
Designing Reusable Systems That Can Handle Change
Description-Driven Systems: Revisiting Object-oriented Principles

Richard McClatchey, Andrew Branson and Jetendr Shamdasani
Centre for Complex Cooperative Systems, University of the West of England, Bristol, U.K.

Keywords: Description-Driven Systems, Object Orientation, Reuse, System Evolution.

Abstract: In the age of the Cloud and so-called ‘big data’ systems must be increasingly flexible, reconfigurable and
adaptable to change in addition to being developed rapidly. As a consequence, designing systems to cater
for evolution is becoming critical to their success. To be able to cope with change, systems must have the
capability of reuse and the ability to adapt as and when necessary to changes in requirements. Allowing
systems to be self-describing is one way to facilitate this. To address the issues of reuse in designing
evolvable systems, this paper proposes a so-called description-driven approach to systems design. This
approach enables new versions of data structures and processes to be created alongside the old, thereby
providing a history of changes to the underlying data models and enabling the capture of provenance data.
The efficacy of the description-driven approach is exemplified by the CRISTAL project. CRISTAL is based
on description-driven design principles; it uses versions of stored descriptions to define various versions of
data which can be stored in diverse forms. This paper discusses the need for capturing holistic system
description when modelling large-scale distributed systems.

1 INTRODUCTION

A crucial factor in the creation of flexible object-
based information systems dealing with changing
requirements is the suitability of the underlying
technology in facilitating evolution of the system.
The importance of clearly defined extensible object
oriented models as the basis of rapid systems design
has become a pre-requisite to successful systems
implementation. Exposing a system’s internal
architecture opens up its architecture consequently
allowing application programs to inspect and alter
implicit system aspects. Making these internal
structures explicit allows them to be subject to
scrutiny and interrogation.

Related efforts to tackle the problem of coping
with design evolution have included, ‘active’ object
models (Yoder and Johnson 2002), the capture and
exploitation of so-called mesodata (de Vries and
Roddick, 2007), and schema versioning (Roddick,
2009). However, none of these approaches enables
the design of an existing system to be changed
dynamically and for those changes to be reflected in
a new running version of that design. We advocate a
design and implementation approach that is holistic
in nature, viewing the development object-oriented

software from a systems standpoint. It is based on
the systematic management of the description of
essential systems elements covering multiple views
of the system under design (including data and
process views) using object oriented techniques.

The approach advocated here is termed
description-driven; it involves identifying and
abstracting, at the outset, all the crucial elements
(such as business objects, processes, lifecycles,
goals, agents and outputs) in the system under
design and creating high-level descriptions of these
elements which are stored in a model, dynamically
modified and managed separately from their
instances. In many ways adhering to a description-
driven approach means following very closely the
original, and these days often neglected or poorly
applied, principles of pure object-oriented design
especially those of reuse, abstraction, deferred
commitment, inheritance and loose coupling.

A Description-Driven System (DDS) makes use
of meta-objects to store domain-specific system
descriptions, which control and manage the life
cycles of meta-object instances, or domain objects.
In a DDS, descriptions are managed independently
to allow the descriptions to be specified and evolve
asynchronously from particular instantiations of

109McClatchey R., Branson A. and Shamdasani J..
Designing Reusable Systems That Can Handle Change - Description-Driven Systems: Revisiting Object-oriented Principles.
DOI: 10.5220/0004869801090116
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 109-116
ISBN: 978-989-758-030-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

those descriptions. Separating descriptions from
their instantiations allows new versions of items (or
descriptions) to coexist with older versions. This
separation is essential in handling the complexity
issues facing many computing applications and
allows the realization of interoperability, reusability
and system evolution since it gives a clear boundary
between the application’s basic functionalities from
its representations and controls. The next section
introduces description-driven systems through an
example of their use CERN. The detail of the
CRISTAL model is outlined later.

2 A DESCRIPTION-DRIVEN
SYSTEM IN PRACTICE

Scientists at CERN build and operate complex
accelerators and detectors whose construction
processes are very data-intensive, highly distributed
and ultimately require a computer-based system to
manage the production, assembly and calibration of
components. In constructing detectors like the
Compact Muon Solenoid (CMS, Chatrchyan et al.,
2008), scientists require data management systems
that can cope with complexity, with system
evolution over time and with system scalability.
CMS is a general-purpose experiment that has been
constructed from around a million parts and
assembled in the past decade by specialized centres
distributed worldwide. The construction process was
very data-intensive and highly distributed, its
production models evolved and required a computer-
based system to manage the assembly of detector
components. Detector parts of different model
versions must be handled over time and coexist with
other parts of different model versions. Separating
details of model types from the details of parts
allowed the model type versions to be specified and
managed independently, asynchronously and
explicitly from single parts. Moreover, in capturing
descriptions separate from their instantiations,
system evolution can be catered for while production
is underway and provide continuity in the production
process.

No commercial products provided the
capabilities required by CMS. Consequently, a
research project, entitled CRISTAL was initiated to
facilitate the management of the engineering data
collected at each stage of production of CMS.
CRISTAL is a distributed product data and
workflow management system which makes use of
an OO-like database for its repository, a multi-

layered architecture for its component abstraction
and dynamic object modelling for the design of the
objects and components of the system (Estrella,
2001). The DDS approach has been followed to
handle the complexity of such a data-intensive
system and to provide the flexibility to adapt to the
changing research scenarios found at CERN. Lack
of space prohibits discussion of CRISTAL; a full
description can be found in Branson et al., 2013.

The design of the CRISTAL prototype required
adaptability over extended timescales for system
evolution, complexity handling and for reusability.
In adopting a DDS approach the separation of object
instances from object description instances was
needed. This abstraction resulted in the delivery of a
three layer description-driven architecture. Our
CRISTAL approach is similar to the familiar model-
driven design concepts (OMG, MOF 2004), but
differs in that the descriptions and the instances of
those descriptions are implemented as objects
(Items) and most importantly, they are implemented
and maintained using exactly the same internal
model. Even though workflow descriptions and
instance implementations are different, the manner
in which they are stored and are related to each other
is the same in CRISTAL. This approach is similar to
the distinction between Classes and Objects in the
original definition of object oriented principles
(Wirfs-Brock et al., 1990). We have followed those
fundamental principles in CRISTAL to ensure that
we can provide the level of flexibility,
maintainability and reusability that object orientation
can enable to facilitate system evolution.

3 THE CRISTAL MODEL

CRISTAL is an application server that abstracts all
of its business objects into workflow-driven,
version-controlled 'Items' which are instantiated
from descriptions stored in other Items (Figure 1)
and are managed on-the-fly for target user
communities. Items contain:
• Workflows, that comprise of Activities specifying

work to be done by Agents (either human users
or mechanical/ computational agents via an API),
which then generate:

• Events that detail each change of state of an
Activity. Completion events generate data
detailing the work done, known as:

• Outcomes which are XML documents from each
execution, for which:

• Viewpoints refer to particular versions (e.g. the

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

110

Figure 1: The components of an Item in CRISTAL.

latest version or, in the case of descriptions, a
particular version number).

• Properties are name/value pairs that name and
type items, they also denormalize collected data
for more efficient querying, and

• Collections that enable items to be linked
together.

These Item contents need to be defined when
domain systems are modelled in CRISTAL and are,
crucially, also modelled using the concept of Items.
This is a key difference between DDS and other
model driven systems: description items function in
exactly the same way as other Items; their
workflows consist of activities for managing the data
of the description, and also contain an instantiation
activity that creates new Items from that data in
addition to identifying information for the new
Items. The description and its instance share the
same implementation, which at any level is capable
of being either a model, or an instance, or both. The
construction of the specific CRISTAL model for the
domain under consideration therefore concentrates
on the essential enterprise objects of the system that
could be needed during its lifetime no matter from
which standpoint those objects are accessed. These
enterprise objects each have a creation/modification
/ deletion lifecycle and the CRISTAL model simply
keeps track of status changes to the objects (or
Items) over those lifecycles. This allows it to
orchestrate the execution of Workflows on Items by
Agents, log all Events, Outcomes and Viewpoints
and thereby capture all associated provenance
information associated with the domain system
under study.

The basic functionality of CRISTAL is best

illustrated with an example: using CRISTAL a user
can define product types (such as Newcar spark
plug) and products (such as a Newcar spark plug
with serial number #123), workflows and activities
(to test that the plugs work properly, and mount
them into the engine). This allows products that are
undergoing workflow activities to be traced and,
over time, for new product types (e.g. improved
Newcar spark plug) to be defined which are then
instantiated as products (e.g. updated Newcar spark
plug #124) and traced in parallel to pre-existing
ones. The application logic is free to allow or deny
the inclusion of older product versions in newer ones
(e.g. to use up the old stock of spark plugs).
Similarly, versions of the workflow activities can
co-exist and be run on these products.

Item Description Items hold the templates for
new Items, and also dictate their type (see Figure 1).
These “Item Descriptions” are also declared as Items
(and thus the two can be treated in the same
manner), holding the description data as XML
outcomes managed through workflow activities.
Workflow and Property descriptions are stored as
XML serialized objects. Collection Descriptions are
themselves Collections, pointing to other Item
Descriptions. Outcome Descriptions contain XML
Schema documents which are used to validate
submitted outcomes and aid in data collection, for
instance to generate data entry forms in a stock GUI
for the end users. Also included in the descriptions
are Scripts, code invoked by workflows either
during a change of Activity state to enact
consequences of the execution such as updating a
Property or changing a Collection, or to assess
conditional splits in the Workflow.

As instances of descriptions can also be

Designing�Reusable�Systems�That�Can�Handle�Change�-�Description-Driven�Systems:�Revisiting�Object-oriented�Principles

111

descriptions, it is possible to create intermediate
description layers that specialize and simplify the
architecture of CRISTAL, creating domain specific
modelling languages which can flatten the learning
curve for domain users and ease adoption. The
Agilium system mentioned in section 4 is an
example of such a system – it implements BPM as a
set of CRISTAL descriptions, and their clients can
design and develop applications based on this
simpler design language. Writing to the CRISTAL
object model is impossible from a client process
other than through an activity execution, thus
providing full traceability of the system. Ordinary
activities only create Events and Outcomes, and
modify Viewpoints, so when a script needs to
modify some other part of the model it must invoke
special ‘Predefined Steps’ which are activities that
contain additional logic for modifying the Item’s
Properties, Collections or directory entries. These
Predefined Steps are hard-coded and do not often
change, making their presence in an Item’s history
reliably interpretable. The aim of this rigidity of
write control is to require the design of the lifecycle
of each Item type to explicitly define the full
behaviour of that Item. We see this as a return to the
principles of object modelling that many modern
languages and platforms have neglected in the name
of “rapid prototyping”, whereas a properly designed
meta-model should achieve those without sacrificing
the principles of object orientation.

At a low-level, the versioning mechanism that
gives provenance to the Item instance is the same
mechanism that enables concurrent versioning in the
descriptions. This means that any communication
between different CRISTAL servers can transfer
descriptions in exactly the same way as instances.
Also dependencies can be declared as easily between
abstraction layers as within them. All of these
advantages arise because CRISTAL extends the
original object orientation concept ideas, to more of
its data model than other model-driven systems, in
the same way that Java gains similar advantages
from implementing classes as Class objects. This is
the real benefit of the CRISTAL Item-based design.
A disadvantage to the CRISTAL design is that the
definition of ‘Object’ in the CRISTAL system is an
Item which, while adhering to many core concepts
of object orientation, does not follow the classic
Class/Object model. This is because all
Descriptions, and instances of Descriptions, are
defined as Items in the CRISTAL model. This was
necessary to extend the traceability of the system to
its design as well as its operation, and to simplify the
styles of objects for developers to master.

Some developers in practice find the abstraction
concepts of CRISTAL conceptually difficult to
understand. This is due to the large amount of
terminology involved in the design of CRISTAL as
well as the complexity of its concepts. New
personnel faced a steep learning curve before they
could usefully contribute to the code-base, though
this is not a problem for end-users, as complexity
may be hidden in intermediate description layers.
However, we feel that Items represent a return to the
core values of object orientation, at a time when
modern languages are becoming increasingly
profligate in their implementation of them in the
name of efficiency, thereby sacrificing many of the
benefits that object orientation can offer.

Object-orientation encourages the developer to
think about the entities involved in the system and
the operations required to provide the system’s
functionality, along with their context in the data
model, which together provide the methods of
identified data objects, resulting in an object model.
In recent years, newer programming languages have
tended to focus on object orientation as a means of
API specification, increasing the richness of library
specification and maximizing code reuse, but do
little to encourage proper object oriented design
amongst developers. Unfortunately, with the
increasing popularity of test oriented development
methodologies, developers are encouraged to hack
away in a deliver-early-and-often way from which a
well-thought out object model rarely emerges.

In contrast with CRISTAL the object model must
be designed as a set of Items with lifecycles. While
other non-Item oriented software components are
possible, they cannot store state in the system
without interacting with Item activities, and
therefore are encapsulated as Agent
implementations, and considered external to the Item
model, with a strictly designed outcome
specification stating what they must provide to the
system to have successfully completed their
function. The activities of an Item’s lifecycle are
roughly analogous to object oriented methods, since
they define a single action performed on that Item.
However, it is much harder for an Item’s lifecycle
design to grow out of control with many unused
methods since the lifecycle is defined as a workflow;
the activity set must always form a valid graph of
activities from the creation of the Item to its
completion. This clarity of design through
implementation constraints is a return to the
intentions of the early object oriented languages
such as Smalltalk and the initial restrictions of Java,
which discouraged the developer from using

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

112

mechanisms that could result in messy,
overcomplicated, unmaintainable code, and steer
them towards a core object oriented design with the
system logic intuitively partitioned and distributed in
a manageable way.

The CMS Electromagnetic Calorimeter (ECal)
was constructed from tens of thousands of similar
parts, monocrystals of lead tungstate to be exact, all
needing characterizing and assembling in an optimal
configuration based on sets of detailed
measurements. These characterizations are used in
the final operation of the ECal to determine physical
measurements in the CMS detector. Every
component part was registered as an Item in the
CRISTAL database, each with its barcode as an
identifier. Each part had a type, which functioned as
the Item Description, and was linked to the
Workflow definition that each instance would follow
in order to collect its data and mount sub-parts
(Estrella, 2003). The part types also contained
subtype data as Properties and Collection
Definitions to make sure that parts were assembled
in assigned positions in ECal. All collected assembly
data were stored as Outcomes attached to Events,
and therefore, the entire history of every interaction
with the application was recorded. The result was a
set of Items representing the top level components of
the detector which contained five levels of
substructure, all with their full production history
and with all collected and calculated production data
attached in the correct context.

4 AN EVALUATION OF THE
APPROACH USED IN CRISTAL

Each ECal crystal generated between 2-3Mbytes of
information which was mainly gathered in an
automated data acquisition system which
characterised the crystals in batches over a period of
8-10 hours for each batch of 30 crystals. The whole
data acquisition process took around five years to
complete following an initial testing period which
itself took several months. It was the responsibility
of one CRISTAL application maintainer to ensure as
smooth operation as possible of the data acquisition
and to provide round-the-clock accessibility to the
CRISTAL database and to maintain the descriptions
handled by CRISTAL.

During the six years of near-continuous
operation, the descriptions went from beta to
production then through years of (relatively few)
alterations of the domain logic which necessitated
very little change in the actual server software,

illustrating the flexibility of the CRISTAL approach
(see Table 1). These alterations were minor and
included updates to descriptions of processes and
data sources which were handled by version
management capability of CRISTAL. The server
software only needed to be upgraded seven times,
and of those seven, only one was a required update
that needed to be made available to all users and
servers. This was necessary because some data
formats originally designed proved not to be as
scalable as required; therefore a client update was
required to read the new structures.

The application logic that needs to be executed
during the workflow will have its functionality
conveniently broken down along with the activities.
It is then simple to import these definitions into the
system where it can be immediately tested for
feedback to the users. Improvements can thereby be
quickly performed online, often by modifying the
workflow of one test item, which then serves as a
template for the type definitions. Items subject to the
improvements can co-exist with items generated
earlier and prior to the improvement being made and
both are accessed in a consistent, reusable and
seamless manner. All this can be done without
recompiling a single line of code or restarting the
application server, providing significant savings in
time and enables the users to work in an iterative and
reactive manner that suits their research. This shows
the flexibility of using a DDS approach.

In our experience, the process of factoring the
lifecycle and dataset of the new item type into
activities and outcomes helps to formalize the
desired functionality in the user's mind; it becomes
more concrete - avoiding much of the vague and
often inconclusive discussion that can accompany
user requirements capture. Because it evolved from a
production workflow specification driven by user
requirements, rather than a desire simply to create a
‘workflow programming language’, CRISTAL’s
style of workflow correlates more closely to the
users’ concept of the activities required in the
domain item’s lifecycle. The degree of granularity
can be chosen to ensure that the user feels it provides
sufficient control, with the remaining potential
subtasks rolled up into a single script. This is one
important aspect of the novel approach adopted
during CRISTAL development that has proven of
benefit to its end-user community. In practice this
has been verified over a period of more than 10 years
use of CRISTAL at CERN and by its exploitation as
the Agilium product (Agilium, 2008) across many
different application domains in industry (see
discussion in the later conclusions section).

Designing�Reusable�Systems�That�Can�Handle�Change�-�Description-Driven�Systems:�Revisiting�Object-oriented�Principles

113

After its development at CERN, many different
features have been added to CRISTAL. One example
of this is to facilitate the extensibility of CRISTAL
by having a pluggable architecture based on
modules. Originally, CRISTAL could support only
one domain application per instance, but using
CRISTAL modules, many different groupings of
functionalities can be loaded in the same instance.
Modules may declare themselves dependent on each
other when they rely on or extend functionality from
other modules, thereby, allowing extensibility of the
system. The module itself is abstracted as an Item in
each system into which it is loaded, and so is
versioned and traced. This mechanism makes it
possible to have description-driven libraries. This
extensibility is arguably the main contribution since
the CRISTAL developments carried out at CERN. It
has provided us with a means to have a pluggable
architecture and is closer to the definition of reuse in
the original OO model. Certainly the main lesson
learnt from the CRISTAL project in coping with
change was to develop a data model that had the
capacity to cover multiple types of data (be they
products or activities, atomic or composite in nature)
and at the same time was elegant in its simplicity. To
do this a disciplined and rigorously applied object-
oriented approach to data modelling was required:
designers needed to think in a way that would
ultimately facilitate system flexibility, would enable
rapid change and would ease the burden of
maintenance from the outset of the design process.
The approach that was followed in designing
CRISTAL was to concentrate on the essential
enterprise objects and descriptions that could be
needed during the lifetime of the system no matter
from which standpoint that data is accessed.

Thus the system was allowed to be open in
design and flexible in nature and the elegance of its
design was not compromised by being viewed from
one or several application-led standpoints (such as
Business Process Management (BPM Weske, 2007),

Workflow Management Systems (WfMS
Georgakopoulos, 1995) or many others. Rather we
enabled the traceability of the essential enterprise
objects over the lifetime of the system as the primary
goal of the system and left the application-specific
views to be defined as and when they became
required. The ability of description-driven systems to
both cope with change and to provide traceability of
such changes (i.e. the ‘provenance’ of the change)
we see as one of the main contributions of the
CRISTAL approach to building flexible and
maintainable systems and we believe this makes a
significant contribution to how enterprise systems
can be implemented. For more detail, consult our
previous paper (McClatchey, 2013) which discusses
this in a practical application. Recently a start-up
company called Technoledge has been established to
develop applications of CRISTAL.

These design skills were not simple; designers
needed to be able to think conceptually, abstracting
the characteristics of everyday objects into ‘items’
with associated metadata and to be able to represent
that complexity in a concrete data model. Great
benefits in terms of maintainability and flexibility
resulted from being able to treat many different
system objects in a single standardised manner.
Savings over the lifetime of the ECAL project at
CERN are estimated at several man years of effort.
The importance of instantiation and description in
formulating a generic CRISTAL data model cannot
be overemphasised. We propose that the description-
driven design approach that emerges from this study
is a genuinely new approach to designing for change.

Great importance was placed on the involvement
of users at all stages of the development of
CRISTAL, following many of the principles of
participatory design (Kensing and Blomberg, 1998).
We regard this as one of the prime reasons for the
eventual success of the project. The research nature
of the environment in which CRISTAL was
formulated and developed led to both advantages and

Table 1: Statistics of CRISTAL operation at CERN CMS ECal.

Global ECal CRISTAL Statistics

Total number of centres (servers) 9 (6 at CERN, 1 in Taiwan, 2 in Greece)

Runtime August 2003 – August 2009 (6 years)

Total data size (at CERN) 210GB

Total number of Items in one ECAL 450,000

Minor version upgrades (required client update) 1

Total number of kernel builds 22

Kernel builds requiring server software upgrade 7

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

114

disadvantages. Although initially it was hoped that
high-end expert users would be able to develop
workflows themselves, in practice this was not
possible. Instead the users collaborated closely with
the designers from the outset of the project to
establish a much clearer idea of the implications of
their requirements, and with a full understanding of
the functionality that their workflow must provide.
This could then be implemented with verifiable
accuracy to what the user originally specified.
Essentially this approach led to a very simple way of
representing new requirements and absorbing them
rapidly into the evolving data model, as and when
they emerged. On the negative side users necessarily
did not always know at the outset what their final
requirements would be for data and process
management, leading to an evolutionary approach to
prototyping. On the positive side, the users were not
locked into a ‘static’ product: the CRISTAL model
evolved to cater for their requirements and was made
responsive to their needs.

Control of evolving user requirements was a
particularly challenging problem. New requirements
needed to be addressed at the application level
which, as a consequence, induced requirements at
the domain implementation level which in turn
passes its own requirements down to the kernel level.
The result of this was that there could be a
considerable number of potential feature
configurations of the CRISTAL kernel needed to
meet all possible requirements from the user. Since
CRISTAL was originally conceived as an object-
based system and an object-oriented approach was
adopted in its design, an attempt was made to follow
as far as was practically possible best software
engineering practice in implementing features
associated with object oriented models in order to
ensure reuse and extensibility. Whenever a new
design modification was needed, the approach taken
was always to implement as open and flexible a
solution as the design allowed in order not to
constrain future extensions.

In practice, however, this quickly led to spiralling
complexity and to a risk of compromising the system
development process. To address this situation the
approach that we adopted was to make the
implementation of new requirements as intuitive as
possible with as simple functionality as necessary to
cope with the requirements, thereby preserving the
elegance of the original (description-driven) design.
This led to a closely connected set of system
functionalities which was easy to maintain and to
dynamically extend when required. In addition this
much simpler system has the virtue of being a lot

easier for users, developers and administrators new
to the system to pick up and start working with.

Further evidence of the benefits accruing from
use of CRISTAL comes from its commercialization
as the Agilium product. Since 2004 an early version
of the CRISTAL Kernel has been exploited by the
M1i company (based in Annecy, France) for the
purpose of supporting BPM and the integration and
co-operation of multiple business processes
especially in business-to-business applications. M1i
have taken CRISTAL and added applications for
BPM that benefit from the description-driven aspects
of CRISTAL, i.e. its flexibility, reusability,
complexity handling and system evolution
management. Their product addresses the
harmonization of business processes by the use of a
CRISTAL database so that multiple potentially
heterogeneous processes can be integrated and have
their workflows tracked in the database. Agilium
also integrates the management of data coming from
different sources and unites BPM with Business
Activity Management (BAM) (Kolar, 2009) and
Enterprise Application Integration through the
capture and management of their designs in the
CRISTAL system. Using the facilities for description
and dynamic modification in CRISTAL, Agilium is
able to provide modifiable and reconfigurable
business workflows. Details of Agilium can be found
at (Agilium, 2008).

5 CONCLUSIONS

The study described in this paper has demonstrated
the benefits of a self-describing description-driven
design approach to both designer and to users in
practice. It has shown that describing a proposed
system explicitly and openly from the outset of the
project enables the developer to change aspects of it
responsively as users’ requirements evolve. This
enables seamless transition from version to version
with (virtually) uninterrupted system availability and
facilitates full traceability throughout the system
lifecycle.

Following the principles of object-oriented
design the approach encourages reuse of code,
configuration data and scripts/methods. Indeed, the
description-driven design approach takes this one
step further and provides reuse of meta-data, design
patterns and maintenance of items and activities (and
their descriptions). Practically this results in a higher
level of control over design evolution and simpler
implementation of system improvements and easier
maintenance cycles. Many system elements have

Designing�Reusable�Systems�That�Can�Handle�Change�-�Description-Driven�Systems:�Revisiting�Object-oriented�Principles

115

gained in conceptual simplicity and consequent ease
of management thanks to loose typing and the
adoption of a unified approach to their online
manipulation: activities/scripts and their methods;
member types and instances; properties and
primitives; items and collections; and outcome
schemas and views. One logical consequence of
providing such a unified design and simplicity of
management is that the CRISTAL software can be
used for a wide spectrum of application domains.

Future work is being to model domain semantics
e.g. the specifics of a particular application domain
e.g. healthcare, public sector, finance, and
aerospace. This will essentially transform CRISTAL
into a self-describing model execution engine,
making it possible to build applications directly on
top of the design, without code generation. The
design will be the framework for all of the
application logic – without the risks of misalignment
and subsequent loss that code generation can bring –
and for CRISTAL to be configured as needed to
support the application logic whatever it may be.
What this means is that the CRISTAL kernel will be
able to capture information about the application
area in which a particular instance is being used.
This will allow usage patterns to be described and
captured, roles and agents to be defined on a per-
application basis, and rules and outcomes specific to
particular user domains to be managed. This will
enable multiple instances of CRISTAL to discover
the semantics required to inter-operate and to
exchange data. Research into the further extension
and uses of CRISTAL continues. There are plans to
enrich its kernel (the data model) to model not only
data and processes (products and activities as items)
but also to model agents and users of the system
(whether human or computational). It is planned to
investigate how the semantics of CRISTAL items
and agents could be captured in terms of ontologies
and thus mapped onto or merged with existing
ontologies for the benefit of new domain models.
The emerging technology of cloud computing and its
application in complex domains, such as medicine
and healthcare, provide further interesting
challenges.

ACKNOWLEDGEMENTS

The authors wish to highlight the support of their
home institute across all of the projects that led to
this paper.

REFERENCES

Agilium product, 2008. See http://www.agilium.com Last
accessed October 2013.

Branson, A et al. 2014, CRISTAL : A Practical Study in
Designing Systems to Cope with Change, Journal of
Information Systems, Accepted for publication.

Chatrchyan S et al. 2008, The CMS Experiment at the
CERN LHC. The CMS Collaboration, The Journal of
Instrumentation Vol 3 361 pages IoP Publishers

Estrella, F et al., 2001 Meta-Data Objects as the Basis for
System Evolution. Lecture Notes in Computer Science
Volume 2118, p. 390-399 ISBN 3-540-42298-6
Springer-Verlag, 2001

Estrella, F et al., 2003 Pattern Reification as the Basis for
Description-Driven Systems. Journal of Software and
System Modeling Volume 2 Number 2, pp 108-119
Springer-Verlag, 2003.

Georgakopoulos, D et al. 1995. An Overview of
Workflow Management, Journal of Distributed and
Parallel Database Systems 3 (2), pp119-153.

Kensing, F. and Blomberg, J. 1998. Participatory Design :
Issues and Concerns. Journal of Computer Supported
Cooperative Work VoL 7 No 3-4 pp 167-185. Kluwer
Academic Publishers, 1998.

Kolar., J. 2009 Business Activity Monitoring. PhD Thesis,
Faculty of Informatics, Masaryk University. Brno,
Czech Republic. 2009.

McClatchey, R et al, 2013 Providing Traceability for
Neuroimaging Analyses. International Journal of
Medical Informatics, 82 pp 882-894.

OMG Meta-Object facility, MOF, 2004.
http://www.omg.org/mof/ Last accessed October 2013.

Roddick, J.F., 2009 Schema Versioning, Encyclopedia of
Database Systems 2009: 2499-2502

de Vries, D. and Roddick J.F., 2007. The case for
mesodata: An empirical investigation of an evolving
database system. Information & Software Technology,
49(9-10): 1061-1072.

Weske, M. 2007, Business Process Management.
Concepts, Languages, Architectures. Springer
Publishers, 2007.

Wirfs-Brock R et al. 1990 Designing Object Oriented
Software. Prentice Hall.

Yoder, J. and Johnson, R 2002. The Adaptive Object
Model Architectural Style. Proceedings of the
Working IEEE/IFIP Conference on Software
Architecture 2002 (WICSA3 '02).

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

116

