendering (images,

page layout descriptions and scripts) for UI
provision.

Each component can be:
1) Application Component: provides the user

interface definition, scripts, styles and UI-
specific actions. Optionally contains domain
logic.

2) Module Component: represents a single entity in
the domain logic of the application. The Module
Component provides data processing and
storage, but doesn’t provide interface and static
files.

4.4 Clients

Mjonirr platform uses HTML and JavaScript to
represent end-user interface in common internet
browser. But it’s possible to use Mjolnirr resources
in third-party application using commonly used and
standardized protocols.

We’ve decided to use most common client
software – web browser – as a platform default
client. Therefore, there is no need to install
specialized client software on the client PCs, and it
gives the opportunity to use thin clients.

Figure 2: Mjolnirr proxy architecture.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

448

5 IMPLEMENTATION

5.1 Components

Each custom component must have a manifest: an
XML file that contains the component’s name, the
name of the main class, list of methods and a list of
parameters for each method. Manifest can be
generated automatically using special Maven plugin.
Sample manifest for the Calculator service is shown
below.

<hive>
<application

 name="Calculator"
 classname="org.exmpl.Calculator">
 <methods>
 <method
 name="calculate"
 type="java.lang.String">
 <parameters>
 <parameter

 type="java.lang.String"/>
 </parameters>
 </method>

 </methods>
</application>
</hive>

The container parses the manifest for each loaded
component.

As stated above, the manifest must have the
name of the main class as a fully qualified name of
the facade class of described components. Each
facade class must have an implementation of the
method “initialize”. The container calls this method
immediately after instantiating the component and
passes the component context there. This context
contains information about the working directory of
the current application instance and the directory
containing the configuration files.

5.2 Messaging Subsystem
Implementation

Mjolnirr platform messaging subsystem is
implemented on the basis of the queue system called
HornetQ (HornetQ project homepage, 2014), which
works in accordance with the Publisher-Subscriber
pattern. HornetQ can work in embedded mode, it is
open source and it provides high performance
(Spec.org, 2014). HornetQ server is built into the
Proxy. The container provides messaging API to the
components. API contains synchronous and
asynchronous methods for sending messages.

5.3 UNICORE Integration

The Mjolnirr platform provides a UNICORE 6
integration module. This module uses DiVTB Server
for communications with grid environment.

The concept of Distributed Virtual Test Bed
(DiVTB) (Radchenko and Hudyakova, 2013)
provides distributions of supercomputing simulation
in two phases – development of experiment and
launching the test stand. The main advantage of the
DiVTB concept is provision of problem-oriented
interface to the supercomputer resources.

Mjolnirr UNICORE integration module provides
the following methods:
1. void uploadTestBed (content) – used for test bed

archive upload;
2. String createExperiment (bedID) – create

experiment from test bed with ID “bedID”,
returns experiment UID;

3. void startExperiment (experimentID) – start
experiment with specific parameters;

4. int getStatus (experimentID) – get experiment
status (started, finished or failed);

5. byte[] getResults (experimentID) – get
experiment results.

6 PERFORMANCE
EVALUATION

Mjolnirr Platform was tested in two different
experiments on the node with Intel Core i5 M560
and 6 GB of RAM.

6.1 Parallel Execution

We researched the behaviour of a platform during
transferring a large number of concurrent messages.
The results are shown on the figure 3, left.

6.2 PI Calculation

We also researched the behaviour of the platform
during the long calculations. This experiments were
conducted on 8 containers running for the N
simultaneous requests for N=1..24. The results are
shown on figure 3, right.

Experiments have shown that the platform is
stable and able to pass the average number of
messages; additional transmission costs are about
25 milliseconds per request.

Mjolnirr:�A�Hybrid�Approach�to�Distributed�Computing�-�Architecture�and�Implementation

449

Figure 3: Performance evaluation.

7 CONCLUSIONS

In this article, we described the design and
implementation of a private cloud platform called
Mjolnirr, which allows development of distributed
cloud applications on private computing resources.
Main features of the described platform are
advanced messaging system and distributed
computing support.

As a further development, we will investigate
and implement application-level migration support,
integration with the advanced resource monitoring
systems, flexible adaptation to load changes,
advanced system security and application store. The
application store will reduce the number of duplicate
software products and simplify the creation of
individual business infrastructure to meet the needs
of a particular company. Also, we will implement a
set of standard system services (unified database
access, advanced users management and distributed
file system access) and improve system security,
providing isolation of custom components from the
containers to protect the system from accidental or
intentional denial of service attacks.

ACKNOWLEDGEMENTS

The reported study was partially supported by Grant
Fund for Assistance to Small Innovative Enterprises
in Science and Technology research project No.
№0000829 and by RFBR, research project No. 14-
07-00420-a.

REFERENCES

Activestate.com. 2014. Stackato: The Platform for the
Agile Enterprise | ActiveState. [online] Available at:
http://www.activestate.com/stackato [Accessed: 11 Jan
2014].

Api.yandex.com. 2014. Cocaine. Cocaine technology
description. [online] Available at:
http://api.yandex.com/cocaine/ [Accessed: 11 Jan
2014].

Appfog.com. 2014. AppFog - PaaS for public and private
clouds. [online] Available at:
https://www.appfog.com/ [Accessed: 11 Jan 2014].

Avanade.com. 2014. Global Study: Cloud computing
provides real business benefit | Avanade. [online]
Available at:
http://www.avanade.com/us/about/avanade-
news/press-releases/Pages/Global-Study-Cloud-
Computing-Provides-Real-Business-Benefits-But-
Fear-of-Security-and-Control-Slowing-Adoption-
page.aspx [Accessed: 11 Jan 2014].

Christodorescu, M., Sailer, R., Schales, D. L., Sg, Urra, D.
and Zamboni, D. 2009. Cloud security is not (just)
virtualization security: a short paper. pp. 97--102.

Foster, I. and Kesselman, C. 2003. The Grid 2. Burlington:
Elsevier.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M. and
Boneh, D. 2003. Terra: A virtual machine-based
platform for trusted computing. 37 (5), pp. 193--206.

Mell, P. and Grance, T. 2011. The NIST definition of
cloud computing (draft). NIST special publication, 800
(145), p. 7.

Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W. and Li,
Q. 2009. Comparison of several cloud computing
platforms. pp. 23--27.

Pepple, K. 2011. Deploying OpenStack. O’Reilly Media.
Radchenko, G. and Hudyakova, E. 2013. Distributed

Virtual Test Bed: an Approach to Integration of CAE
Systems in UNICORE Grid Environment. MIPRO
2013 Proceedings of the 36th International
Convention, pp. 183-188.

Santos, N., Gummadi, K. P. and Rodrigues, R. 2009.
Towards trusted cloud computing. pp. 3--3.

Streit, A. 2009. UNICORE: Getting to the heart of Grid
technologies. eStrategies, 3 pp. 8-9.

Spec.org. 2014. All Published SPEC SPECjms2007
Results. [online] Available at:
http://www.spec.org/jms2007/results/jms2007.html
[Accessed: 12 Jan 2014].

HornetQ project page. 2014. HornetQ – putting buzz in
messaging. [online] Available at:
http://www.jboss.org/hornetq [Accessed 12 Jan 2014]

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

450

