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Abstract: This paper aims to combine learning-to-rank methods with an existing clustering underlying the entities to 
be ranked. In recent years, learning-to-rank has attracted the interest of many researchers and a large 
number of algorithmic approaches and methods have been published. Existing learning-to-rank methods 
have as goal to automatically construct a ranking model from training data. Usually, all these methods don't 
take into consideration the data's structure. Although there is a novel task named “Relational Ranking” 
which tries to make allowances for the inter-relationship between documents, it has restrictions and it is 
difficult to be applied in a lot of real applications. To address this problem, we create a per query clustering 
using state of the art algorithms from our training data. Then, we experimentally verify the effect of 
clustering on them. 

1 INTRODUCTION 

Nowadays, due to the evolution of the web it is 
common knowledge that it is difficult to find the 
desired information, so it is important to have search 
engines intelligent enough to meet our demands. As 
the user issues queries, we deem the ranking 
problem for information retrieval as the demand to 
order the stored set of documents by relevance to 
these queries. Ranking  appears in many information 
retrieval problems, such as web search retrieval, 
collaborative filtering, entity ranking, sentiment 
analysis and text summarization. There are two 
types of ranking problems: ranking creation and 
ranking aggregation (Li, 2011). Ranking creation 
exploits the content of the document (as it appears as 
a set of features) in order to create a ranked list of 
documents, while ranking aggregation fuses multiple 
ranking lists, in order to create a unified ranked list. 

The ranking module is responsible for matching 
between queries and indexed documents. A well-
defined ranking module processes incoming queries 
and provides a matching score between them and the 
stored documents. Due to the fast development of 
the web and the flood of information, it is also as 
important as ever to have efficient and effective 
rankers that can rank this glut of information 
according to the users' queries. 

In recent years (Liu, 2011; Li, 2011) it has 
become possible to embrace machine learning 

technologies in order to build effective rankers, 
exploiting the large number of available training 
data. This embracement initiated a new research area 
called learning to rank, that combines traditional 
rankers with machine learning techniques; this area 
has become one of the most active in the area of web 
information retrieval. 

Learning to rank or machine-learned ranking 
(MLR) automatically constructs  ranking models 
from training data in terms of a loss function; it can 
be phrased in different types of supervised or semi-
supervised machine learning problems. The ranking 
model has as purpose to produce a proper ranked list 
in new queries by exploiting the training data lists of 
items with each list providing some partial order 
between its items. To grant this order either 
numerical scores, ordinal scores or binary judgments 
(degree of relevance) are provided. Its methods can 
be categorized as: the pointwise approach, the 
pairwise approach, and the listwise approach (Liu, 
2011). These approaches differ according to the loss 
functions they employ. Regarding the pointwise 
approach, which can be considered as a 
classification or regression problem by learning the 
rank values of the documents, the input space 
consists of a feature vector for each discrete 
document and the output space consists of the 
relevance grades. The input space of the pairwise 
approach, which treats the pair of documents as 
independent quantities and learns a classification or 
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regression model to correctly order these pairs, 
consists of feature vectors of pairs of documents and 
the output space consists of the pairwise preference 
{+1,−1} between each pair of documents. The input 
space of the listwise approach consists of a corpus of 
documents related to a single query and considers 
them as a training example. Its output space contains 
the ranked list of the documents. The main problem 
with the pointwise and pairwise approaches is that 
their loss functions are associated with particular 
documents while most evaluation metrics of 
information retrieval compute the ranking quality for 
individual queries and not for documents. The goal 
of the listwise approach is to maximize the 
evaluation metrics such as NDCG and MAP.  

A lot of the real ranking procedures actually 
think of the relationship between the documents, but 
all of the proposed learning-to-rank algorithms, 
which belong to any of the above approaches, do not 
take this into account. We could imagine this 
connection as the relationships between the clusters, 
the parent-child hierarchy etc. 

Similar to the toy example in Kurland's PhD 
thesis (Kurland, 2006), let q = {computer, printer} 
be a query, and consider the documents:  

d1 = computer, company, employ, salary  
d2 = computer, investment, employer, company  
d3 = taxes, printer, salary, company, employer  
d4 = computer, printer, disk, tape, hardware  
d5 = disk, tape, hardware, laptop  
d6 = disk, tape, floppy, cd rom, hardware 

Both the documents and the query are 
represented using a vector space representation 
(Baeza-Yates  and Ribeiro-Neto, 2011) and the 
weight for each term in a vector is its frequency 
within the corresponding document (or query). If we 
rank the documents regarding q, we may get the 
following ranking: 

Ranked list = d4, d1, d2, d3, d5, d6 (d4 is the top 
retrieved document. ) 

However, since it is more rational to suppose 
that the fundamental topic of the query is “computer 
hardware” rather than “business”, we would like to 
have d5 and d6 ranked as high as possible in the list. 
Clustering the documents using the scheme, where 
each document belongs to exactly one cluster, into 
two clusters, could result in the following clusters: A 
= {d1, d2, d3}, B = {d4, d5, d6}. If we took this 
clustering into account and applied the cluster 
hypothesis then d5 and d6 would be ranked higher 
than d1, d2 and d3. That is the desirable outcome, 
since d5 and d6, though not containing any of the 
terms that occur in q are more close to the query's 

topic(computer hardware), than d1, d2 and d3, 
which contain one query term, but do not seem to 
discuss the query topic.  

As another sign of the significance of clustering 
in (Zeng et al., 2004) it has been mentioned that 
existing search engines such as Google 
(www.google.com), Yahoo (http://search.yahoo. 
com/) and Bing (www.bing.com) often return a long 
list of search results, ranked by their  relevancies to 
the given query. As a consequence, Web users must 
sequentially seek the list and examine the titles and 
snippets to discern their desired results. 
Undoubtedly, this is a time consuming procedure 
when multiple sub-topics of the given query are 
mingled together. They propose that a possible 
solution to this problem is to (online) cluster search 
results into different groups, and to enable users to 
recognize their required group. 

Carrot2 (http://search.carrot2.org/stable/search) 
is a real illustration  of this approach. 

The aim of present work is to investigate whether 
it is possible or not to integrate into the learning-to-
rank algorithm's procedure, without user 
intervention, the information that we gain by 
clustering following the well known cluster 
hypothesis of the information retrieval area 
(Kurland, 2006;  Gan, Ma and Wu, 2007; van 
Rijsbegen 1984) and examine the results of this 
venture. Hence, after the off-line building of the 
clusters and during the algorithm's function we 
provide to each document the bonus that 
corresponds to its cluster. Through this procedure 
we build on the assumption that a document, which 
belongs to one cluster, will be near the other 
documents of its cluster at the ranked list. In a 
narrow sense, we estimate that the documents, which 
belong to the best cluster, will be at the top of the 
ranked list and as a consequence we will have better 
ranked lists and better measure metrics. 

Before concluding the introduction we describe 
some basic notions: 

The BM25 weighting scheme (Robertson et al., 
2004) is a ranking function used by search engines 
to rank matching documents according to their 
relevance to a given search query.  

Mean Average Precision (MAP) (Baeza-Yates 
and Ribeiro-Neto, 2011) for a set of queries q1, ...qs 
is the mean of the average precision scores for each 
query. 

DCG (Baeza-Yates and Ribeiro-Neto, 2011)  
measures the usefulness, or gain, of a document 
based on its position in the result list. The gain is 
accumulated from the top to the bottom of the result 
list with each result’s gain being discounted at lower 
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positions. 
Precision (Baeza-Yates and Ribeiro-Neto, 2011) 

is defined as the fraction of the retrieved documents 
that are relevant. These values are typically 
evaluated at a given cut-off rank, considering only 
the topmost results; in this case it is called precision 
at k or P@k. 

Finally, the paper is organized as follows. The 
algorithms under examination are presented in 
Section 2. In Section 3, we present our ideas and 
how we implemented them, while in Section 4 we 
present the clusters' creation and our key findings. In 
Section 5 we conclude our results and discuss open 
problems and future work. 

2 ALGORITHMS UNDER 
EXAMINATION 

The learning-to-rank algorithm, that we enhnces in 
order to perform the experiments are AdaRank (Xu 
and Li, 2007), RankBoost (Freund, Iyer, Schapire, 
Singer, 2003) and RankNet (Burges, Shaked, 
Renshaw, Lazier, Deeds, Hamilton and Hullender,  
2005).  

RankBoost is a pairwise learning-to-rank 
algorithm and like all the boosting algorithms it 
operates in rounds. On each round, RankBoost calls 
the weak learner with a view to producing a weak 
ranking. Also, RankBoost holds a distribution, 
which is selected to accentuate different parts of the 
training data, which is passed on each round to the 
weak learner. If a pair of instances is assigned with a 
high weight, it indicates a great importance that the 
weak learner orders that pair correctly. The final 
ranking is a weighted sum of the weak rankings. 

AdaRank is a listwise learning-to-rank algorithm 
and similarly like all the boosting algorithms it 
operates in rounds. AdaRank uses a training set as 
input and takes the performance measure function 
and the number of iterations as parameters. 
AdaRank runs rounds and at each round, it retains a 
distribution of weights over the queries in the 
training data, it creates a weak ranker. Initially, 
AdaRank defines equal weights to the queries and 
then at each round it increases the weights of those 
queries that are not ranked properly. As a result, the 
learning at the next round concentrates on the 
generation of a weak ranker that is able to work on 
the ranking of those ‘hard’ queries. Finally, it 
outputs a ranking model by linearly combining the 
weak rankers. The AdaRank's characteristic attribute 
is that for the computation of the distribution of the 
weights over the queries it uses the evaluation of the 

documents' labels of the ranked list and not the 
documents' values directly. 

RankNet is a pairwise learning-to-rank algorithm 
where the loss function, as it is obvious, is defined 
on a pair of documents, but the hypothesis is defined 
with the use of a scoring function. The target 
probability is defined based on the ground truth 
labels of the given two documents related to a 
training query. Thereafter, the difference between 
the scores of these two documents given by the 
scoring function is used to construct the modelled 
probability and the cross entropy between the target 
probability and the modelled probability is used as 
the loss function. A neural network is used as the 
model and gradient descent as the optimization 
algorithm to learn the scoring function. 

3 OUR APPROACH 

Intuitively, the basic insight behind our idea is 
centered around the hypothesis that the quality of 
ranking, which is the result of the learning-to-rank 
process, can be improved if we take into account the 
auxiliary information provided by the multi-way 
inter-relationship between all the documents.  

A novel task named “Relational Ranking” (Liu, 
2011) for learning-to-rank, apart from the properties 
of each individual document in the ranking 
procedure, also makes allowances for the inter-
relationship between the documents. The kind of this 
connection determines the targeted application; for 
example measures of disjointedness (overlap 
minimization) are applied to search result 
diversification, while measures of content similarity 
for topic extraction/distillation. Generally, the 
ranked lists are generated by sorting the documents 
according to their scores output by the learned 
model. However, it is common sense that in some 
practical cases we should allow for the relationships 
between the documents, and it is not adequate to 
define the scoring function exclusively on discrete 
documents. The existing works on relational ranking 
do not only use a matrix or a graph, which must be 
predefined by experts, to model the relationship, but 
also are based on pairwise relationship. The pairwise 
relationship, either similarity, dissimilarity, or 
preference, is very restrictive and so it is very 
difficult to use relational ranking in a lot of real 
applications. For example (Liu, 2011), all the 
webpages in the same website have a inter-
relationship. It is more rational to use a hypergraph 
to model such inter-relationships.  

We try to cope with the above restrictions and to 
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create a non-predefined structure that illustrates the 
multi-way inter-relationship between all the 
documents. This paper has as purpose to present 
how we can incorporate in an existing learning-to-
rank algorithm’s function the clustering’s structure 
so as to gain better ranked lists.  

The objective of the clustering (Kurland, 2006; 
Gan, Ma  and Wu, 2007) is to separate an 
unstructured corpus of documents into clusters. We 
want the documents to be as similar to each other in 
the same cluster and as dissimilar to documents from 
other clusters as possible. The cluster hypothesis 
(Kurland, 2013; van Rijsbergen, 1979) states the 
fundamental assumption we make when using 
clustering in information retrieval, namely that 
documents in the same cluster behave similarly with 
respect to relevance to information needs. So, if 
there is a document from a cluster that is relevant to 
a query, then it is likely that other documents from 
the same cluster are also relevant. Many researchers 
(Raiber and Kurland, 2012; Hearst and Pedersen, 
1996) have depicted that the cluster hypothesis holds 
on the Web and since clustering has gained great 
attention, much research (McKeown et al., 2002; 
Liu, Bruce, 2004) has been done on what are its 
benefits. So, it states that the users should expect to 
see similar documents close to each other in a 
ranked list. Of course, one could argue that cluster 
hypothesis is valid only if the similarity measure 
used for the clustering is similar to the content based 
algorithm used for the query. However it is rational 
to assume that the provided clustering gathers 
documents according to their information content. 
Hence, since information retrieval aims at satisfying 
information needs, clustering could be useful for the 
information seeker. Thus, our intention is to make 
the most of the benefits of the clustering and those 
of learning-to-rank in order to improve the efficacy 
in the ranked lists. 

The learning-to-rank algorithms are iterative. 
This attribute helps our approach to gather each 
document near its cluster's documents at the ranked 
list gradually during the algorithm's iterations. Our 
approach is to create a per query clustering and to 
give to each document, during algorithm’s iterations, 
a bonus proportional to the cluster in which it 
belongs to. So, we estimate that with the passage of 
iterations similar documents will appear together, 
since we promote similar documents with similar 
bonus, and particularly the documents, which belong 
to the cluster that has the centroid with the best 
BM25 (Manning, Raghavan, Schutze, 2008) value, 
will be at the top of the ranked list as they are the 
documents that get the greatest bonus. With this 

process, we regard that there should be a uniform 
classification where the documents will be displayed 
in descending order according to their labels. 

With the above-mentioned, we expect that we 
will take better evaluations according with the 
performance measures such as MAP, NDCG@k and 
P@k (Baeza-Yates  and Ribeiro-Neto, 2011). 

Our conviction that through the above process 
we will take better retrieval metrics is based on the 
assumption that the cluster, which has the centroid 
with the best BM25 value, will contain the 
documents that have the best label and consequently 
are the most relevant. So, through the iterations this 
cluster will be appeared at the top of the ranked list 
and as a consequence the documents with the best 
label, will appear at the top of the ranked list 
respectively. Therefore, we will get better 
performance measures. Here is an example of 
ranked lists, where the numbers 4, 3, 2, 1, 0 are the 
documents' labels and the number 4 indicates the 
best relevance and the number 0 indicates the 
irrelevance, which illustrates graphically our goal. 
We should also mention that each of the number 
(0,1,2,3,4) indicates a distinguished cluster and each 
document belongs to the cluster of its label: 

                        default               our conviction 
1st result:  4                   4 
2nd result:  3                   4 
3rd result:  4                   3 
4th result:  1                   3 
5th result:  2                   2 
6th result:  3                   2 
7th result:  2                   2 
8th result:  1                   1 
9th result:  2                   1 
10th result: 0                   0 

As default we consider a ranked list that has been 
generated by a learned model based on the single 
documents. The above example depicts how we 
want to muster each cluster's documents together 
and promote the best clusters with the best relevance 
labels at the top of the ranked list. It is obvious that 
according to our conviction we get better 
performance metrics. 

A main framework for a learning-to-rank 
algorithm, which operates according to our 
approach, would be the following: 
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Figure 1: Learning-to-Rank algorithm’s framework using 
our approach. 

Observing the above framework we notice that 
the innovative idea, which stands out from the 
common learning-to-rank algorithms, is the clusters' 
creation and the bonus insertion as the algorithms' 
function is intact. 

For all of our experiments, we chose that the 
given bonus should contain the BM25 value. We 
made this choice, because the BM25 value has been 
used quite widely and quite successfully across a 
wide range of experiments and it has been shown to 
be the best of the known probabilistic weighting 
schemes. Furthermore, it is evident that the BM25 
value can completely depict the degree of correlation 
between the cluster and the query. 

As bonus for AdaRank-CC algorithm we use the 
product (b/s)*f(x) where b is the BM25 value of the 
cluster's centroid in which the document belongs to, 
s is the sum of the bm25 values of the clusters' 
centroids that correspond to the specific query and 
f(x) is the document's value from the algorithm. 

We decided to divide the BM25 value with the s 
value so as to give to each document a normalized 
bonus in relation to the other clusters' BM25 values. 

So, before the algorithm starts we create the 
clustering and at the end of each iteration, after the 
algorithm's function is complete, we update the 
value of each document as following 

݂ሺݔሻ ൌ ݂ሺݔሻ ൅ ሺሺܾ/ݏሻ ∗ ݂ሺݔሻሻ (1)

As bonus for the RankBoost-CC algorithm we 
have experimented with many values, following the 
same reasoning as before, but none of these 
improved the efficiency of RankBoost algorithm. 
So, we did not get an indicative type of bonus. 
However, the most successful formula was (b/s)*f(x) 
where b is the BM25 value of the cluster's centroid 
in which the document belongs to, s is the sum of 
the bm25 values of the clusters' centroids that 
correspond to the specific query and f(x) is the 
document's value from the algorithm. The values are 
the same as in AdaRank-CC algorithm, but without 
having the desired results. 

In the following we present the AdaRank-CC 

and RankBoost-CC algorithms which follow the 
same philosophy. 

AdaRank-CC/RankBoost-CC Algorithm: 
Clustering:clusters' creation 
Initialization:AdaRank's/RankBoost's 

initialization 
For 
 AdaRank's/RankBoost's function 
 For each document 

◦ Find the cluster in which document 
belongs to and get its BM25 value 

◦ Update the value of the document 
using the above BM25 value 

 End for 
End for 
Output:AdaRank-CC's/RankBoost-CC's 

output 

As bonus for the RankNet-CC algorithm we use 
(b/104)*fvalue(x) where b is the BM25 value of the 
cluster's centroid in which the document belongs to 
and fvalue(x) is a document's feature value from the 
algorithm. At this algorithm, we use the documents' 
vectors updating their feature values at each iteration 
instead of the documents' values as we did before. 

We decided to divide the BM25 value with the 
number 10000, because through the experiments we 
got the best results. 

So, before the algorithm starts we create the 
clustering and at the end of each iteration, after the 
algorithm's function is complete, we update the 
elements of the documents' vectors as follows: 

௩݂௔௟௨௘ሺݔሻ ൌ ௩݂௔௟௨௘ሺݔሻ ൅ ሺሺܾ/10ସሻ
∗ ௩݂௔௟௨௘ሺݔሻሻ 

(2)

The RankNet-CC algorithm follows the 
AdaRank-CC's and RankBoost-CC's philosophy, 
but, instead of updating the documents' value, it 
updates each element of the documents' feature 
vector. 

So in contrast to the AdaRank-CC and 
RankBoost-CC algorithms, the RankNet-CC 
algorithm, based on the theory that better feature 
vectors provide better results, tries to update the 
documents' feature vectors at each iteration, 
promoting the documents that belong to the clusters 
with the best BM25 value. With the above-
mentioned, at each iteration we provide better 
feature values at the documents' vectors, which 
belong to the best clusters, targeting the neural 
network to provide better values to these documents. 
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4 EXPERIMENTAL 
EVALUATION 

We conducted experiments to investigate the 
performance of our implementations using the two 
Microsoft Learning to Rank Datasets 
(http://research.microsoft.com/en-us/projects/mslr/). 
Also, for our experiments we used the RankLib 
(http://people.cs.umass.edu/~vdang/ranklib.html) 
library, which contains eight popular learning-to-
rank algorithms and many retrieval metrics. 

These two datasets are machine learning data and 
they consist of feature vectors exported from query-
url pairs in company with relevance judgment labels. 
The queries and urls are represented by IDs. Also, 
each query-url pair is represented by a 136-
dimensional vector, in which every dimension 
provide some information. In order to create our 
clustering, we have chosen 24 specific features, 
which we consider as more informative, so as to 
create a better clustering. We have selected the 
features 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 
65, 70, 75, 80, 85, 90, 95, 110, 130, 133, 134, 136 
that correspond to the whole document's covered 
query term number, covered query term ratio, stream 
length, IDF(Inverse document frequency), sum of 
term frequency, min of term frequency, max of term 
frequency, variance of term frequency, sum of 
stream length normalized term frequency, min of 
stream length normalized term frequency, max of 
stream length normalized term frequency, mean of 
stream length normalized term frequency, variance 
of stream length normalized term frequency, sum of 
tf*idf, min of tf*idf, max of tf*idf, mean of tf*idf, 
variance of tf*idf, BM25, PageRank, QualityScore2, 
Query-url click count and url dwell time 
respectively. 

The purpose of our experiments was to depict the 
usefulness of exploiting cluster information in 
Learning-to-Rank. We have created a per query 
clustering using the algorithm k-means++, which is 
a variant of the k-means algorithm (Gan, Ma and 
Wu, 2007) for choosing the initial values (or 
"seeds") for the implementation of the algorithm. In 
the assignment step of the k-means++ algorithm, 
each document was assigned to the cluster whose 
mean was the “nearest” to it according to the 
squared Euclidean distance. We chose euclidean 
measure and the specific set of features so that 
documents in the same cluster can have similar 
characteristics concerning the various anticipated 
information needs. We should also note that every 
dataset has a variable number of documents that 
correspond to a specific query. Hence, we have 

queries that have for example 5 results and others 
that have 40 results. For this reason, we have queries 
that have from 2 to 5 clusters, depending on the 
number of their documents. 

As we will see, in the presentation of the 
experiments, though our approach aims at evaluation 
effectiveness it also comes as an extra bonus an 
improvement in efficiency. 

4.1 Experiments with MSLR-WEB10K 

In this experiment, we made use of the MSLR-
WEB10K data to test the performance of AdaRank, 
AdaRank-CC, RankNet and RankNet-CC. The 
MSLR-WEB10K consists of 10,000 queries and is 
partitioned into 5 folders. 

The following table shows the difference in the 
value of metrics, based on the average of the five 
folders, between AdaRank and AdaRank-CC.  

Table 1: Comparison between AdaRank and AdaRank-
CC. 

 AdaRank AdaRank-CC 
NDCG@3 0,36562 0,36758 
NDCG@5 0,31002 0,34954 

NDCG@10 0,34352 0,39596 
P@3 0,69476 0,69438 
P@5 0,66332 0,66174 
P@10 0,59406 0,62542 
MAP 0,57236 0,57622 

The following table shows the difference in 
iterations, based on the average of the five folders, 
between AdaRank and AdaRank-CC.  

Table 2: Comparison between AdaRank and AdaRank-
CC. 

 AdaRank AdaRank-CC 
NDCG@3 54,4 39,8 
NDCG@5 119,2 59,4 

NDCG@10 95 35 
P@3 10,6 8,6 
P@5 7,8 7,6 
P@10 122,2 43,8 
MAP 163 62 

The following table shows the difference in the 
value of metrics, based on the average of the five 
folders, between RankNet and RankNet-CC.  

4.2 Experiments with MSLR-WEB30K 

In this experiment, we made use of the MSLR-
WEB30K data to test the performance of AdaRank, 
AdaRank-CC,   RankNet   and  RankNet-CC.   The 
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Table 3: Comparison between RankNet and RankNet -CC. 

 RankNet RankNet -CC 
NDCG@3 0,1573 0,1531 
NDCG@5 0,1683 0,1665 

NDCG@10 0,2002 0,2038 
P@3 0,4716 0,4711 
P@5 0,4480 0,4410 
P@10 0,4431 0,4415 
MAP 0,4421 0,4446 

MSLR-WEB30K consists of 30,000 queries and is 
partitioned into 5 folders. 

The following table shows the difference in the 
value of metrics, based on the average of the five 
folders, between AdaRank and AdaRank-CC. 

Table 4: Comparison between AdaRank and AdaRank-
CC. 

 AdaRank AdaRank-CC 
NDCG@3 0,38562 0,34059 
NDCG@5 0,30028 0,33694 

NDCG@10 0,34796 0,39516 
P@3 0,69632 0,69736 
P@5 0,66686 0,66588 
P@10 0,60698 0,63182 
MAP 0,57822 0,58574 

The following table shows the difference in 
iterations, based on the average of the five folders, 
between AdaRank and AdaRank-CC. 

Table 5: Comparison between AdaRank and AdaRank-
CC. 

 AdaRank AdaRank-CC 
NDCG@3 39,2 64,8 
NDCG@5 110,2 62,6 

NDCG@10 84,8 31 
P@3 9,1 8 
P@5 18,8 6,8 
P@10 86,6 46,6 
MAP 169 51,8 

The following table shows the difference in the 
value of metrics, based on the average of the five 
folders, between RankNet and RankNet-CC.  

Table 6: Comparison between RankNet and RankNet -CC. 

 RankNet RankNet -CC 
NDCG@3 0,1558 0,1593 
NDCG@5 0,1686 0,1690 

NDCG@10 0,2019 0,2043 
P@3 0,4706 0,4718 
P@5 0,4475 0,4433 
P@10 0,4422 0,4410 
MAP 0,4435 0,4467 

4.3 Inference from the Experiments 

Regarding the AdaRank-CC, which is an algorithm 
that doesn't use directly the documents' values with 
the additional bonus in its function, is that exploiting 
the clustering and the bonus to each document 
during the iterations, we can get better results 
considering the NDCG@k, MAP and P@k metrics 
simultaneously in fewer iterations. More precisely, 
observing the graphs we understand that for 
NDCG@3 and P@3 we have approximately the 
same results between the default AdaRank and 
AdaRank-CC. But, for NDCG@5, P@5 and 
especially for NDCG@10, P@10 and MAP we 
observe that the AdaRank-CC provides better 
results. This observation confirms our conviction 
that through the bonus during the iterations we will 
direct the documents of the best clusters at the top of 
the ranked list and this also shows that we gather the 
documents with the best labels at the top 10 
positions and as result we have better evaluation. 

Hence, we conclude that our approach to 
combine learning-to-rank with an existing clustering 
can be integrated with positive results in fewer 
iterations at an algorithm such as the AdaRank 
which is positively affected by the additional bonus 
that are given to the documents. We infer this 
algorithm's improvement to the additional bonus 
observing the calculation of distribution at each 
iteration. The distribution's calculation is the 
following (Li, 2011): 

௜ܲାଵ ൌ
expሺെܧሺߨ௜, ௜ሻሻݕ

∑ expሺെܧሺߨ௝, ௝ሻሻ௠ݕ
௝ୀଵ

 (3)

where E(π,y) is the evaluation conducted at the list 
level, t is the number of iteration, π is the ranked list 
of documents, y is the list of documents' labels and i 
is the number of query. 

So, the distribution's calculation is based on the 
evaluation of the documents' labels and not on the 
documents' values, given by the scoring function of 
the algorithm, in which we put the additional bonus. 

In contrast to the above conclusions, regarding 
the Rank-Boost-CC, for which  the documents' 
values have an important role in algorithm's 
distribution determination, we don't get better 
evaluation. More precisely, we can understand the 
effect of the documents' value, observing how the 
distribution is calculated. At each iteration the 
distribution is calculated using this formula (Liu, 
2011): 

,௢ݔ௧ାଵሺܦ ଵሻݔ

ൌ
,௢ݔ௧ሺܦ ଴ሻݔଵሻexpሺܽ௧ሺ݄௧ሺݔ െ ݄௧ሺݔଵሻሻሻ

ܼ௧
 

(4)
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where Zt is a normalization factor, t is the number of 
iteration, x is a document, at is a parameter and h(x) 
is the document's value. 

So, the distribution's calculation is based on the 
documents' values which contain the additional 
bonus. It is clear that, in contrast to the AdaRank as 
it uses the documents' labels evaluation, the 
documents' value plays a significant role to the 
distribution's value. Since, we don't get better result 
using the additional bonus for this kind of 
distribution calculation, we can deduce that the 
additional bonus adversely affects these algorithms 
such as RankBoost as it adversely distorts the 
calculation of the distribution. 

Regarding the RankNet-CC, for which at the end 
of each iteration we update the elements of the 
documents' vectors in order to create better vectors 
and as consequence better results, from the results 
we can observe that the metrics between RankNet 
and RankNet-CC are approximately equal and so we 
can not infer reliable conclusions. Slightly better 
results in favour of RankNet-CC we can observe for 
the metrics NDCG@10 and P@10 and this remark 
agrees with the observation that we made for the 
AdaRank-CC concerning the above two metrics. 

5 CONCLUSIONS 

In this paper we have proposed new versions of the  
AdaRank, RankBoost and RankNet learning to rank 
algorithms, referred to as AdaRank-CC, RankBoost-
CC and RankNet-CC respectively. In contrast to 
existing methods, AdaRank-CC, RankBoost-CC and 
RankNet-CC take into consideration the multi-way 
inter-relationship between all documents, since we 
have separated the unstructured set of documents 
into clusters using the k-Means++ algorithm. 

Our basic finding in this work is that algorithms 
such as AdaRank-CC, for which the additional 
bonus doesn't affect the computation of the 
distribution of weights over the queries, can indeed 
improve both effectiveness and efficiency, as we can 
get better overall quality according to the well 
known evaluation metrics (NDCG, MAP, various 
levels of precision) and simultaneously decrease the 
number of iterations. As future work, it could be 
interesting to further investigate how we can get the 
similar results to those of the AdaRank-CC and the 
other algorithms that use directly the documents' 
values with the additional bonus in their function 
and consequently they are affected by them. 
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