
Domain-specific Languages as Tools for Teaching 3D Graphics

Kęsik Jacek1, Nowakowski Kamil2 and Żyła Kamil1
1Institute of Computer Science, Lublin University of Technology, 36b Nadbystrzycka St., Lublin, Poland

2Independent consultant, Lublin, Poland

Keywords: 3D Graphics, Domain-specific Languages, Model-Driven Engineering, Modeling Shaders, Teaching.

Abstract: Model-driven engineering is constantly gaining importance, expanding to domains varying from the Web to
the 3D graphics. Domain-specific languages besides contributing to the development process can be used in
a didactic process conducted not only in schools. Thus this paper introduces new domain-specific language
and discusses its usage in teaching construction of shaders and materials while working with 3D graphics. It
presents the authors stance regarding the usefulness of domain-specific languages in education of 3D
graphics development.

1 INTRODUCTION

During a process of creating 3D computer
visualizations, as well as games, developers use
specialized tools, including self-made ones. One of
these tools is materials editor, which main purpose is
defining optical properties of lighted surfaces on the
3D stage. Each material can be described by a set of
parameters which allows to obtain and customize
effects like - reflections, mattness, surface
distortions etc. These sets are then passed to
a specially designed program running on a graphics
card, called shader, which purpose is to color and
illuminate particular pixels on the screen (de
Carvalho, Gill and Parisi, 2004).

Graphics card is a device specialized in image
processing, vertex transformations (e.g. animation of
3D models of plants), triangles rasterization, etc.
Moreover, shaders are usually the subject of strong
parallelization performed on many graphics
processors. As the result a programmer or a graphic
designer needs to know low-level architecture and
commands specific for this environment. As can be
expected only limited number of people is able to
work on mentioned graphical effects without the
help of specialized tools, usually designed for
specific purpose. Inexperienced programmers face
major difficulties with reading and understanding
shaders written in specialized language.

These factors cause the need of seeking for
higher-level solutions, that are able to ease-up and
speed-up work of people involved in 3D graphics

and to extend this group by lowering requirements
concerning shader design knowledge. Thus the idea
of utilizing model-driven engineering (MDE)
concepts during teaching and development process,
in the 3D graphics domain, is quite attractive.

This paper is organized in three main sections.
First presents evolution of languages for 3D graphics
leading to the usage of domain-specific languages
(DSLs). Next one introduces new DSL for building
shaders and materials from its usage in a didactic
process point of view. Last one describes authors’
experiences concerning incorporation of MDE in
a teaching process.

2 3D GRAPHICS AND MDE

One of the most programmatically complex tasks in
3D graphics development is generation of materials
and effects using shaders - subprograms uploaded
and executed by graphic card unit. It is almost
natural application for DSL languages, as typical 3D
developers not necessarily possess high level
programming skills required for that task. It has been
already noticed by main players on the market and
suitable DSLs are implemented into their 3D
development environments.

Initially shaders were programmed in low-level
language similar to Assembler, where programmer
worked on particular processor instructions,
registers, banks, etc. Also, performing micro-
optimizations by “tricks” was common practice

498 Jacek K., Kamil N. and Kamil Ż..
Domain-specific Languages as Tools for Teaching 3D Graphics.
DOI: 10.5220/0004884404980503
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 498-503
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

(Bailey and Cunningham, 2012). Listing 1 presents
exemplary part of simple shader, and listing 2
presents the same part after simple optimization by
replacing few processor instruction with one, which
is equivalent to: (A - 0.3) × 2.5 = A × 2.5 + (-0.75).
It is easy to imagine, the code complication level of
a typical, optimized shader.

Listing 1. Part of exemplary shader.

def c0, 0.3, 2.5, 0 , 0

textld r0, t0
sub r0, r0, c0.x
mul r0, r0, c0.y

Listing 2. Part of exemplary shader after
optimization.

def c0, -0.75, 2.5, 0 , 0

textld r0, t0
mad r0, r0, c0.y, c0.x

The need for more programmer friendly syntax was
obvious. Next step in evolution of languages for
programing shaders has been triggered by popularity
of C / C++ languages. Their programmer friendly
syntax was inspiration for High Level Shader
Language (HLSL) for DirectX (Feinstein, 2013),
OpenGL Shading Language (GLSL) for OpenGL
(Rost et. al., 2010) and Cg language for both
platforms. They became popular as they speed-up
development process, ease-up maintaining code and
decrease number of code version iterations needed to
obtain final effect. Listing 3 presents exemplary
shader written using C / C++ like language.

Listing 3. Basic shader written in C / C++ like

language.

void main (void)
{
 vec4 base = texture2D(text, uv);
 gl_FragColor.rgb = mix(
 gl_Fog.color.rgb,
 base.rgb * ambient,
 fog_param);
 gl_FragColor.a = base.a;
}

Currently, in parallel to the above mentioned
languages, state of the art (sharing in some degree
MDE concepts) solutions exist. They are developed
and published along with well-known commercial
and open source projects for 3D graphics
manipulation and game design. The nature of such
projects - releasing to the broad audience of users,
implies the need for maximal ease of converting

designer’s concepts to the shader language. The
approaches worth mentioning are presented below.

Blender’s Node Editor. The concept of designing
materials covering the objects has been made
available to basic level users by utilizing Node
Editor. It allows to graphically mount visual effects
applied to the material. The whole process of
designing effect is reduced to connecting graphical
units (nodes) and adjusting parameters. The
connection is kept in tree model allowing for many
outputs and single input of a node. The graphical
representation of a node allows for in-place
presentation of the effect acquired at the specific
point (Valenza, 2013). The example of whole
concept is presented in the figure 1. The nodes
available for designer are grouped into sets
dedicated to different aspects of material creation.
The user of Node Editor is required only to possess
knowledge about specific material creation, without
the need to understand low or high level shader
language.

3DS Max Slate Material Editor. The Slate
Material Editor is designed according to the same
concepts, thus the overall look of it is similar to the
Node Editor. One can argue which one borrows
concepts from which. The design elements are
divided into Material, Map and Controller units,
where material is the main object, controlled by
connecting sets of other type objects. Final solution
is connected to the graphical object of choice. As in
the Node Editor case, the user is required only to
possess knowledge about specific material creation.
His actions are applied instantly to the connected
graphical element but a render pass is required to
actually see the changes on an object (Murdock,
2011).

UDK Editors. The Unreal Development Kit
provides several DSLs as an aid in game
development. The Material Editor is another
example of “connect objects” approach to material
creation, resulting in creation of specific shader. It is
similar in user operation to other approaches. What’s
more, the created materials can be used by a set of
additional tools e.g. Cascade Particle Editor
allowing for, simple in operation, conducting of
complicated task like preparing system of particle
emitters (Doran, 2013). UDK is also equipped with
Kismet DSL - much more complex approach. Due to
its general game control purpose, not fixed on
developing shaders, it is not considered in this list.

All of these approaches share the same concepts
of connecting elements and behaviours well known
to 3D object designers, thus it is quite simple for
them to develop materials accordingly to their needs.
The similarity and utilization of common
concepts allows for simplification of explaining used

Domain-specific�Languages�as�Tools�for�Teaching�3D�Graphics

499

Figure 1: Example of a node type of DSL for defining materials for 3D object. Solution utilized in Blender.

approaches, thus improving education process both
in classroom and tutorial approach.

3 ROLE OF SKINSHADER IN
EDUCATION OF GAME
DESIGN

Language introduced in this chapter has been created
as a response for needs of team developing massive
multiplayer online role play game, based on the state
of art 3D engine (Barok engine). Despite of
existence of proven tools, noticeable part of their
users were not able to create advanced shaders due
to insufficient knowledge. Another factor was rapid
upgrades in the engine forced by arousing needs of
developed game. Standard game control script
language would become too unstable to be used by
inexperienced developers. The goal of developed
graphical DSL - SkinShader was to provide simple
high-level solution that could be used either for
game control or for creating advanced shaders as
well as training inexperienced team members.

Language components were inspired by
a solution provided with Blender for building
materials. Its main concepts are units (nodes)
performing particular actions and connections,
between them, determining flow of information.
Another key concept is master unit, special case of
regular unit that gathers all connections from other
units in order to orchestrate execution of model and
code generation. Each unit has input and output of
specific type - it means that unit can compute input
values only of types predefined for the particular
unit, the same applies for the output of the unit. Such
mechanisms allow to minimize errors among
beginners and speed-up obtaining fully functional
results exemplifying theoretical topics. Another
advantage is the optical similarity to widely used
Entity-Relationship Diagrams (ERD), which makes
the look (figure 2) of language more familiar

(Nowakowski, 2013).
One of the key aspects during teaching process is

curiosity of trainees, who very often invent ideas and
applications beyond the imagination of the language
creator. Also the ability of adjusting solution
according to technological changes and development
requirements, decides of its usability. Introduced
DSL was designed keeping in mind its flexibility
and expandability, thus it can be expanded by
defining new components using syntax similar to
JSON and implemented scripting engine (Lua).

A clearly arranged interface allows for quick
learning of beginners and also does not slow down
the ones possessing expertise in its usage. Ability to
group elements eases navigation in complex designs
while built-in schema evaluator takes the burden of
checking the correctness of connections. It is
especially important in the early learning stage,
when simple mistakes are most likely to occur.

Another important issue is the quality of
generated code. Optimization is very important in
developing shaders where every millisecond counts.
Presented DSL has been equipped with optimization
mechanisms allowing for generation of fast working
shaders. The resulting code is thus made even more
unfriendly to editing due to random variable names
but its hand edition is not assumed.

A gross of actions is kept behind the stage. The
developer does not need the overall, high level
knowledge about developing and optimizing shaders
to create complex materials. Using the primary
mathematical operations and visual representation of
calculation process, the developer can construct
a technologically advanced code, consistent with
many standards.

While the general purpose of SinShader creation
was to make available conceptual creation of
material shaders, irrespective of technology and
architecture changes, it has proven to be an
important aid in teaching of material creation
concepts. It allows for explanation of an approach on
a conceptual level while on the other hand enables

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

500

Figure 2: Interface of SkinShader editor.

presentation of working solution. All that without
diving into nuances of shader-specific languages.

4 MDE IN A TEACHING
PROCESS

MDE and DSLs are not commonly used concepts in
regular academic education curricula. Current
techniques are mostly focused on teaching methods
of object programming in languages of the 3rd
generation. Introduction of MDE (and especially
DSLs) allows, in specific applications, for rapid
progress to concepts explanation and
implementation without the need for prior
acquaintance to specificity of general purpose
language (GPL) doing its work on lower level.
Students specializing in specific branch are not
forced to first learn the actual GPL used by teacher
to explain concepts, while in their future career they
might be using completely different one. It also
minimizes issues that due to teachers’ abilities and
attitude, students have to learn set of different 3rd
generation languages during one specialization,
which is not directly dedicated to teaching of these
languages.

Teaching of DSL concepts has been introduced
by authors in the course of web-design, where the
standard development method has been substituted
with MDE approach (Parreiras, 2012). While
seeking to confirm the statements presented above

a set of surveys has been conducted among students
during conducing of the course. The surveys have
shown (figure 3) a large interest in such teaching
methods, as 70% of students have rated the new
method positively, while 82% declared
comprehension of presented concepts. Nevertheless,
the overall willingness to utilize MDE methods in
web development was quite low: 36% of
respondents. It can be explained by parallel
declaration of high knowledge of web languages,
thus exchanging it to a new concept did not seem
profitable. The students who declared lower level of
web languages knowledge were presenting more
positive attitude. The negative bias in students
attitude could be also created by limitations and
drawbacks of presented solution, which was at the
moment of conducting surveys in not fully mature
stage.

 Authors performed also a short informal
evaluation of the SkinShader. Besides developers
team, language was also introduced to members of
student organization dealing with 3D graphics and
animation. At first, students have been acquainted
with the tool by presenting the step-by step process
of simple tasks development. During the process
they were encouraged to ask questions and propose
next-step solutions. In the following phase students
were asked to implement minor changes in already
developed solutions. They were allowed to ask for
help with performing specific tasks of their concept.
The last stage was the singlehandedly development
of specific real life concept of limited complexity,

Domain-specific�Languages�as�Tools�for�Teaching�3D�Graphics

501

for the purpose of 3D visualisation of historic city of
Lublin.

Figure 3: Results of survey on MDE concepts in web
design.

In general, SkinShader as a tool for creating
advanced shaders in real life projects, has been
received positively. Students highlighted its
simplicity and suggested that they would like to
learn this language during regular classes. 80% of
students were able to accomplish their tasks without
the need of significant help. 53% of respondents
were able to accomplish task without the help.
Moreover, the surveys have shown (figure 4) a large
interest in such teaching method, as 73% of students
have rated the new method positively, while 87%
declared comprehension of presented concepts. The
overall willingness to utilize MDE methods in real

Figure 4: Results of survey on MDE concepts in 3D
graphics design.

life 3D graphics projects was quite high: 53% of
respondents. Authors believe that this enthusiasm
might be related to the state of knowledge of
respondents, as they were less experienced in low-
level programming of domain problems, then
respondents working on Web technologies.

More detailed research will be conducted after
introducing concepts of DSLs for modeling 3D
graphics and animation into curricula. Nevertheless,
the overall summary of surveys was encouraging to
further introducing of MDE concepts into another
courses, especially of not highly programmer
focused branches.

5 CONCLUSIONS

Model-Driven Engineering is a very specific branch
of software engineering, where opposite opinions
concerning its usefulness, aside from didactic
process, are fighting against each other. Particular
MDE-like solution have chances to be widely
accepted only when provides fair amount of
flexibility and usability exceeding the cost of
learning new solution. Also, personal preferences of
developers play major role. It can be argued that
developers possessing fair knowledge on solving
domain problems will less likely switch to using
technology that can potentially limit their freedom.

DSL for 3D graphics leverages programming to
the conceptual modeling, which allows usage of
domain experts’ knowledge and rapid prototyping.
Nevertheless, stating that complete newbie in
particular domain can grasp all rules of language
adjusted to the specific domain is a bit risky. In other
word person pretending to use particular domain
language has to know basic concepts of this domain.
The learning process is though, in authors opinion,
significantly faster than the regular one.

The presented SkinShader possess several
features encouraging to use it as a training language
in 3D development course. These features are
common in the whole category of MDE solutions.

First the automation of low-level operations rises
the abstraction level, minimizing the need for such
specific knowledge. Developer can obtain the
optimized solution not even being aware of the
optimization process behind the scene. Secondly it
provides the graphical platform independence,
reliving the developer from the burden of attending
to nuances of different types of graphics cards. The
whole weight of this process is on the generator side,
also assuring its implementation wherever it is
needed. And as a final one, the rapid development of

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

502

materials and their shaders clearly supports the
development process allowing for onsite testing of
different approaches without losing time for coding
it into specific shader syntax. All of that creates
a developing environment on a conceptual level,
especially suitable for teaching purposes.

From the education point of view the
introduction of MDE is starting to prove successful,
thus MDE aspects are more often introduced into
educational programs. The student can fully
concentrate on conceptual aspects of learned domain
without the distraction of learning specific language
syntax. It applies to 3D design as well. Authors can
state that SkinShader DSL used by them in
educational process has proven successful, what has
been confirmed by opinion of students involved in
3D design projects. The presented solution has been
usually described as comprehensible, elastic and
worth learning.

REFERENCES

Bailey, M. and Cunningham, S. (2012). Graphics Shaders:
Theory and Practice. CRC Press.

de Carvalho, G. N. M., Gill, T. and Parisi, T. (2004). X3D
programmable shaders. In Proceedings of the ninth
international conference on 3D Web technology,
ACM, New York, (pp. 99 - 108). doi:10.1145/
985040.985055

Doran, J. P. (2013). Mastering UDK Game Development.
Packt Publishing.

Feinstein, D. (2013). HLSL Development Cookbook. Packt
Publishing.

Murdock, K. L. (2011). 3ds Max® 2012 Bible. Chapter
15, John Wiley & Sons.

Nowakowski, K. (2013). Dokumentacja Barok Engine.
Retrieved October 23, 2013, from http://
barokengine.com/dokumentacja/

Parreiras, F. S. (2012). Semantic Web and Model-Driven
Engineering. Wiley.

Rost, R. J., Licea-Kane, B. M., et al. (2010). OpenGL
Shading Language (3rd Edition). Addison-Wesley.

Valenza, E. (2013). Blender 2.6 Cycles: Materials and
Textures Cookbook. Packt Publishing.

Domain-specific�Languages�as�Tools�for�Teaching�3D�Graphics

503

