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Abstract: In the single-objective automated algorithm configuration problem, given an algorithm with a set of 
parameters that need to be configured and a distribution of problem instances, the automated algorithm 
configurator will try to search for a good parameter configuration based on a pre-defined performance 
measure. In this paper, we point out two motivations for the development of a multi-objective algorithm 
configurator, in which more than one performance measure are considered at the same time. The first 
motivation is a parameter configuration case study for a deterministic single machine scheduling algorithm 
with two performance measures: minimization of the average running time and maximization of the total 
number of optimal solutions. The second one is the configuration problem for non-exact multi-objective 
optimization algorithms. In addition, a discussion of solving approach for the first motivating problem is 
also presented. 

1 INTRODUCTION 

The automated algorithm configuration problem, 
sometimes called parameter tuning, can be 
informally stated as follows: given an algorithm A 
(target algorithm) with a list of parameters, a set of 
problem instances B and a performance measure for 
the evaluation of A's quality on B; the automated 
algorithm configurator (or simply configurator) will 
try to find a good parameter configuration of A, i.e., 
an assignment of A's parameters into specific values, 
in such a way that the performance measure's value 
on B is optimized. The problem instance set B could 
be generated from a problem's distribution and its 
size is usually chosen to be large to well represent 
the problem. Since this set is large, the exact 
evaluation of the performance measure over B often 
incurs very high computational costs. Therefore, the 
configurator normally deals with a subset of B, 
called training instance set, during the configuring 
procedure. To avoid over-fitting, this training set 
certainly should be sufficiently large and widely 
spread over the problem distribution, then, the final 
parameter configuration obtained is tested on 
another problem instance set, named test instance 
set, to evaluate the efficiency of the configurator. 
The test set could be a subset of B, or even the same 
as B.  

The automated algorithm configuration problem 
could be considered as an optimization problem, in 
which the search space is the set of possible 
parameter configurations and the objective function 
is the performance measure over the training 
instance set. This optimization problem presents 
three challenges. The evaluation of each solution's 
quality is often very expensive. This evaluation 
could be stochastic if the target algorithm is not 
deterministic. And finally, different types of 
variables (target algorithm's parameters) could exist 
in the same configuration problem. To be more 
specific, an algorithm's parameter could be 
continuous, integer or categorical. A parameter 
could also be conditional, i.e., its activation could 
depend on specific values of some other parameter. 

The automated algorithm configuration problem 
has received large attention in the last decade. A vast 
number of solving approaches, originating from 
various fields, have been proposed in recent years. 
According to Stutzle et al., 2013, they could be 
classified into four groups: approaches from the 
experimental design community, sequential 
statistical testing techniques, model-based 
optimization approaches and metaheuristics. Several 
other works have also been devoted to a literature 
review of the algorithm configuration topic, such as 
Hoos, 2012. Among these methods, irace (López-
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Ibánez et al., 2011, a statistical testing technique), 
Gender-based Genetic Algorithm (Ansótegui et al., 
2009), ParamILS ((Hutter et al., 2009), a 
metaheuristic based on Iterated Local Search) and 
SMAC (Hutter et al 2011, a model-based 
optimization method) have shown remarkable results 
on several hard algorithm configuration problems 
with large numbers of parameters. As an example, 
ParamILS has been used to configure the CPLEX 
solver with 76 parameters and has achieved a 
speedup ratio up to 50 over CPLEX’s default 
parameter configuration as well as configurations 
got from CPLEX’s automatic tuning tool (Hutter et 
al 2010). Several other academic applications of 
ParamILS have also been reported on the website of 
its authors: http://www.cs.ubc.ca/labs/beta/Projects/ 
ParamILS/applications.html. 

Solving approaches for the automated algorithm 
configuration problem so far are single-objective, 
i.e., only one performance measure is considered 
during the configuring stage. In this paper, we 
describe two motivations for the development of a 
multi-objective algorithm configurator, in which 
multiple performance measures are considered at the 
same time. The first one is an algorithm 
configuration case study for a single machine 
scheduling algorithm, with the requirement of 
balancing between target algorithm’s robustness and 
speed, the second one is the case when the target 
algorithm is a non-exact multi-objective 
optimization algorithm. 

Please note that there are some works in the 
evolutionary computation community that are 
dedicated to a Multi-Objective Tuning Problem 
(MOTP), such as the tuner BONESA proposed in 
Smit et al., 2011. However, MOTP is different from 
the multi-objective algorithm configuration 
considered in this paper. In MOTP, the problem 
instance set is just a limited and small set of 
continuous optimization functions, so that it does not 
have to deal with the problem of configuration’s 
expensive evaluation. The main goal of MOTP is 
trying to balance algorithm configurations’ 
performance over all optimized functions, i.e., 
finding robust algorithm configurations, while the 
multi-objective algorithm configuration problem 
focus on solving the problem of over-fitting: trying 
to deal with a quite large training instance set. 

This paper is organized as follows: section 2 
describes the first motivation and a proposal of 
solving approach, section 3 presents the second 
motivation and section 4 draws some conclusions 
and future works. 

2 THE FIRST MOTIVATION  

2.1 Problem Description 

The target algorithm considered in this problem is 
SiPSi, a single machine scheduling algorithm 
proposed in Tanaka et al., 2012. The algorithm and 
relevant problem instances are downloadable from 
Tanaka’s website (http://turbine.kuee.kyoto-
u.ac.jp/~tanaka/index-e.html). SiPSi is applied on 
different single machine scheduling instances with 
various sizes (the number of jobs). This algorithm is 
single-objective, exact and deterministic. It has 25 
parameters, including 14 continuous parameters, 7 
integer parameters and 4 categorical parameters. 
Among them, 11 parameters are conditional.  

In this case study, a pre-defined cut-off time is 
specified for each problem size. The running of 
SiPSi on a problem instance is stopped when either 
an optimal solution is found or the running time 
reaches the relevant cut-off time. The goal of the 
algorithm configuration task is to find parameter 
configurations that have small running time and 
large number of optimally solved instances over the 
whole instance set. The specification of cut-off time 
for each problem size is two-fold: first, when some 
researcher develops an algorithm for solving a well-
known problem, some so-far-state-of-the-art method 
for that problem usually exists and the researcher 
wants to “beat” the performance of this state-of-the-
art algorithm, then problem-size-dependent cut-off 
time is an appropriate choice; second, if we are 
interested in configuring algorithm for very large 
problem’s sizes, e.g., from 500 to thousands of jobs, 
a configuring procedure directly deals with a 
training instance set of such large sizes is 
impossible, in that case, problem instance set with 
smaller sizes in which cut-off time is gradually 
increased according to problem size can be helpful, 
since we can try the configuring procedure on this 
alternative problem instance set, in the hope that the 
obtained parameter configuration is robust enough to 
work well on even unseen and larger problem 
instance sizes. 

During Tanaka’s manual tuning procedure, he 
observed a possible trade-off between the two 
mentioned performance measures: “A safe 
parameter configuration performs well for many 
types of instances, but the algorithm becomes slow, 
on the other hand, a tuned set of parameters 
improves the speed of the algorithm, but the 
performance deteriorates considerably (and 
sometimes the algorithm fails to find an optimal 
solution) for some specific instances due to 
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parameter sensitivity”. Such an example is shown in 
table 1. In this experimental example, the first 
parameter configuration, dubbed cdefault, is the 
currently default configuration of SiPSi. The second 
one, denoted by ctuned, is a configuration obtained by 
using ParamILS (Hutter et al., 2009), with a 
weighted aggregation function of the two 
performance measures. Results are tested on 5975 
problem instances. From table 1, we can see the 
trade-off between the total average running time 
over all problem sizes and the total number of 
optimally solved instances. The total number of 
optimal solutions gained from cdefault is smaller than 
ctuned, but the average running time results of cdefault 
are better and also statistically different throughout 
the non-parametric pairwise Wilcoxon test with 
significance level 0.05. 

Table 1: Summarized performance of two configurations. 

 
#optimal 
solutions 

#total average 
runtime (s) 

cdefault 5963 603.2 
ctuned 5970 693.1 

 

From this analysis, the motivation for a multi-
objective automated algorithm configurator becomes 
obvious. As being seen in table 1, when we consider 
the two performance measures’ values over the 
whole test set, incomparable parameter 
configurations do exist. Therefore, result obtained 
from such a multi-objective algorithm configurator 
is a Pareto-approximation set of parameter 
configurations. The algorithm designer will do a 
manually deeper analysis on the resulting 
configurations, such as consideration of average 
running time on each problem sizes, the minimum 
and maximum running time, the average optimality 
gap, etc, to choose the final best algorithm 
configuration for future usage. 

2.2 Solving Approach 

In this part, we discuss our initial idea for a solution 
approach. Taking advantage of remarkable 
techniques currently available for single-objective 
algorithm configuration problem, we try to adapt 
them into the multi-objective context. Among the 
four groups of single-objective configurators, we 
decide to focus on the group of metaheuristics, due 
to their significant results on several hard algorithm 
configuration problems.  

In order to design a solving approach for this 
case study, we firstly discuss the question of which 
metaheuristic should be chosen. An analysis of 

challenges when applying that metaheuristic to our 
multi-objective algorithm configuration problem as 
well as our proposed solution approach is presented. 
Finally, addition of preference information into our 
configurator is mentioned. 

2.2.1 Choosing a Metaheuristic 

Since we are solving an algorithm configuration 
problem, chosen metaheuristic should be parameter-
independent as much as possible. We keep this 
condition in mind during the search for an 
appropriate multi-objective metaheuristic approach. 

Multi-objective metaheuristics can be divided 
into three major groups: aggregation-based, Pareto-
dominance-based and indicator-based methods 
(Basseur et al., 2012). Among them, we decide to 
focus on the aggregation-based group. The reason 
for our choice is the impossibility of using adaptive 
capping strategies in the search procedure when the 
two later groups are used. We explain capping 
strategies in the next sub-section. 

In aggregation-based approaches, all objective-
functions are integrated into a single function 
throughout some scalarization technique, in which 
various sets of weight for each objective function are 
considered sequentially, each set will guide the 
search towards a point of optimal Pareto front. The 
main advantage of these approaches is that if solving 
methods for single-objective version of the 
considered problem are already available, we can re-
use them to solve the multi-objective problem in a 
fairly straight forward manner. However, these 
techniques have a major drawback when the single-
objective algorithm requires expensive 
computational cost, since each run of this algorithm 
just aims to only one point in the true Pareto front. 
Algorithms in this group usually require parameters 
for specifying running time amount for each 
scalarization. Algorithms’ performance is influenced 
by these parameters. To avoid such a parameter 
sensitivity, we choose the Adaptive Anytime Two-
Phase Local Search (AA-TPLS) proposed in 
Dubois-Lacoste et al 2011, in which these running 
time amount values are adaptively chosen based on 
information collected from previous runs. 

The underlying single-objective algorithm 
configurator used in AA-TPLS could be either 
ParamILS or GGA, since such a choice is 
independent of the general framework of AA-TPLS. 

2.2.2 Adaptation: Challenges and Solutions 

In this subsection, we firstly describe a group of 
techniques, named adaptive capping, for solving the 
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expensive evaluation problem; then, we discuss 
challenges faced in adaptations of the chosen 
metaheuristics into our configuration problem, as 
well as our initial ideas for solving them. 

a) Capping Techniques. The most difficult 
challenge in solving algorithm configuration 
problems is the expensive evaluation of an algorithm 
configuration’s quality, due to the usual large size of 
the training instance set. In ParamILS by Hutter et al 
2009, special techniques, named adaptive capping 
methods, have been developed to reduce the 
computational effort required for this task. Given 
two parameter configuration c1 and c2, a problem 
instance set S and a performance measure f that 
needs to be minimized, assume that c1 has been run 
on S already and its performance value is known. 
Now we want to compare c1 and c2 and discard the 
worse one. The idea of adaptive capping is to try to 
not run c2 on the whole set S, but stopping earlier at 
some instance according to information collected 
before. 

Here we briefly describe the two adaptive 
capping techniques proposed by Hutter et al 2009, 
namely trajectory-preserving and aggressive 
capping, and propose some additional adaptive 
capping methods to improve the reduction of 
computational cost. 
 Trajectory-preserving: Let us assume that the 

performance measure f is the average running 
time over the whole instance set, N is the total 
number of problem instances in S, t1 and t2 are 
the total running time of c1 and c2, respectively, 
on S (t1 = f1 x N). When we run c2 on S, if the 
total running time value so far is larger than t1, 
we can stop the run immediately and conclude 
that c2 is worse than c1, instead of running c2 on 
the whole set S. 

 Aggressive capping: this is a heuristic version of 
trajectory-preserving capping, in which the total 
running time tbest of the best configuration so far 
cbest is saved and T x tbest will serve as an upper 
bound for the running of other configurations. 
Here T is a predefined ratio (T = 2 in ParamILS’s 
setting). When a configuration ci is run on S, if ti 
got so far exceeds the upper bound, ci’s run is 
stopped. 

 Additional capping methods: In our case study, 
the target algorithm is deterministic. We do not 
have to deal with the difficulty of stochastic 
evaluation. Hence, another capping idea is that 
for each parameter configuration c and each 
problem instance p, the performance of c on p is 
saved when its running time exceeds a pre-

defined threshold (we do not save all cases for 
reasons of memory size). This information is 
useful when c is revisited. Moreover, from this 
information, we can also roughly predict 
performance of a configuration ci on p if ci’s 
neighbors have been run on p so far. The 
predicted value could be a weighted sum of ci’s 
neighbors’ performance values on p, whereas the 
weight is smaller for larger dissimilarity between 
p and the neighbor. For a good prediction, it is 
reasonable to have an upper bound for the 
dissimilarity between ci and its considered 
neighbors.  

b) Adaptation of AA-TPLS. First, we briefly 
describe general ideas of the AA-TPLS in 
Dubois-Lacoste et al 2011. The AA-TPLS 
algorithm has two phases. In the first phase, the 
available single-objective algorithm is separately 
applied on a randomly chosen objective function 
to conduct an initial solution for the next phase. 
(Application on all objective functions is also 
possible. In this case, the best solution according 
to the first scalarization in phase 2 will be taken.) 
Then, in the second phase, a sequence of 
scalarizations will be called; the single-objective 
algorithm is used to solve the problem at each 
scalarization. Solution obtained from a 
scalarization will be used as the initial solution 
for its succeeding scalarization. Non-dominated 
solutions are also saved in an archive. The set of 
weight for each objective function in each 
scalarization is adaptively determined based on 
solutions from previous scalarization to 
guarantee the coverage the true-Pareto front. 

The challenge when applying AA-TPLS to our 
problem lies in the algorithm’s sequential 
implementation. Each step in phase 2 just provides 
only one solution, so that if the single-objective 
algorithm requires too large running time, it might 
be impossible to get a reasonable number of Pareto-
optimal solutions. In the literature of algorithm 
configuration techniques, for problem with large 
number of parameters (more than 24), the 
appropriate amount of each configurator’s run 
should be at least 10 hours. Therefore, the sequential 
implementation of AA-TPLS should be modified in 
order to deal with such an expensive computational 
running time. Here we propose a parallelization of 
AA-TPLS’s phase 2 as depicted in Figure 1. We still 
keep a part of the sequential property due to its 
important role: adapting weight values in 
scalarizations based on information from previous 
steps to ensure the diversity of the obtained 
approximation front. The new scheme of phase 2 has 
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k sequential steps. At each step, n different 
scalarizations are run in parallel. In order to guide 
the search better, we can let them cooperate with 
each other: after some time interval, the best 
solutions obtained so far of every parallel 
scalarization are put into a global archive, then each 
scalarization will check this archive for a better 
solution than the best one found by itself, based on 
its currently used set of weight, if such a solution 
exists, it will be updated into the scalarization 
searching process. 

It is worth noting that besides the usage of 
capping strategies mentioned in previous part, 
performance value (for each objective function) of 
the best solution found so far on every run problem 
instances will also be saved, and the order of 
training instances considered in every parallel 
scalarization at the same step are fixed. Thanks to 
that, when the best configuration c from some 
scalarization si

r is considered for entering some other 
scalarization sj

r, the computational cost of evaluating 
c according to the sj

r’s set of weight will be lower, 
since we just need to run c on problem instances in 
si

r that have not been saved yet. 
Besides, order of instances in the training set also 

influences ParamILS’s or GGA’s results. Since at 
each iteration, just a subset of the training set is used 
for configuring in order to save computational cost, 
this subset is extended gradually after time, so that 
the more iterations the algorithm runs, the more 
exact the estimation of performance measure value 
on the whole training set is. Therefore, in this AA-
TPLS, to deal with such a variance, order of training 
instances are randomly shuffled after each step of 
phase 2. 

 

Figure 1: Parallel scheme of AA-TPLS’s phase 2. 

2.2.3 Integration of Preference Information 

Trade-off between two considered performance 
measures is possible. For example, given two 
configurations c1 and c2, if the percentage of 
corresponding optimal solutions are respectively 
90% and 70%, while the total average running time 
of c1 is just some second less than c2, c1 is certainly 
preferred. Consequently, extreme points towards the 
average running time axis are not interesting and 

could be ignored. Moreover, configurations with 
small optimality gap for hard unsolved instances are 
also preferable. Integration of such preference 
information into the configuration algorithm is 
useful to reduce the computational effort and make a 
better matching with algorithm designer’s desire. 
We are in presently collaborating with Tanaka, the 
author of the target algorithm SiPSi, to identify 
characteristics of this integration.  

3 THE SECOND MOTIVATION 

In this section, we explain the second algorithm 
configuration problem supporting the need for a 
multi-objective algorithm configurator: the case 
when the target algorithm is a non-exact Multi-
Objective Optimization Algorithm (MOOA). 

Given a MOOA configuration c and problem 
instance p, the result obtained from a run of c on p is 
an approximation set of the optimal Pareto front. In 
order to compare two MOOA configurations based 
on p, we can use different performance assessment 
methods, including unary indicators, binary 
indicators, statistical testing on multiple-run and 
attainment function analysis. We refer to Ziztler et 
al., 2008 for a comprehensive description. Among 
these methods, the unary indicator approaches, in 
which a real-value is assigned to each approximation 
set to define a total order in the objective function 
space, are the ones that usually require the lowest 
computational cost. However, each indicator has its 
own preference and might bias towards some 
specific parts the true Pareto front. As suggested in 
Knowles et at., 2006: “Each unary indicator is based 
on different preference information - therefore using 
them all will provide more information than using 
just one”. Indeed, different unary indicators could 
give inconsistent conclusion, as observed in the 
experimental results of Jaeggi et al 2008. Moreover 
preference of some unary indicators have been 
theoretically shown, as e.g. in the analysis of 
hypervolume indicator in Auger et al., 2012 and of 
the R2 indicator in Brockhoff et al., 2012. Hence, 
the configuration task for a MOOA could be done as 
follows: first, a multi-objective algorithm 
configurator is used to find a set of good parameter 
configurations based on a set of unary indicators as 
performance measures; then, a post-processing step 
starts, in which a final best algorithm configuration 
is decided based on more expensive assessment 
methods, e.g., statistical testing over several runs 
with different indicators. 

Scalarization 1
1 Scalarization n

1 … 

Scalarization 1
k Scalarization n

k … 

Step 1 

Step k 

. . . 
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4 CONCLUSIONS 

In this paper, we present two algorithm 
configuration problems in which more than one 
performance measures should be considered at the 
same time, leading to a multi-objective algorithm 
configurator. Development of the solving approach 
is still in progress. We are currently focusing on the 
first problem: balancing between algorithm 
configuration’s robustness and speed, while the 
second one is reserved for our future work. Although 
several single-objective configurators with 
significant performance have been proposed in the 
literature, the application in a multi-objective 
context is quite challenging. However, we believe 
that such an effort is worthwhile. The consideration 
of more than one algorithm performance measure 
during the automated configuration process and the 
postponement of the final choice to a deeper analysis 
in a post-processing phase will give more flexibility 
to the algorithm designer. Indeed, the definition of a 
good algorithm configuration in practice usually 
depends on various performance perspectives. 

ACKNOWLEDGEMENTS 

The authors would like to thank Professor Thomas 
Stutzle for his valuable comments. This work is 
supported by the Belgian Science Policy Office 
(BELSPO) in the Interuniversity Attraction Pole 
COMEX. (http://comex.ulb.ac.be) and by Research 
Foundation Flanders (FWO). 

REFERENCES 

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A 
gender-based genetic algorithm for the automatic 
configuration of algorithms. In Principles and 
Practice of Constraint Programming-CP 2009 (pp. 
142-157). Springer Berlin Heidelberg. 

Basseur, M., Zeng, R. Q., & Hao, J. K. (2012). 
Hypervolume-based multi-objective local search. 
Neural Computing and Applications, 21(8), 1917-
1929. 

Brockhoff, D., Wagner, T., & Trautmann, H. (2012). On 
the Properties of the R2 Indicator. In Proceedings of 
the fourteenth international conference on Genetic and 
evolutionary computation conference (pp. 465-472). 
ACM. 

Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. 
(2011). Improving the anytime behavior of two-phase 
local search. Annals of mathematics and artificial 
intelligence, 61(2), 125-154. 

Hoos, H. H. (2012). Automated algorithm configuration 
and parameter tuning. In Autonomous Search (pp. 37-
71). Springer Berlin Heidelberg. 

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. 
(2009). ParamILS: an automatic algorithm 
configuration framework. Journal of Artificial 
Intelligence Research, 36(1), 267-306. 

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2010). 
Automated configuration of mixed integer 
programming solvers. In Integration of AI and OR 
Techniques in Constraint Programming for 
Combinatorial Optimization Problems (pp. 186-202). 
Springer Berlin Heidelberg. 

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). 
Sequential model-based optimization for general 
algorithm configuration. In Learning and Intelligent 
Optimization (pp. 507-523). Springer Berlin 
Heidelberg. 

Jaeggi, D. M., Parks, G. T., Kipouros, T., & Clarkson, P. 
J. (2008). The development of a multi-objective tabu 
search algorithm for continuous optimisation 
problems. European Journal of Operational Research, 
185(3), 1192-121 

Knowles, J., Thiele, L., & Zitzler, E. (2006). A tutorial on 
the performance assessment of stochastic 
multiobjective optimizers. Tik report, 214, 327-332. 

López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., & 
Birattari, M. (2011). The irace package, iterated race 
for automatic algorithm configuration. IRIDIA, 
Université Libre de Bruxelles, Belgium, Tech. Rep. 
TR/IRIDIA/2011-004. 

Smit, S. K., & Eiben, A. E. (2011). Multi-problem 
parameter tuning using BONESA. In Artificial 
Evolution (pp. 222-233). 

Stützle, T., & López-Ibáñez, M. (2013, July). Automatic 
(offline) configuration of algorithms. In Proceeding of 
the fifteenth annual conference companion on Genetic 
and evolutionary computation conference companion 
(pp. 893-918). ACM. 

Tanaka, S., & Fujikuma, S. (2012). A dynamic-
programming-based exact algorithm for general 
single-machine scheduling with machine idle time. 
Journal of Scheduling, 15(3), 347-361. 

Zitzler, E., Knowles, J., & Thiele, L. (2008). Quality 
assessment of pareto set approximations. In 
Multiobjective Optimization (pp. 373-404). Springer 
Berlin Heidelberg. 

Motivations�for�the�Development�of�a�Multi-objective�Algorithm�Configurator

333


