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Abstract: Accurate prognostication is central to the management of breast cancer, and traditional clinical and 
histochemical-based assessments are increasingly augmented by genetic tests. In particular, the use of 
microarray data has allowed the creation of molecular disease signatures for the early identification of 
individuals at elevated risk of relapse. However, tailoring therapy on the basis of a molecular assay is only 
recommended in certain cases, and the identification of a minimal set of genes whose expression allows 
informed decision-making in a broader spectrum of disease remains challenging. Finding an optimal 
solution is, however, an intractable computational task (i.e. retrieving the smallest group of genes with the 
greatest prognostic power). Our solution was to reduce the genetic search-space by using two filtering steps 
that enriched by biological function those genes whose expression discriminated disease states. In this way, 
we were able to identify a new molecular signature, the expression characteristics of which facilitated the 
classification of intermediate risk disease. We went on to create a statistical test that confirmed the 
relevance of our approach by comparing the performance of our signature to that of 1000 random 
signatures. 

1 INTRODUCTION 

Assessment of a number of clinical features is made 
at presentation in order to identify women at 
elevated risk of an aggressive disease course, and so 
inform disease management. These include estrogen 
receptor (ER) status, size of the primary lesion and 
lymph node involvement. Adjuvant hormone 
therapy is very effective in preventing recurrence of 
disease, but side effects are such that sparing 
individuals at low risk of relapse from intensive 
therapy has significant quality of life implications. 
However, there is a considerable margin of error, 
and as many as 80% of women may be over-treated 
and improving outcomes by identifying a more 
informative list of biomarkers remains a challenging 
task (Van’t Veer et al., 2002). Genome-wide 
transcriptional profiling methods (such as 
microarrays) provide a snap-shot of gene activity in 
a cell, and by correlating patterns of gene expression 
in the primary lesion with outcomes, a number of 

investigators have sought to identify molecular 
signatures characteristic of different tumour sub-
types (Wesolowski, 2011).  

Diagnostic tests informed by molecular 
signatures of high risk disease are available for use 
in clinical practice, and recently use of the Oncotype 
DX Breast Cancer assay (Paik et al., 2004) was 
approved by the UK’s National Institute for Clinical 
Excellence (NICE) for use in the management of a 
sub-group of patients with an intermediate risk of 
tumour recurrence (guidance.nice.org.uk/DT/4). 
Specifically, inclusion criteria are a Nottingham 
Prognostic Index (NPI)>3.4 (calculated from 
primary lesion size, lymph node involvement and 
tumour grade (Galea et al., 1992)), ER positivity, 
and negativity for both lymph node involvement and 
HER2 status. 

We feel that there is value in investigating means 
to identify a prognostic fingerprint of wider 
applicability. From a computational perspective, 
biomarker discovery can be modelled as a feature 
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selection problem that aims to classify disease into 
high and low risk groups according to the expression 
characteristics of a minimal set of discriminating 
genes assayed at presentation. However, most 
traditional feature selection methods, such as gene-
based techniques that use fold-change, t-test or 
relative entropy criteria, or group-based methods 
(including sequential forward/ backward selection), 
tend to ignore the rich biological data created by 
gene expression studies. Functional enrichment (i.e. 
the selection of genes with a known disease 
association) rather than simple statistical filtering 
methods have been used to inform cancer 
stratification. (Guo et al., 2005; Khunlertgit and 
Yoon, 2013; Wang and Chen, 2011) made use of 
knowledge curated in biological pathway databases 
(particularly the Kyoto Encyclopedia of Genes and 
Genomes, KEGG; www.genome.jp/kegg) or a 
structured biological language (notably gene 
ontologies described by the GO consortium; 
www.geneontology.org) to reduce the 
dimensionality of the genetic search space and 
increase the biological relevance of potential 
biomarkers identified. Previously, we described an 
enhancement to this pipeline, in which an initial step 
to identify pathways perturbed in a disease state was 
followed by a round of gene network analysis to 
further enrich for genes whose expression correlated 
with disease outcome (Ibrahim et al., 2012). We 
found that this improved disease stratification in a 
series of publicly-available retrospective datasets.  

However, other work has cautioned that great 
care must be taken when data from prognostic 
signatures are used in clinical decision-making 
(Venet et al., 2011). Therefore, we sought to test the 
performance of a signature created using our 
approach to other biomarker selection methods, and 
to the prognostic power of the genes constituting 
Oncotype DX in a population of intermediate risk 
disease for whom additional prognostic information 
is particularly valuable (specifically ER positive, 
lymph node negative disease).  Moreover, we went 
on to confirm the informative power of our signature 
relative to those of random signatures. 

2 ONCOTYPE DX BREAST 
CANCER GENE SET 

Oncotype DX is an RT-PCR based assay that 
measures the expression of 16 cancer-associated 
genes (as well as a panel of five internal controls) in 
a sample of RNA prepared from a primary tumour 

biopsy, returning a Recurrence Score ranging from 0 
(low risk) to 100 (high risk; (Paik et al., 2004). The 
constituent genes are grouped by function (Figure 
1), and were selected using a rational heuristic. We 
used the expression profiles of these genes in the 
various datasets to estimate the prognostic power of 
Oncotype DX. 

 

Figure 1: Constituent genes of the Oncotype DX breast 
cancer assay (adapted from Paik et al., 2004). 

3 UNSUPERVISED BIOMARKER 
SELECTION 

3.1 Datasets  

Van Vliet et al, (Van Vliet et al., 2008) described a 
group of primary breast cancer microarray datasets 
that were all created using an Affymetrix U133A 
array platform, useful in the systematic interrogation 
of genetic information for prognostic insights. These 
data are freely available from the Gene Expression 
Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/), with 
accessions GSE7390 (Desmedt et al., 2007) and 
GSE2990 (Loi et al., 2007), and from Array Express 
(www.ebi.ac.uk/arrayexpress) with the accession E-
TABM-158 (Chin et al., 2006). Relevant patient data 
(including tumour size and time of follow up) are 
also available from these sources. Gene expression 
data were normalised across all datasets using 
Relative Log Expression (RLE) and the Normalized 
Unscaled Standard Errors (NUSE) methods. In total, 
we were able to identify 154 samples from 
individuals who received no adjuvant therapy. 
Samples were split in to two classes according to 
disease outcome: class 1 (disease recurrence, 71 
samples in total) and class 2 (no recurrence, 83 
samples in total). Transcripts were included in 
biological enrichment analysis if they were 
differentially expressed between classes according to 
the following criteria: fold change>=1.5 and p-
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value<0.05 (by t-test). We used median rather than 
mean expression values to mitigate the contribution 
of outliers. 

3.2 Biomarker Selection 

i. Data from individual microarrays were randomly 
split into training and testing sets, each set with 
an equal representation of disease subtypes. 
Specifically, the training set contained 78 
samples (of which 42 had disease recurrence and 
36 had no recurrence) and the testing set 
contained 76 samples (of which 41 had disease 
recurrence and 35 had no recurrence). 

ii. Expression data from training sets were 
subjected to enrichment using pathways 
imported from the open-access KEGG database 
(www.genome.jp/kegg/). Over-representation of 
members of any of the 108 signalling pathways 
maintained in KEGG were determined by z-score 
as previously described (Ibrahim et al., 2012). 
Ranking pathways by descending score readily 
allowed identification of those most impacted 
with disease state. 

iii. A gene list p was created from members of k 
high-scoring pathways whose expression could 
be detected on the arrays (but may not 
necessarily have showed a change in expression 
between disease states). We evaluated the 
performance of signatures derived from 
increasing values of k. 

iv. At this stage, two methods were evaluated. 
To model existing pathway enrichment methods, 
genes were ranked by fold change, and the 
classification accuracy of increasing numbers of 
genes investigated according to stage vi). We 
termed this method PE_DEGs (for Pathway 
Enrichment and Differentially Expressed Genes). 
Alternatively, we proceeded to step v) in order to 
evaluate an improvement in performance 
resulting from an additional biological 
enrichment step. We termed this second method 
PEGNA for Pathway Enrichment and Gene 
Network Analysis. 

v. The gene list p was fed in to the GXNA 
network analysis tool (Nacu et al., 2007), to 
generate a user-specified number of networks. 
Constituent genes from networks of increasing 
size and number were passed to the next stage. 

vi. A minimal biomarker set was identified by 
calculating classification accuracies using 
increasing numbers of genes from the filtered 
group, starting with five genes. The ability of the 
signature to separate high and low risk groups 

was evaluated on the testing dataset using a 
Support Vector Machine (SVM) classifier 
(Cortes and Vapnik, 1995) and a K-fold cross-
validation testing strategy (Efron and Tibshirani, 
1995). If the GXNA enrichment step was used, 
this step was repeated for different sizes of gene 
network to identify the network that yielded the 
most informative genes. 
All analysis was implemented in MATLAB 7.9.0 
(Mathworks, Cambridge, UK).  

4 RESULTS 

4.1 Prognostic Signature Identification  

We created a list of the top 10 KEGG pathways 
impacted when samples from relapsing and non-
relapsing individuals in the training set were 
compared (Table 1). All genes constituting these 
pathways were then fed into GXNA if they were 
expressed on the arrays, irrespective of any change 
with disease subtype.  

Table 1: Top ten KEGG pathways impacted in relapsing 
breast cancer ranked by z-score. 

 Pathway z-score

1 Dorso-ventral axis formation 3.31 

2 Calcium signaling pathway 2.82 

3 Bladder cancer 2.03 

4 Chemokine signaling pathway 1.55 

5 Endocytosis 1.51 

6 Cardiac muscle contraction 1.46 

7 Bacterial invasion of epithelial cells 1.46 

8 Focal adhesion 1.38 

9 Regulation of actin cytoskeleton 1.34 

10 VEGF signaling pathway 1.33 

The testing set was used to build the SVM 
classifier and to evaluate the performance of the 
signature. Seventy-five of the 76 testing samples 
were used to train the SVM classifier, which was 
then tested on the remaining sample. This step was 
repeated 76 times, with a different sample used each 
time to test the classifier.  

The accuracy achieved when the trained 
classifier was used to separate samples into high- 
and low-risk groups based on gene expression 
profiles is shown in Figure 2. While the use of 20 
and 24 genes isolated from the top 10 pathways gave 
the same accuracy (73.7%), we selected latter group 
due to the high sensitivity achieved by this group 
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(74.3%) compared to the 20 gene signature (68.6%, 
Figure 3).  

 

Figure 2: Evaluation of increasing gene numbers selected 
from the 5, 10 and 20 highest scoring KEGG pathways.  

 

Figure 3: Accuracy (ACC), sensitivity and specificity 
achieved with increasing numbers of genes derived from 
the 10 highest scoring KEGG pathways.  

A comparison between PEGNA and PE_DEGs 
confirmed the effectiveness of combining biological 
enrichment methods in obtaining a more informative 
signature (Figure 4). PEGNA achieved a maximum 
accuracy of 73.7% with just 24 genes, whereas 
PE_DEGs achieved a maximum 56.6%, and this 
required 40 genes. A single round of GXNA 
enrichment alone (with no prior pathway 
enrichment) did not match the performance of the 
combined method, possibly as this technique tends 
to find sub-optimal solutions on larger datasets (data 
not shown). 

4.2 Performance  

While accuracy is a useful headline indicator of the 
ability of a classifier to identify those at risk of 
relapse, more meaningful measures include 
sensitivity (individuals with recurrent disease that is 
accurately predicted by the signature) and specificity 
(accurate prediction of individuals in which disease 
won’t   reoccur).   Another   useful   measure   is   an 

 

Figure 4: Accuracy rates achieved by PE_DEGs and 
PEGNA with increasing numbers of genes from the top 10 
scoring pathways. 

indication of the number of patients who would have 
been over- or under-treated, had therapeutic regimes 
been tailored to a predicted disease course. Results 
of this analysis are shown in Table 2. 

Table 2: A comparison of the performance of a novel 24 
gene PEGNA-derived signature with the 16 genes 
constituting Oncotype DX in classifying a retrospective 
untreated group of ER+, LN- breast cancer. 

 Oncotype DX PEGNA 

Accuracy 59% 73.7% 

Sensitivity 48.6% 74% 

Specificity 68% 73% 

True positives 17 26 

False positives 
(over-treated) 

13 11 

True negatives 28 30 

False negative 
(Under-treated) 

18 9 

4.3 Statistical Evaluation of Prognostic 
Signature Performance 

To evaluate the statistical significance of the 
accuracy of the genes constituting the Oncotype DX 
panel and those identified by PEGNA, we 
determined the probability of achieving similar or 
higher classification accuracies by chance. A group 
of 24 genes was randomly selected from the list of 
all expressed microarray genes (of which there were 
14368 in total) from the microarray dataset used to 
define the original signature. This random signature 
was then used to classify the testing samples and an 
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accuracy value was determined. This process was 
repeated 1000 times, each with a distinct random 
signature from which probability was estimated in 
two different ways. 

Firstly, the number of random signatures that 
were at least as accurate as our bespoke signature 
was calculated. We found that only two random 
signatures out of the 1000 performed as well as our 
signature. A p-value for the accuracy of our 
signature (ACCPEGNA) was then calculated using 
Equation 1, and found to be 0.002 (i.e. 2/1000). In 
the same way, the p-value associated with the 
accuracy achieved by the genes constituting the 
Oncotype DX signature was calculated to be 0.126 
(i.e. 126/1000). 

1
( )

( )

n

Rand PEGNAj
PEGNA

I ACC ACC
P ACC

n




  (1)

Where I(X) is the identity function that returns 1 
if X is true and 0 if false, and P(ACCPEGNA) is the 
probability of achieving the accuracy of PEGNA 
signature by chance. 

Secondly, we modelled the classification 
accuracy distribution of the random signatures 
according to the standard normal distribution. Figure 
5 confirms that the histogram of the 1000 
classification accuracies achieved by the random 
signatures is normally distributed. By calculating the 
mean and the standard deviation of classification 
accuracies, one can work out a z-score for the 
accuracy of the PEGNA-derived signature using the 
formula given by Equation 2. By using the standard 
normal distribution table, a p-value for an ACCPEGNA 
value of 73.7% was estimated to be 0.0024. In 
contrast, the p-value associated with achieving an 
accuracy value of 59% using the Oncotype DX 
signature by chance was 0.117 using the same 
method.     

PEGNA mean
PEGNA

ACC ACC
Z

ACC


  

(2)

Where ACCmean and ACCσ are the mean and the 
standard deviation of the accuracy distribution of the 
random signatures. 

5 CONCLUSIONS 

The increasingly multidisciplinary management of 
breast cancer has led to a significant improvement in 
survival outcomes.   One reason for this 
improvement is the use of research into improved 
prognostication and prediction of treatment 
response.   For  example,  the  advent  of  microarray 

 

Figure 5: Distribution of accuracy values achieved by 
1000 random 24 gene signatures. Performance of both 
Oncotype DX and PEGNA-derived signatures are 
indicated. 

technology has led to the identification of specific 
molecular signatures that have enhanced the 
accuracy of traditional tumour prognostic factors, for 
example lymph node status.  However, despite these 
improvements, there remains a degree of uncertainty 
in tailoring adjuvant treatment to patients in certain 
prognostic groups.  For example, the Intermediate 
Risk of Recurrence patient category (based on the 
calculated NPI and Oncotype DX analysis) is a 
difficult group for which to plan treatment.  While 
we tested our algorithm on a broad selection of ER+, 
lymph node negative disease, we also attempted to 
evaluate the performance of molecular signatures on 
a sub group of disease meeting the NICE guidelines 
of NPI>3.4 and HER2 negativity, but the number of 
samples that met these criteria represented only a 
very small subgroup of intermediate risk disease.  It 
is also important to note that we did not use the 
Oncotype DX assay per se, rather we trained our 
classier to discriminate between disease groups 
based on the expression of its constituent genes 
identified in a larger microarray dataset, which will 
most likely have implications for performance.  

The experiments presented in this paper provide 
a proof-of-concept for the potential clinical utility of 
genetic signatures derived from computational 
methods, and we feel that our approach will enhance 
prognostic and predictive value. We intend to 
validate our results by conducting further studies on 
the correlation between tumour gene expression 
characteristics and patient outcomes in a clinical 
setting. 
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