
Combining Learning-to-Rank with Clustering

Efstathios Lempesis and Christos Makris
1Department of Computer Engineering and Informatics, University of Patras, Patras, Greece

Keywords: Ranking, Learning-to-Rank, Clustering, Relational Ranking, Web Information Filtering and Retrieval,
Searching and Browsing, Text Mining.

Abstract: This paper aims to combine learning-to-rank methods with an existing clustering underlying the entities to
be ranked. In recent years, learning-to-rank has attracted the interest of many researchers and a large
number of algorithmic approaches and methods have been published. Existing learning-to-rank methods
have as goal to automatically construct a ranking model from training data. Usually, all these methods don't
take into consideration the data's structure. Although there is a novel task named “Relational Ranking”
which tries to make allowances for the inter-relationship between documents, it has restrictions and it is
difficult to be applied in a lot of real applications. To address this problem, we create a per query clustering
using state of the art algorithms from our training data. Then, we experimentally verify the effect of
clustering on them.

1 INTRODUCTION

Nowadays, due to the evolution of the web it is
common knowledge that it is difficult to find the
desired information, so it is important to have search
engines intelligent enough to meet our demands. As
the user issues queries, we deem the ranking
problem for information retrieval as the demand to
order the stored set of documents by relevance to
these queries. Ranking appears in many information
retrieval problems, such as web search retrieval,
collaborative filtering, entity ranking, sentiment
analysis and text summarization. There are two
types of ranking problems: ranking creation and
ranking aggregation (Li, 2011). Ranking creation
exploits the content of the document (as it appears as
a set of features) in order to create a ranked list of
documents, while ranking aggregation fuses multiple
ranking lists, in order to create a unified ranked list.

The ranking module is responsible for matching
between queries and indexed documents. A well-
defined ranking module processes incoming queries
and provides a matching score between them and the
stored documents. Due to the fast development of
the web and the flood of information, it is also as
important as ever to have efficient and effective
rankers that can rank this glut of information
according to the users' queries.

In recent years (Liu, 2011; Li, 2011) it has
become possible to embrace machine learning

technologies in order to build effective rankers,
exploiting the large number of available training
data. This embracement initiated a new research area
called learning to rank, that combines traditional
rankers with machine learning techniques; this area
has become one of the most active in the area of web
information retrieval.

Learning to rank or machine-learned ranking
(MLR) automatically constructs ranking models
from training data in terms of a loss function; it can
be phrased in different types of supervised or semi-
supervised machine learning problems. The ranking
model has as purpose to produce a proper ranked list
in new queries by exploiting the training data lists of
items with each list providing some partial order
between its items. To grant this order either
numerical scores, ordinal scores or binary judgments
(degree of relevance) are provided. Its methods can
be categorized as: the pointwise approach, the
pairwise approach, and the listwise approach (Liu,
2011). These approaches differ according to the loss
functions they employ. Regarding the pointwise
approach, which can be considered as a
classification or regression problem by learning the
rank values of the documents, the input space
consists of a feature vector for each discrete
document and the output space consists of the
relevance grades. The input space of the pairwise
approach, which treats the pair of documents as
independent quantities and learns a classification or

286 Lempesis E. and Makris C..
Combining Learning-to-Rank with Clustering.
DOI: 10.5220/0004846802860294
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 286-294
ISBN: 978-989-758-024-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

regression model to correctly order these pairs,
consists of feature vectors of pairs of documents and
the output space consists of the pairwise preference
{+1,−1} between each pair of documents. The input
space of the listwise approach consists of a corpus of
documents related to a single query and considers
them as a training example. Its output space contains
the ranked list of the documents. The main problem
with the pointwise and pairwise approaches is that
their loss functions are associated with particular
documents while most evaluation metrics of
information retrieval compute the ranking quality for
individual queries and not for documents. The goal
of the listwise approach is to maximize the
evaluation metrics such as NDCG and MAP.

A lot of the real ranking procedures actually
think of the relationship between the documents, but
all of the proposed learning-to-rank algorithms,
which belong to any of the above approaches, do not
take this into account. We could imagine this
connection as the relationships between the clusters,
the parent-child hierarchy etc.

Similar to the toy example in Kurland's PhD
thesis (Kurland, 2006), let q = {computer, printer}
be a query, and consider the documents:

d1 = computer, company, employ, salary
d2 = computer, investment, employer, company
d3 = taxes, printer, salary, company, employer
d4 = computer, printer, disk, tape, hardware
d5 = disk, tape, hardware, laptop
d6 = disk, tape, floppy, cd rom, hardware

Both the documents and the query are
represented using a vector space representation
(Baeza-Yates and Ribeiro-Neto, 2011) and the
weight for each term in a vector is its frequency
within the corresponding document (or query). If we
rank the documents regarding q, we may get the
following ranking:

Ranked list = d4, d1, d2, d3, d5, d6 (d4 is the top
retrieved document.)

However, since it is more rational to suppose
that the fundamental topic of the query is “computer
hardware” rather than “business”, we would like to
have d5 and d6 ranked as high as possible in the list.
Clustering the documents using the scheme, where
each document belongs to exactly one cluster, into
two clusters, could result in the following clusters: A
= {d1, d2, d3}, B = {d4, d5, d6}. If we took this
clustering into account and applied the cluster
hypothesis then d5 and d6 would be ranked higher
than d1, d2 and d3. That is the desirable outcome,
since d5 and d6, though not containing any of the
terms that occur in q are more close to the query's

topic(computer hardware), than d1, d2 and d3,
which contain one query term, but do not seem to
discuss the query topic.

As another sign of the significance of clustering
in (Zeng et al., 2004) it has been mentioned that
existing search engines such as Google
(www.google.com), Yahoo (http://search.yahoo.
com/) and Bing (www.bing.com) often return a long
list of search results, ranked by their relevancies to
the given query. As a consequence, Web users must
sequentially seek the list and examine the titles and
snippets to discern their desired results.
Undoubtedly, this is a time consuming procedure
when multiple sub-topics of the given query are
mingled together. They propose that a possible
solution to this problem is to (online) cluster search
results into different groups, and to enable users to
recognize their required group.

Carrot2 (http://search.carrot2.org/stable/search)
is a real illustration of this approach.

The aim of present work is to investigate whether
it is possible or not to integrate into the learning-to-
rank algorithm's procedure, without user
intervention, the information that we gain by
clustering following the well known cluster
hypothesis of the information retrieval area
(Kurland, 2006; Gan, Ma and Wu, 2007; van
Rijsbegen 1984) and examine the results of this
venture. Hence, after the off-line building of the
clusters and during the algorithm's function we
provide to each document the bonus that
corresponds to its cluster. Through this procedure
we build on the assumption that a document, which
belongs to one cluster, will be near the other
documents of its cluster at the ranked list. In a
narrow sense, we estimate that the documents, which
belong to the best cluster, will be at the top of the
ranked list and as a consequence we will have better
ranked lists and better measure metrics.

Before concluding the introduction we describe
some basic notions:

The BM25 weighting scheme (Robertson et al.,
2004) is a ranking function used by search engines
to rank matching documents according to their
relevance to a given search query.

Mean Average Precision (MAP) (Baeza-Yates
and Ribeiro-Neto, 2011) for a set of queries q1, ...qs
is the mean of the average precision scores for each
query.

DCG (Baeza-Yates and Ribeiro-Neto, 2011)
measures the usefulness, or gain, of a document
based on its position in the result list. The gain is
accumulated from the top to the bottom of the result
list with each result’s gain being discounted at lower

Combining�Learning-to-Rank�with�Clustering

287

positions.
Precision (Baeza-Yates and Ribeiro-Neto, 2011)

is defined as the fraction of the retrieved documents
that are relevant. These values are typically
evaluated at a given cut-off rank, considering only
the topmost results; in this case it is called precision
at k or P@k.

Finally, the paper is organized as follows. The
algorithms under examination are presented in
Section 2. In Section 3, we present our ideas and
how we implemented them, while in Section 4 we
present the clusters' creation and our key findings. In
Section 5 we conclude our results and discuss open
problems and future work.

2 ALGORITHMS UNDER
EXAMINATION

The learning-to-rank algorithm, that we enhnces in
order to perform the experiments are AdaRank (Xu
and Li, 2007), RankBoost (Freund, Iyer, Schapire,
Singer, 2003) and RankNet (Burges, Shaked,
Renshaw, Lazier, Deeds, Hamilton and Hullender,
2005).

RankBoost is a pairwise learning-to-rank
algorithm and like all the boosting algorithms it
operates in rounds. On each round, RankBoost calls
the weak learner with a view to producing a weak
ranking. Also, RankBoost holds a distribution,
which is selected to accentuate different parts of the
training data, which is passed on each round to the
weak learner. If a pair of instances is assigned with a
high weight, it indicates a great importance that the
weak learner orders that pair correctly. The final
ranking is a weighted sum of the weak rankings.

AdaRank is a listwise learning-to-rank algorithm
and similarly like all the boosting algorithms it
operates in rounds. AdaRank uses a training set as
input and takes the performance measure function
and the number of iterations as parameters.
AdaRank runs rounds and at each round, it retains a
distribution of weights over the queries in the
training data, it creates a weak ranker. Initially,
AdaRank defines equal weights to the queries and
then at each round it increases the weights of those
queries that are not ranked properly. As a result, the
learning at the next round concentrates on the
generation of a weak ranker that is able to work on
the ranking of those ‘hard’ queries. Finally, it
outputs a ranking model by linearly combining the
weak rankers. The AdaRank's characteristic attribute
is that for the computation of the distribution of the
weights over the queries it uses the evaluation of the

documents' labels of the ranked list and not the
documents' values directly.

RankNet is a pairwise learning-to-rank algorithm
where the loss function, as it is obvious, is defined
on a pair of documents, but the hypothesis is defined
with the use of a scoring function. The target
probability is defined based on the ground truth
labels of the given two documents related to a
training query. Thereafter, the difference between
the scores of these two documents given by the
scoring function is used to construct the modelled
probability and the cross entropy between the target
probability and the modelled probability is used as
the loss function. A neural network is used as the
model and gradient descent as the optimization
algorithm to learn the scoring function.

3 OUR APPROACH

Intuitively, the basic insight behind our idea is
centered around the hypothesis that the quality of
ranking, which is the result of the learning-to-rank
process, can be improved if we take into account the
auxiliary information provided by the multi-way
inter-relationship between all the documents.

A novel task named “Relational Ranking” (Liu,
2011) for learning-to-rank, apart from the properties
of each individual document in the ranking
procedure, also makes allowances for the inter-
relationship between the documents. The kind of this
connection determines the targeted application; for
example measures of disjointedness (overlap
minimization) are applied to search result
diversification, while measures of content similarity
for topic extraction/distillation. Generally, the
ranked lists are generated by sorting the documents
according to their scores output by the learned
model. However, it is common sense that in some
practical cases we should allow for the relationships
between the documents, and it is not adequate to
define the scoring function exclusively on discrete
documents. The existing works on relational ranking
do not only use a matrix or a graph, which must be
predefined by experts, to model the relationship, but
also are based on pairwise relationship. The pairwise
relationship, either similarity, dissimilarity, or
preference, is very restrictive and so it is very
difficult to use relational ranking in a lot of real
applications. For example (Liu, 2011), all the
webpages in the same website have a inter-
relationship. It is more rational to use a hypergraph
to model such inter-relationships.

We try to cope with the above restrictions and to

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

288

create a non-predefined structure that illustrates the
multi-way inter-relationship between all the
documents. This paper has as purpose to present
how we can incorporate in an existing learning-to-
rank algorithm’s function the clustering’s structure
so as to gain better ranked lists.

The objective of the clustering (Kurland, 2006;
Gan, Ma and Wu, 2007) is to separate an
unstructured corpus of documents into clusters. We
want the documents to be as similar to each other in
the same cluster and as dissimilar to documents from
other clusters as possible. The cluster hypothesis
(Kurland, 2013; van Rijsbergen, 1979) states the
fundamental assumption we make when using
clustering in information retrieval, namely that
documents in the same cluster behave similarly with
respect to relevance to information needs. So, if
there is a document from a cluster that is relevant to
a query, then it is likely that other documents from
the same cluster are also relevant. Many researchers
(Raiber and Kurland, 2012; Hearst and Pedersen,
1996) have depicted that the cluster hypothesis holds
on the Web and since clustering has gained great
attention, much research (McKeown et al., 2002;
Liu, Bruce, 2004) has been done on what are its
benefits. So, it states that the users should expect to
see similar documents close to each other in a
ranked list. Of course, one could argue that cluster
hypothesis is valid only if the similarity measure
used for the clustering is similar to the content based
algorithm used for the query. However it is rational
to assume that the provided clustering gathers
documents according to their information content.
Hence, since information retrieval aims at satisfying
information needs, clustering could be useful for the
information seeker. Thus, our intention is to make
the most of the benefits of the clustering and those
of learning-to-rank in order to improve the efficacy
in the ranked lists.

The learning-to-rank algorithms are iterative.
This attribute helps our approach to gather each
document near its cluster's documents at the ranked
list gradually during the algorithm's iterations. Our
approach is to create a per query clustering and to
give to each document, during algorithm’s iterations,
a bonus proportional to the cluster in which it
belongs to. So, we estimate that with the passage of
iterations similar documents will appear together,
since we promote similar documents with similar
bonus, and particularly the documents, which belong
to the cluster that has the centroid with the best
BM25 (Manning, Raghavan, Schutze, 2008) value,
will be at the top of the ranked list as they are the
documents that get the greatest bonus. With this

process, we regard that there should be a uniform
classification where the documents will be displayed
in descending order according to their labels.

With the above-mentioned, we expect that we
will take better evaluations according with the
performance measures such as MAP, NDCG@k and
P@k (Baeza-Yates and Ribeiro-Neto, 2011).

Our conviction that through the above process
we will take better retrieval metrics is based on the
assumption that the cluster, which has the centroid
with the best BM25 value, will contain the
documents that have the best label and consequently
are the most relevant. So, through the iterations this
cluster will be appeared at the top of the ranked list
and as a consequence the documents with the best
label, will appear at the top of the ranked list
respectively. Therefore, we will get better
performance measures. Here is an example of
ranked lists, where the numbers 4, 3, 2, 1, 0 are the
documents' labels and the number 4 indicates the
best relevance and the number 0 indicates the
irrelevance, which illustrates graphically our goal.
We should also mention that each of the number
(0,1,2,3,4) indicates a distinguished cluster and each
document belongs to the cluster of its label:

 default our conviction
1st result: 4 4
2nd result: 3 4
3rd result: 4 3
4th result: 1 3
5th result: 2 2
6th result: 3 2
7th result: 2 2
8th result: 1 1
9th result: 2 1
10th result: 0 0

As default we consider a ranked list that has been
generated by a learned model based on the single
documents. The above example depicts how we
want to muster each cluster's documents together
and promote the best clusters with the best relevance
labels at the top of the ranked list. It is obvious that
according to our conviction we get better
performance metrics.

A main framework for a learning-to-rank
algorithm, which operates according to our
approach, would be the following:

Combining�Learning-to-Rank�with�Clustering

289

Figure 1: Learning-to-Rank algorithm’s framework using
our approach.

Observing the above framework we notice that
the innovative idea, which stands out from the
common learning-to-rank algorithms, is the clusters'
creation and the bonus insertion as the algorithms'
function is intact.

For all of our experiments, we chose that the
given bonus should contain the BM25 value. We
made this choice, because the BM25 value has been
used quite widely and quite successfully across a
wide range of experiments and it has been shown to
be the best of the known probabilistic weighting
schemes. Furthermore, it is evident that the BM25
value can completely depict the degree of correlation
between the cluster and the query.

As bonus for AdaRank-CC algorithm we use the
product (b/s)*f(x) where b is the BM25 value of the
cluster's centroid in which the document belongs to,
s is the sum of the bm25 values of the clusters'
centroids that correspond to the specific query and
f(x) is the document's value from the algorithm.

We decided to divide the BM25 value with the s
value so as to give to each document a normalized
bonus in relation to the other clusters' BM25 values.

So, before the algorithm starts we create the
clustering and at the end of each iteration, after the
algorithm's function is complete, we update the
value of each document as following

݂ሺݔሻ ൌ ݂ሺݔሻ ൅ ሺሺܾ/ݏሻ ∗ ݂ሺݔሻሻ (1)

As bonus for the RankBoost-CC algorithm we
have experimented with many values, following the
same reasoning as before, but none of these
improved the efficiency of RankBoost algorithm.
So, we did not get an indicative type of bonus.
However, the most successful formula was (b/s)*f(x)
where b is the BM25 value of the cluster's centroid
in which the document belongs to, s is the sum of
the bm25 values of the clusters' centroids that
correspond to the specific query and f(x) is the
document's value from the algorithm. The values are
the same as in AdaRank-CC algorithm, but without
having the desired results.

In the following we present the AdaRank-CC

and RankBoost-CC algorithms which follow the
same philosophy.

AdaRank-CC/RankBoost-CC Algorithm:
Clustering:clusters' creation
Initialization:AdaRank's/RankBoost's

initialization
For
 AdaRank's/RankBoost's function
 For each document

◦ Find the cluster in which document
belongs to and get its BM25 value

◦ Update the value of the document
using the above BM25 value

 End for
End for
Output:AdaRank-CC's/RankBoost-CC's

output

As bonus for the RankNet-CC algorithm we use
(b/104)*fvalue(x) where b is the BM25 value of the
cluster's centroid in which the document belongs to
and fvalue(x) is a document's feature value from the
algorithm. At this algorithm, we use the documents'
vectors updating their feature values at each iteration
instead of the documents' values as we did before.

We decided to divide the BM25 value with the
number 10000, because through the experiments we
got the best results.

So, before the algorithm starts we create the
clustering and at the end of each iteration, after the
algorithm's function is complete, we update the
elements of the documents' vectors as follows:

௩݂௔௟௨௘ሺݔሻ ൌ ௩݂௔௟௨௘ሺݔሻ ൅ ሺሺܾ/10ସሻ
∗ ௩݂௔௟௨௘ሺݔሻሻ

(2)

The RankNet-CC algorithm follows the
AdaRank-CC's and RankBoost-CC's philosophy,
but, instead of updating the documents' value, it
updates each element of the documents' feature
vector.

So in contrast to the AdaRank-CC and
RankBoost-CC algorithms, the RankNet-CC
algorithm, based on the theory that better feature
vectors provide better results, tries to update the
documents' feature vectors at each iteration,
promoting the documents that belong to the clusters
with the best BM25 value. With the above-
mentioned, at each iteration we provide better
feature values at the documents' vectors, which
belong to the best clusters, targeting the neural
network to provide better values to these documents.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

290

4 EXPERIMENTAL
EVALUATION

We conducted experiments to investigate the
performance of our implementations using the two
Microsoft Learning to Rank Datasets
(http://research.microsoft.com/en-us/projects/mslr/).
Also, for our experiments we used the RankLib
(http://people.cs.umass.edu/~vdang/ranklib.html)
library, which contains eight popular learning-to-
rank algorithms and many retrieval metrics.

These two datasets are machine learning data and
they consist of feature vectors exported from query-
url pairs in company with relevance judgment labels.
The queries and urls are represented by IDs. Also,
each query-url pair is represented by a 136-
dimensional vector, in which every dimension
provide some information. In order to create our
clustering, we have chosen 24 specific features,
which we consider as more informative, so as to
create a better clustering. We have selected the
features 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60,
65, 70, 75, 80, 85, 90, 95, 110, 130, 133, 134, 136
that correspond to the whole document's covered
query term number, covered query term ratio, stream
length, IDF(Inverse document frequency), sum of
term frequency, min of term frequency, max of term
frequency, variance of term frequency, sum of
stream length normalized term frequency, min of
stream length normalized term frequency, max of
stream length normalized term frequency, mean of
stream length normalized term frequency, variance
of stream length normalized term frequency, sum of
tf*idf, min of tf*idf, max of tf*idf, mean of tf*idf,
variance of tf*idf, BM25, PageRank, QualityScore2,
Query-url click count and url dwell time
respectively.

The purpose of our experiments was to depict the
usefulness of exploiting cluster information in
Learning-to-Rank. We have created a per query
clustering using the algorithm k-means++, which is
a variant of the k-means algorithm (Gan, Ma and
Wu, 2007) for choosing the initial values (or
"seeds") for the implementation of the algorithm. In
the assignment step of the k-means++ algorithm,
each document was assigned to the cluster whose
mean was the “nearest” to it according to the
squared Euclidean distance. We chose euclidean
measure and the specific set of features so that
documents in the same cluster can have similar
characteristics concerning the various anticipated
information needs. We should also note that every
dataset has a variable number of documents that
correspond to a specific query. Hence, we have

queries that have for example 5 results and others
that have 40 results. For this reason, we have queries
that have from 2 to 5 clusters, depending on the
number of their documents.

As we will see, in the presentation of the
experiments, though our approach aims at evaluation
effectiveness it also comes as an extra bonus an
improvement in efficiency.

4.1 Experiments with MSLR-WEB10K

In this experiment, we made use of the MSLR-
WEB10K data to test the performance of AdaRank,
AdaRank-CC, RankNet and RankNet-CC. The
MSLR-WEB10K consists of 10,000 queries and is
partitioned into 5 folders.

The following table shows the difference in the
value of metrics, based on the average of the five
folders, between AdaRank and AdaRank-CC.

Table 1: Comparison between AdaRank and AdaRank-
CC.

 AdaRank AdaRank-CC
NDCG@3 0,36562 0,36758
NDCG@5 0,31002 0,34954

NDCG@10 0,34352 0,39596
P@3 0,69476 0,69438
P@5 0,66332 0,66174
P@10 0,59406 0,62542
MAP 0,57236 0,57622

The following table shows the difference in
iterations, based on the average of the five folders,
between AdaRank and AdaRank-CC.

Table 2: Comparison between AdaRank and AdaRank-
CC.

 AdaRank AdaRank-CC
NDCG@3 54,4 39,8
NDCG@5 119,2 59,4

NDCG@10 95 35
P@3 10,6 8,6
P@5 7,8 7,6
P@10 122,2 43,8
MAP 163 62

The following table shows the difference in the
value of metrics, based on the average of the five
folders, between RankNet and RankNet-CC.

4.2 Experiments with MSLR-WEB30K

In this experiment, we made use of the MSLR-
WEB30K data to test the performance of AdaRank,
AdaRank-CC, RankNet and RankNet-CC. The

Combining�Learning-to-Rank�with�Clustering

291

Table 3: Comparison between RankNet and RankNet -CC.

 RankNet RankNet -CC
NDCG@3 0,1573 0,1531
NDCG@5 0,1683 0,1665

NDCG@10 0,2002 0,2038
P@3 0,4716 0,4711
P@5 0,4480 0,4410
P@10 0,4431 0,4415
MAP 0,4421 0,4446

MSLR-WEB30K consists of 30,000 queries and is
partitioned into 5 folders.

The following table shows the difference in the
value of metrics, based on the average of the five
folders, between AdaRank and AdaRank-CC.

Table 4: Comparison between AdaRank and AdaRank-
CC.

 AdaRank AdaRank-CC
NDCG@3 0,38562 0,34059
NDCG@5 0,30028 0,33694

NDCG@10 0,34796 0,39516
P@3 0,69632 0,69736
P@5 0,66686 0,66588
P@10 0,60698 0,63182
MAP 0,57822 0,58574

The following table shows the difference in
iterations, based on the average of the five folders,
between AdaRank and AdaRank-CC.

Table 5: Comparison between AdaRank and AdaRank-
CC.

 AdaRank AdaRank-CC
NDCG@3 39,2 64,8
NDCG@5 110,2 62,6

NDCG@10 84,8 31
P@3 9,1 8
P@5 18,8 6,8
P@10 86,6 46,6
MAP 169 51,8

The following table shows the difference in the
value of metrics, based on the average of the five
folders, between RankNet and RankNet-CC.

Table 6: Comparison between RankNet and RankNet -CC.

 RankNet RankNet -CC
NDCG@3 0,1558 0,1593
NDCG@5 0,1686 0,1690

NDCG@10 0,2019 0,2043
P@3 0,4706 0,4718
P@5 0,4475 0,4433
P@10 0,4422 0,4410
MAP 0,4435 0,4467

4.3 Inference from the Experiments

Regarding the AdaRank-CC, which is an algorithm
that doesn't use directly the documents' values with
the additional bonus in its function, is that exploiting
the clustering and the bonus to each document
during the iterations, we can get better results
considering the NDCG@k, MAP and P@k metrics
simultaneously in fewer iterations. More precisely,
observing the graphs we understand that for
NDCG@3 and P@3 we have approximately the
same results between the default AdaRank and
AdaRank-CC. But, for NDCG@5, P@5 and
especially for NDCG@10, P@10 and MAP we
observe that the AdaRank-CC provides better
results. This observation confirms our conviction
that through the bonus during the iterations we will
direct the documents of the best clusters at the top of
the ranked list and this also shows that we gather the
documents with the best labels at the top 10
positions and as result we have better evaluation.

Hence, we conclude that our approach to
combine learning-to-rank with an existing clustering
can be integrated with positive results in fewer
iterations at an algorithm such as the AdaRank
which is positively affected by the additional bonus
that are given to the documents. We infer this
algorithm's improvement to the additional bonus
observing the calculation of distribution at each
iteration. The distribution's calculation is the
following (Li, 2011):

௜ܲାଵ ൌ
expሺെܧሺߨ௜, ௜ሻሻݕ

∑ expሺെܧሺߨ௝, ௝ሻሻ௠ݕ
௝ୀଵ

 (3)

where E(π,y) is the evaluation conducted at the list
level, t is the number of iteration, π is the ranked list
of documents, y is the list of documents' labels and i
is the number of query.

So, the distribution's calculation is based on the
evaluation of the documents' labels and not on the
documents' values, given by the scoring function of
the algorithm, in which we put the additional bonus.

In contrast to the above conclusions, regarding
the Rank-Boost-CC, for which the documents'
values have an important role in algorithm's
distribution determination, we don't get better
evaluation. More precisely, we can understand the
effect of the documents' value, observing how the
distribution is calculated. At each iteration the
distribution is calculated using this formula (Liu,
2011):

,௢ݔ௧ାଵሺܦ ଵሻݔ

ൌ
,௢ݔ௧ሺܦ ଴ሻݔଵሻexpሺܽ௧ሺ݄௧ሺݔ െ ݄௧ሺݔଵሻሻሻ

ܼ௧

(4)

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

292

where Zt is a normalization factor, t is the number of
iteration, x is a document, at is a parameter and h(x)
is the document's value.

So, the distribution's calculation is based on the
documents' values which contain the additional
bonus. It is clear that, in contrast to the AdaRank as
it uses the documents' labels evaluation, the
documents' value plays a significant role to the
distribution's value. Since, we don't get better result
using the additional bonus for this kind of
distribution calculation, we can deduce that the
additional bonus adversely affects these algorithms
such as RankBoost as it adversely distorts the
calculation of the distribution.

Regarding the RankNet-CC, for which at the end
of each iteration we update the elements of the
documents' vectors in order to create better vectors
and as consequence better results, from the results
we can observe that the metrics between RankNet
and RankNet-CC are approximately equal and so we
can not infer reliable conclusions. Slightly better
results in favour of RankNet-CC we can observe for
the metrics NDCG@10 and P@10 and this remark
agrees with the observation that we made for the
AdaRank-CC concerning the above two metrics.

5 CONCLUSIONS

In this paper we have proposed new versions of the
AdaRank, RankBoost and RankNet learning to rank
algorithms, referred to as AdaRank-CC, RankBoost-
CC and RankNet-CC respectively. In contrast to
existing methods, AdaRank-CC, RankBoost-CC and
RankNet-CC take into consideration the multi-way
inter-relationship between all documents, since we
have separated the unstructured set of documents
into clusters using the k-Means++ algorithm.

Our basic finding in this work is that algorithms
such as AdaRank-CC, for which the additional
bonus doesn't affect the computation of the
distribution of weights over the queries, can indeed
improve both effectiveness and efficiency, as we can
get better overall quality according to the well
known evaluation metrics (NDCG, MAP, various
levels of precision) and simultaneously decrease the
number of iterations. As future work, it could be
interesting to further investigate how we can get the
similar results to those of the AdaRank-CC and the
other algorithms that use directly the documents'
values with the additional bonus in their function
and consequently they are affected by them.

ACKNOWLEDGEMENTS

This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek
national funds through the Operational Program
"Education and Lifelong Learning" of the National
Strategic Reference Framework (NSRF) - Research
Funding Program: Thales. Investing in knowledge
society through the European Social Fund.

REFERENCES

Baeza-Yates R., and Ribeiro-Neto B., (2011) Modern
Information Retrieval: the concepts and technology
behind search. Addison Wesley, Essex.

Burges C., Shaked T., Renshaw E., Lazier A., Deeds M.,
Hamilton N. and Hullender G., (2005) Learning to
Rank using Gradient Descent, ICML 2005: 89-96.

Freund Y., Iyer R., Schapire R. E, Singer Y., An
Efficient Boosting Algorithm for Combining
Preferences. In Journal of Machine Learning Research
4 (2003), 933-969.

Gan G., Ma C. and Wu J. (2007). Data Clustering: Theory,
Algorithms, and Applications.

DOI=http://dx.doi.org/10.1137/1.9780898718348.
Hearst A. M., Pedersen J. O., Reexamining the Cluster

Hypothesis: Scatter/Gather on Retrieval Results, In
Proceedings of ACM SIGIR '96, August, 1996, Zurich.

Kurland O., Inter-Document similarities, language models,
and ad-hoc information retrieval. Ph.D. Thesis (2006).

Kurland O., The Cluster Hypothesis in Information
Retrieval, SIGIR 2013 tutorial (2013).

http://iew3.technion.ac.il/~kurland/clustHypothesisTutoria
l.pdf.

Li H., Learning to Rank for Information Retrieval and
Natural Language Processing. (2011) Morgan &
Claypool.

Liu T. Y., Learning to Rank for Information Retrieval.
(2011) Springer.

Liu, X, and W. Bruce C. 2004. Cluster-based retrieval
using language models. In Proc. SIGIR, pp. 186-193.
ACM Press. DOI: doi.acm.org/10.1145/
1008992.1009026.

Manning C. D., Raghavan P., Schutze H., (2008)
Introduction to Information Retrieval, Cambridge
University Press, pp. 232-234.

McKeown et al. (2002), Tracking and Summarizing News
on a Daily Basis with Columbia’s Newsblaster, In
Proc. Human Language Technology Conference.

Raiber F., Kurland O. (2012), Exploring the Cluster
Hypothesis, and Cluster-Based Retrieval, over the
Web, ACM CIKM: 2507-2510.

Robertson, S., Zaragoza, H., Taylor, M. (2004) Simple
BM25 extension to multiple weighted fields.. In
CIKM 2004: Proceedings of the thirteenth ACM
International Conference on Information and
Knowledge Management, pages 42-49.

Combining�Learning-to-Rank�with�Clustering

293

van Rijsbergen, C. J.: Information Retrieval, 2nd edn.,
Butterworths (1979).

Xu J. and Li H., (2007) AdaRank: A Boosting Algorithm
for Information Retrieval, SIGIR 2007: 391-398.

Zeng H.-J., He Q.-C., Chen Z., Ma W.-Y., Ma J. (2004),
Learning to Cluster Web Search Results. SIGIR 2004:
210-21.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

294

