
Comparing Topic Models for a Movie Recommendation System

Sonia Bergamaschi, Laura Po and Serena Sorrentino
DIEF, University of Modena and Reggio Emilia, 41125 Modena, Italy

Keywords: Movie Recommendation System, LDA, LSA.

Abstract: Recommendation systems have become successful at suggesting content that are likely to be of interest to the
user, however their performance greatly suffers when little information about the users preferences are given.
In this paper we propose an automated movie recommendation system based on the similarity of movie:
given a target movie selected by the user, the goal of the system is to provide a list of those movies that are
most similar to the target one, without knowing any user preferences. The Topic Models of Latent Semantic
Allocation (LSA) and Latent Dirichlet Allocation (LDA) have been applied and extensively compared on a
movie database of two hundred thousand plots. Experiments are an important part of the paper; we examined
the topic models behaviour based on standard metrics and on user evaluations, we have conducted performance
assessments with 30 users to compare our approach with a commercial system. The outcome was that the
performance of LSA was superior to that of LDA in supporting the selection of similar plots. Even if our
system does not outperform commercial systems, it does not rely on human effort, thus it can be ported to any
domain where natural language descriptions exist. Since it is independent from the number of user ratings, it
is able to suggest famous movies as well as old or unheard movies that are still strongly related to the content
of the video the user has watched.

1 INTRODUCTION

Recommendation systems are information filtering
systems that recommend products available in e-
shops, entertainment items (books music, videos,
Video on Demand, books, news, images, events etc.)
or people (e.g. on dating sites) that are likely to be
of interest to the user. These system are the basis
of the targeted advertisements that account for most
commercial sites revenues. In the recent years, some
events catalized the attention on movie recommenda-
tion systems: in 2009, a million-dollar prize has been
offered by the DVD rental site Netflix1 to anyone who
could improve their predictions by 10%2; in 2010 and
2011 we saw the International Challenges on Context-
Aware Movie Recommendation3; moreover, in 2013,
Netflix announced a new developer contest called the
“Netflix Cloud Prize”4 which is promising a prize
money of $100,000 to those who improve the perfor-
mance of Netflix’s cloud computing services.

1http://www.netflixprize.com/
2The grand prize was given to the BellKor’s Pragmatic Chaos

team which bested Netflix’s own algorithm for predicting ratings
by 10.06%.

3http://2011.camrachallenge.com/
4https://github.com/Netflix/Cloud-Prize/wiki

Recommendation systems have become relatively
successful at suggesting content, however their per-
formance suffers greatly when little information about
the user’s preferences is given. These situations are
not rare; they usually occur when the users are new
to a system, the first time a system is launched on
the market (no previous users have been logged), for
new items (where we do not have any history on pref-
erences yet) (Adomavicius and Tuzhilin, 2005) and
when, because of user desires for privacy, the system
does not record their preferences (Rashid et al., 2008).
In such cases, making suggestions entirely based on
the content that is being recommended can be a good
solution.

The focus of the paper is to provide an automatic
movie recommendation system that does not need any
a priori information about users. The paper compares
two specific techniques (LDA and LSA) that have
been implemented in our content-based recommen-
dation system. Although topic models are not new
in the area of recommendation systems, their use has
not been deeper analyzed in a specific domain, such
as the movie domain. Our intention is to show how
these well-known techniques can be applied in such
specific domain and how they perform.

The automatic movie recommendation system

172 Bergamaschi S., Po L. and Sorrentino S..
Comparing Topic Models for a Movie Recommendation System.
DOI: 10.5220/0004835601720183
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 172-183
ISBN: 978-989-758-024-6
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: The local MongoDB database.

permits, given a movie, to supply users with a list of
those movies that are most similar to the target one.
The way the system detects the list of similar movies
is based upon an evaluation of similarity among the
plot of the target movie and a large amount of plots
that is stored in a movie database. The movie database
has been constructed by integrating different movie
databases in a local NoSQL (MongoDB) database,
building a collection of about two hundred thousand
plots together with the most relevant movie metadata.

The context where our system works is that of
video-on-demand (VOD). Generally speaking, this is
the case when a user is looking for an item without
being registered on the site in which he is looking for
(searching a book on Amazoon, a movie on IMDb
etc.). We assumed the only information we have about
the user is his first choice, the movie he has selected/
he is watching (we do not have a history about his
past selections nor a profile about his general inter-
ests). When watching a VOD movie, users explicitly
request to buy and to pay for that movie, then what
our system attempt to do is proposing a list of sim-
ilar movies assuming that the chosen film has been
appreciated by the user (the system assumes the user
liked the movie if his play time is more then 3/4 of
the movie play time). Here, we also assume that we
have no knowledge about the preferences of the users;
namely, about who is watching the film, and also with
regard to other users who have previously accessed
the system.

There are dozens of movie recommendation en-
gines on the web. Some require little or no input be-
fore they give you movie titles, while others want to
find out exactly what your interests are, however all
of these systems rely on ratings directly or indirectly
expressed by users of the system (some examples are
Netflix, Rotten Tomatoes, Movielens, IMDb, Jinni).

Starting from our previous work (Farinella et al.,
2012) that highlighted the power of using the Latent
Semantic Analysis (LSA) in contrast with weighting

techniques (such as log and tf-idf) in suggesting sim-
ilar movies, in this paper we intend to integrate in the
system the Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) and then, by evaluating on real users
we compare the performance of our system based on
LSA and LDA.

In (Griffiths et al., 2007) it has been shown that the
Latent Dirichlet Allocation (LDA) Topic Model (Blei
et al., 2003) outperforms LSA, in the representation
of ambiguous words and in a variety of other linguis-
tic processing and memory tasks. Hereby, we intend
to analyze the performance of LDA on the movie do-
main and compare its behaviour with regard to LDA.
In the end, we examine the performance of our system
with regard to a commercial approach.

The system has been developed in collaboration
between the database group of the University of Mod-
ena and Reggio Emilia5 and vfree.tv6, a young and
innovative German company focused on creating new
ways of distributing television content and generating
an unprecedented watching experience for the user.

The paper is structured as follows. Section 2 de-
scribes the structure of the local movie database Mon-
goDB. Section 3 describes hoe the system performs
the similarity computations among movie plots by us-
ing the LDA and LSA Topic Models. The experi-
mental results of this study are presented in Section 4:
we show the computational costs of building the LSA
and LDA matrices, and the results of off-line tests
performed on three recommendation systems (LSA,
LDA and a commercial approach). Section 5 presents
some related work. Conclusion and future work are
depicted in Section 6.

5http://www.dbgroup.unimo.it
6http://vfree.tv

Comparing�Topic�Models�for�a�Movie�Recommendation�System

173

Figure 2: Documents related to the “Schindler’s List” movie.

2 THE MOVIE DATABASE

The principal aim of a local repository of movies
is to supply an extensive and reliable representation
of multimedia that can be queried in a reasonable
time. The local database of our system has been
defined, as in our previous work (Farinella et al.,
2012), by importing data from external repositories.
In particular, we selected the Internet Movie Database
(IMDb)7, DBpedia8 and the Open Movie Database
(TMDb)9. Since local database needs to easily im-
port data from different sources and perform queries
on a huge amount of data (thousands of movies) in
a short time, we chose MongoDB10, a non relational
database and schema-free. MongoDB features allow
to create databases with flexible and simple structure
without decreasing the time performance when they
are queried.

Information about movies can be classified in ei-
ther information that are related to multimedia or in-
formation that are about people that participated in
the production of multimedia. This led to the creation
of three main databases, each storing collections from
the 4 sources (as shown in Figure 1). As MongoDB do
not enforce document structure, this flexibility allows
an easy adaptation to integrate different/new datasets

7http://www.imdb.com/
8http://dbpedia.org/
9http://www.themoviedb.org/

10http://www.mongodb.org/

into the system. A single collection can store doc-
uments with different fields. Thus there cannot re-
ally be a description of a collection, like the descrip-
tion of a table in the relational databases. However,
to give an insight into the local DB, we extracted
some documents that store information related to the
“Schindler’s List” movie. In figure 2, documents from
different collections (IMDb, and the English and Ger-
man version of DBpedia) are shown. It can be no-
ticed how the information are heterogeneously repre-
sented in the collections (see the different information
stored in the English and German version of DBpe-
dia Movie collection) and how flexible the structure
of each documents is (see for example in the English
DBpedia Crew Collection the double role of Steven
Spielberg that is both the director and the producer of
the movie).

3 PLOT SIMILARITY
COMPUTATION

The similarity of two media items depends on their
features likeness. Hence, for each feature, a spe-
cific metric is defined in order to compute a similarity
score. Most of the metrics that are adopted are calcu-
lated through only few simple operations. However,
if we want to consider also movie plots, the similarity
computation becomes more complex. Our approach
is based on the Vector Space Model (VSM) (Salton

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

174

et al., 1975), this model creates a space in which
both documents and queries are represented by vec-
tors. In the area of the Information Retrieval the VSM
has been considered as one of the most effective ap-
proaches, and its behaviour has also been studied ap-
plied on recommendation systems (Musto, 2010).

Our system takes advantage of this model to repre-
sent the different movie plots: each plot (or document
from now on) is represented as a vector of keywords
with associated weights. These weights depend on
the distribution of the keywords in the given training
set of plots that are stored in the database. Vectors
representing plots are then joined in a matrix repre-
sentation where each row corresponds to a plot and
each column corresponds to a keyword extracted from
the training set plots (i.e. the document by keyword
matrix). Thus, each cell of the matrix represents the
weight of a specific keyword according to a specific
plot.

The matrix computation goes through four main
steps:

1. Plot Vectorization - relevant keywords are ex-
tracted and then stop words removal and lemma-
tization techniques are applied;

2. Weights Computation- weights are defined as the
occurrences of keywords in the plots; the ini-
tial weights are then modified by using the tf-idf
technique (Salton et al., 1975)(but other suitable
weighting techniques could be used as well), thus
building the document by keyword matrix;

3. Matrix Reduction by using Topic Models - the
document by keyword matrix is reduced to a lower
dimensional space by using the Topic Models
LDA and LSA, thus it is transformed into a docu-
ment by topic matrix.

4. Movie Similarity Computation- starting from the
document by topic matrix, the similarity between
two plots is computed by considering their topics
as features instead of words.

3.1 Plot Vectorization

If two plots are to be compared, they will need to be
converted into vectors of keywords. As preliminary
operations, keyword extraction and filtering activity
are performed. Keywords correspond to terms within
the document that are representative of the document
itself and that, at the same time, are discriminating.
Less discriminative words, the so called stop words,
are discarded, while the other terms are preprocessed
and substituted in the vector by their lemmas (lemma-
tization).

Lemmatization and keyword extraction are per-
formed by using TreeTagger11, developed at the In-
stitute for Computational Linguistics of the Univer-
sity of Stuttgart. This tool can annotate documents
with part-of-speech and lemma information in both
English and German language.

Keywords extracted from plots as well as their lo-
cal frequencies (occurrences in the description of the
plot) are stored as features of the media item in the
local database MongoDB. This choice has been made
for two main reasons. First, the keyword extraction
process is relatively slow12 compared to the access to
database values. Since the weighting techniques are
based on the global distribution of the keywords over
the whole corpus of plots, it is necessary to gener-
ate all the vectors before applying the weighting tech-
nique. Second, while weights change when new mul-
timedia plots are added into the system, the local key-
word occurrences do not.

3.2 Weights Computation

Weighting techniques are used for computing key-
word weights. A weight is a value in the range [0,1]
that represents the relevance of a specific keyword ac-
cording to a specific document. A weight is calcu-
lated on the basis of the local distribution of the key-
word within the document as well as on the global
distribution of the keyword in the whole corpus of
plots. Keywords with a document frequency equal to
1 are discarded. Since, our previous work (Farinella
et al., 2012) has compared tf-idf and log weighting
techniques revealing that the results are very similar,
in this paper we employ only the tf-idf technique for
computing the weights.

3.3 Matrix Reduction by using Topic
Model

The Vector Space Model treats keywords as indepen-
dent entities. To find documents on specific concepts,
we must provide the correct key terms. This rep-
resentation leads to several issues: (1) there can be
an high number of keywords when we have to deal
with a huge amount of documents; (2) if any keyword
changed, the document would not convey the same
concept.

These problems can be faced by a representation
into a Topic Model(Park and Ramamohanarao, 2009).

11http://www.cis.uni-muenchen.de/ schmid/tools/ Tree-
Tagger/

12One database access, using MongoDB, takes about 0.3
milliseconds while the extraction of keywords from a plot
takes more than one second.

Comparing�Topic�Models�for�a�Movie�Recommendation�System

175

The Topic Model explores the idea that the concept
held by a set of terms can be represented as a weighted
distribution over a set of topics. Each topic is a linear
combination of terms, where to each term a weight
reflecting the relevance of the term for that topic is
associated. For example, high weights for family and
house would suggest that a topic refers to a social unit
living together, whereas high weights for users and
communication would suggest that a topic refers to
social networking.

Topics can be found by clustering the set of key-
words. The use of topics drastically reduces the di-
mension of the keyword Matrix obtained by Vector
Space Model. Moreover, if a keyword changes, the
document conveys the same idea as long as the new
keyword is taken from the same topic pool.

Topic vectors may be useful in the context of
movie recommendation systems for three main rea-
sons: (1) the number of topics that is equal to the
number of non-zero eigenvectors is usually signifi-
cantly lower than the number of keywords, the topic
representation of the plots is more compact13; (2) the
topic representation of the keywords makes possible
to add movies that have been released after the defini-
tion of the matrix without recomputing it;

(3) to find similar movies starting from a given
one, we just need to compute the topic vectors for the
plot of the movie and then compare these vectors with
the ones we have stored in the matrix finding the top
relevant.

The main Topic Models exploited so far in litera-
ture are the LSA (also called Latent Semantic Index-
ing (LSI)) and the LDA. In the following, we briefly
describe both the methods and how they can be ap-
plied to our movie recommendation system.

3.3.1 Latent Semantic Analysis (LSA)

LSA is a model for extracting and representing
the contextual-usage meaning of words by statistical
computations applied to a large corpus of documents.

The LSA consists of a Singular Value Decomposi-
tion (SVD) of the matrix T (Training set matrix) fol-
lowed by a Rank lowering (for more details see (Du-
mais, 2004; Deerwester et al., 1990)). The Singu-
lar Value Decomposition consists of representing the
matrix T , the document by keyword matrix that rep-
resents the relationships between keywords and plots,
as the product of three matrices: K, S, DT . Matrix K,
the topic by keyword matrix, represents the relation-
ships between keywords and topics, while matrix S is
a diagonal matrix whose values represent the square

13Thus, we store the matrix of document-topic vectors to
represent the training set.

roots of the so called eigenvalues of the matrix T T T .
Matrix DT , document by topic matrix, represents the
relationships between plots and topics.

The Singular Value Decomposition is conse-
quently followed by a Rank lowering by which the
matrices S and T are transformed respectively into the
matrices S′,T ′. The purpose of dimensionality reduc-
tion is to reduce noise in the latent space, resulting in
a richer word relationship structure that reveals latent
semantics present in the collection. In a LSA system,
the matrices are truncated to z dimensions (i.e. top-
ics). The optimal z is determined empirically for each
collection. In general, smaller z values are preferred
when using LSA, due to the computational cost asso-
ciated with the SVD algorithm, as well as the cost of
storing and comparing large dimension vectors14.

3.3.2 Latent Dirichlet Allocation (LDA)

LSA provides a simple and efficient procedure for
extracting a topic representation of the associations
between terms from a term-document co-occurrence
matrix. However, as shown in (Griffiths et al., 2007),
this representation makes it difficult for LSA do deal
with the polysemous terms. The key issue is that its
representation does not explicitly identify the differ-
ent senses of a term. To address this problem we in-
vestigated the use of the Latent Dirichlet Allocation
(LDA) Topic Model.

Unlike LSA, LDA is a probabilistic Topic Model,
where the goal is to decompose a conditional term by
document probability distribution into two different
distributions, this allows each semantic topic z to be
represented as a multinominal distribution of terms,
and each document d to be represented as a multinom-
inal distribution of semantic topics. The model in-
troduces a conditional independence assumption that
document d and keyword k are independent condi-
tioned on the hidden variable, topic z.

LDA can also be interpreted as matrix factoriza-
tion where document over keyword probability dis-
tribution can be split into two different distributions:
the topic over keyword distribution, and the document
over topic distribution. Thus, it appears clear, that we
can easily make a direct correspondence between the
document by topic matrix obtained from LSA and the
the document over topic distribution obtained by us-
ing LDA.

Both LDA and LSA permit to find a low dimen-
sional representation for a set of documents with re-

14In our previous work we determined 500 as a good
number of topic. This value allows have reasonable com-
putational costs, and maintains an appropriate level of ac-
curacy.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

176

gard to the simple term by document matrix. This
dimensionality in both cases has to be decided a pri-
ori. By adopting LSA, we were able to represent each
plot of the IMDb database with 500 topics, instead
of 220,000 keywords (Farinella et al., 2012). For
LDA (which has been demonstrated working well for
a number of topics over 50 (Blei et al., 2003)), after
a few experimental evaluations, we decided to use 50
topics.

3.4 Movie Similarity Computation

As previously described by using LSA or LDA the
document by keyword matrix is decomposed into sev-
eral matrices. The document by topic matrix is the one
that is used to represent the movie of our database in
a lower dimensional space and also to compute the
similarity score between two plots.

To calculate the similarity score between two doc-
uments we use the cosine similarity. This metric is
used to either compare plots within the training set or
plots that are not included in the training set.

Definition - Cosine Similarity: Given two vec-
tors vi, and v j, that represent two different plots, the
cosine angle between them can be calculated as fol-
lows:

cosin(vi,v j) =
∑k (vi[k] · v j[k])√

∑k vi[k]2 ·
√

∑k v j[k]2

The value of the cosine angle is a real number in
the range [−1,1]. If the cosine is equal to 1 the two
vectors are equivalent, whereas if it is −1 the two vec-
tors are opposite.

The similarity of plots can also be combined with
the similarity of other features such as directors,
genre, producers, release year, cast etc.

Definition - Feature-based Similarity: Given
two media items (m1 and m2) the feature-based simi-
larity is defined as a weighted linear combination of
the similarity of the feature values that describe the
two items:

sim(m1,m2) =
FN

∑
i=1

wi · simi(f1,i, f2,i)

where FN is the number of features that describe a
media item, simi is the metric used to compare the i-
th feature, f j,k is the value assumed by feature k in
the j-th media item. The result of each metric is nor-
malized to obtain a value in the range [0,1] where 1
denotes equivalence of the values that have been com-
pared and 0 means maximum dissimilarity of the val-
ues (Debnath et al., 2008).

4 EXPERIMENTS

We have performed several tests in order to evaluate
our system, the goal was to compare the effectiveness
of LDA and LSA techniques and to evaluate the per-
formance of the system on real users.

Our previous research (Farinella et al., 2012) has
shown that:

• There is not a big difference in the results ob-
tained by applying log or tf-idf weighting tech-
niques. Thus, we can use one of them.

• The use of the Topic Model LSA shows a notice-
able quality improvement compared to the use of
the SVD model. LSA allows to select plots that
are better related to the target’s plot themes.

Starting from these results, we conducted new
tests and evaluations of the system. First of all, we
loaded data from IMDb into the local database Mon-
goDB and evaluated the computational costs of build-
ing the LSA and LDA matrices. Then, we compared
the two Topic Models manually, by analyzing their
behaviours in some special cases. Finally, we con-
ducted off-line tests. We built two surveys asking real
users to judge the similarity of each film in a list with
regard to a target movie. The first test compared the
performance of LDA and LSA. The second test com-
pared the performance of LSA and a commercial sys-
tem, IMDb. A third test evaluates the precision of the
three recommendation systems.

4.1 Setup of the Environment

The DataBase Management System used is Mon-
goDB 2.4.1, the system has been installed on a ma-
chine with the following characteristics: OS: Win-
dows Server 2008 R2 64-bit; CPU: Intel (R) Xeon
E5620 Ghz 2:40; RAM: 12 GB. The 64bit version of
MongoDB is necessary as it is the only version that
allow working with databases greater than 2 GB.

A virtual machine for the execution of the code
has been installed on the server. The virtual machine
has the following features: OS: Ubuntu 12.04 LTS 64-
bit; RAM: 8 GB; 20 GB dedicated to the virtual hard
disk; 4 cores. The virtual machine has been set up
with VMWare Workstation 9.0.115. The 32-bit archi-
tecture makes it possible to instantiate a maximum of
2 GB of memory for a process. The creation of the
LSA and LDA models exceeds the threshold of 2 GB,
then the use of a 64-bit architecture is crucial in order
to avoid memory errors.

15http://www.vmware.com/products/workstation/

Comparing�Topic�Models�for�a�Movie�Recommendation�System

177

4.2 Evaluation of the Computational
Costs

The SVM of the plot-keyword matrix have a com-
plexity of O(d × k) where d is the number of mul-
timedia (rows of the matrix) and k is the number of
keywords and d ≥ k. There are about 1,861,736 mul-
timedia in the IMDb database, but only for 200,000
there is a plot available. These plots contain almost
220,000 different keywords. Thus, the time cost for
the decomposition of the matrix is O = 3 ·1015. Fur-
thermore, the decomposition requires random access
to the matrix, which implies an intensive usage of the
central memory.

Both LSA and LDA decrease this cost by using a
reduced matrix. The Document by Topic Matrix used
by LSA has a dimension of d × z where z is the num-
ber of topic (columns). The Document Distribution
over Topic Matrix used by LDA has a dimension of
d × z. Usually LSA requires more topics then LDA.
Thus, the cost for the computation of the LDA ma-
trix is further decreased. In order to avoid the central
memory saturation, we employ the framework Gen-
sim16. It offers functions to process plain document
including algorithms performing both LSA and LDA
which are independent from the training corpus size.

Table 1 shows the computational costs to create
the LSA and LDA models (the cost refers to the envi-
ronment that we described in 4.1).

Table 1: Computational Costs.

Operation Time CPU Memory
(minutes) avg use avg use

Plot vect. 5 75% 11%
Tf-idf weights 1 97% 10%
LSA weights 120 97% 42%
LDA weights 60 95% 40%

Table 2: LSA and LDA Topic Model comparison.

Configuration LSA LDA
min. document freq. 10 10
min. vector length 20 20
min. tf-idf weight 0.09 0.09
min. lsa/lda weight 0.001 0.001
n. of topics 500 50
matrix size 204285 x 500 204285 x 50
Similarity time cost 12 sec 6 sec

Table 2 summarizes the configuration adopted for
LSA and LDA and the time performance of the topic
models when, starting from a given plot, they rank all
the other plots in the database. Since the LDA model
requires less topics (50 instead of the 500 required by

16http://radimrehurek.com/gensim/

LSA), it has a computation cost and a similarity time
cost lower than the ones for LSA.

Table 3: A comparison between LSA and LDA techniques
on the movie “Batman Begins”.

LSA LDA
1.Batman Begins(2005) 1.Batman Begins(2005)
2.Batman(1989) 2.Batman Forever(1995)
3.Batman:Gotham
Knight(2008)

3.The Dark Knight(2008)

4.The Batman/Superman
Hour(1968)

4.The Batman(2004)

5.The Batman(2004) 5.Frankie and
Johnny(1991)

6.The Dark Knight(2008) 6.The Exorcist(1973)

Table 4: A comparison between LSA and LDA techniques
on the movie “The Matrix”.

LSA LDA
1.The Matrix (1999) 1.The Matrix (1999)
2.Computer Warriors
(1990)

2.The Matrix Reloaded
(2003)

3.Electric Dreams (1984) 3.Simulacrum (2009)
4.Willkommen in Baby-
lon (1995)

4.Virus X (2010)

5.TRON 2.0 (2003) 5.Fallen Moon (2011)
6.Hackers (1995) 6.The Matrix Revolutions

(2003)

4.3 Topic Model Comparison

We have performed several tests in order to evaluate
which of the Topic Models was the best in defining
the recommended movie list.

As described in section 3, the similarity of plots
can be combined with the similarity of other features.
We decided not to consider the features for this evalu-
ation, so the LSA and LDA are compared considering
only plots and none of the movie features. This deci-
sion was gained after a manual evaluation of the re-
sults of LDA and LSA with or without features. The
manual evaluation showed several problems that have
led us to formulate some considerations: (1) for each
movie we have a broad list of actors, as IMDb re-
ports the complete list including the background ac-
tors. Evaluating similarity starting from this list is
really complicated and might lead to meaningless re-
sults; (2) in order to decrease computation cost, the
features have been applied as a filter after the compu-
tation of the top 100 most similar movies according to
the plot. Thus, the application of the features do not
always improve the results gained by LSA or LDA.

To examine the quality of results of LDA and
LSA, we chose three movies: two movies of a saga
and a movie without a sequel. We calculated the five
most similar movies for each target movie and an-
alyzed the outcome. Table 3 shows the results for

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

178

Figure 3: Performance of the topic models and IMDb on the two surveys.

the target movie “Batman Begins”. All movies rec-
ommended by LSA belong to the series of Batman.
The LDA list contains many movies of the saga, how-
ever the movies in fifth and sixth position have noth-
ing in common with the target movie, these movies
have a poor and short plot with words that are present
also in the Batman Begins’s plot (such as evil, sinister
forces, family, prison). For the second movie “The
Matrix” (see Table 4), LSA selected movies refer-
ring to the topics of computer, network, programmer,
hacker. The outcome of the LDA technique showed
two movies of the trilogy and other movies contain-
ing terms and names that appear also in the target plot,
but that do not refer to similar topics. The quality of
the outcome decreases with movies that do not have
a sequel as it can be seen in Table 5. For this kind
of movies is difficult to evaluate the recommended
movie list. For this reason we built a survey of pop-
ular movies that do not have a sequel and asked to
real users to judge the similarity of the recommended
movies.

Table 5: A comparison between LSA and LDA techniques
on the movie “Braveheart”.

LSA LDA
1.Braveheart (1995) 1.Braveheart (1995)
2.The Enemy Within
(2010)

2.Windwalker (1981)

3.Journey of a Story
(2011)

3.Lipgloss Explo-
sion(2001)

4.Audition (2007) 4.Race for Glory (1989)
5.The Process (2011) 5.Voyager from the Un-

known (1982)
6.Comedy Central Roast
of William Shatner (2006)

6.Elmo Saves Christmas
(1996)

4.4 Testing the Recommendation
System with Real Users

In order to evaluate the performance of our recom-
mendation system, we identified two crucial steps:
first it is necessary to understand which of the two

Topic Models is more appropriate in the movie do-
main, then, we need to estimate its behaviour next to
a commercial recommendation system, as IMDb.

We defined three off-line tests: the first collect-
ing the recommendations of LDA and LSA for 18
popular movies (excluding sagas), the second com-
paring the recommendations of the best Topic Model
with respect to the recommended movie list of IMDb,
the third analyzing in more detail the preferences ex-
pressed by 5 users on the three recommendation sys-
tems. We asked users to fill out the survey by select-
ing the films that looked similar to the film in ques-
tion. These evaluations have enabled us to draw some
conclusions on the performance of the implemented
Topic Models and on our system in general.

4.4.1 LDA versus LSA

The first off-line experiment involved 18 movies; for
each of these movies, we selected the top 6 movies
in the recommendation lists of both LSA and LDA.
In order to propose results that can be easily judged
by users, we discarded from the recommended movie
lists: tv series, documentaries, short films, entries
whose released year is before 1960, entries whose ti-
tle is reported only in the original language, entries
whose plot contains less than 200 characters.

We presented this list to users in a random order
and asked them to judge for each movie in the list
if it is similar to the target one, users can reply by
choosing among “similar”, “not similar” and “I do not
know” (see the survey displayed in left part of Fig-
ure 5). We collected 594 evaluations from 20 users in
total. The evaluation results are shown in Table 6.

Table 6: A user evaluation of the two Topic Models.

judgement LSA LDA
“similar” 201 61
“not similar” 276 410
“I do not know” 120 129
movies without judgement 303 300

We also evaluated the behavior of the Topic Mod-

Comparing�Topic�Models�for�a�Movie�Recommendation�System

179

Figure 4: Percentage of users’ judgements on LSA-LDA
survey.

els on each film: on the 18 movies, we found that
in 15 cases LSA selected the best recommendations
and in 3 cases LDA selected the best recommenda-
tions (see left part of Figure 3). As expected from the
previous comparison of the two models (reported in
Tables 3,4,5), LSA supplied better recommendations
than LDA. In Table 6 we have reported the total num-
ber of user judgements received (here we do not con-
sider the movies for which users have not expressed a
judgement).

4.4.2 LSA versus IMDb

In order to compare our system with respect to IMDb,
we built another survey collecting recommendations
for 18 popular movies (different with respect to the
ones used in the LDA comparison): we selected them
from the top 250 movies of IMDb17). Also in this
case, we extracted only the top 6 movies in the rec-
ommendation lists of both LSA and IMDb.

In the previous survey, we obtained many void
answers (i.e. on several recommended movies users
do not expressed any opinion), moreover, some users
highlighted that filling out the entire survey was very
time consuming. Therefore, we decided to limit the
options only to “similar”.

We presented this list to users in a random order
and asked users to judge for each movie in the list if
it is similar to the target one (see the survey displayed
in right part of Figure 5). The experiment has been
conducted on 30 test participants. We collected 146
evaluations from 30 users in total. On the 18 movies,
we found that in 4 cases LSA selected the best recom-
mendations, in 10 cases IMDb selected the best rec-
ommendations and in 4 cases both systems showed
the same performances (see right part of Figure 3).

17http://www.imdb.com/chart/top

4.4.3 User Preference Evaluation

We added an in-deep evaluation of the users prefer-
ences for the 18 popular movies used in 4.4.2. This
evaluation has been based on the precision measure
computes by using the classification of recommenda-
tion results introduced in (Gunawardana and Shani,
2009) (see table 7) as

Precision =
#t p

#t p+# f p

Table 7: Classification of the possible results of a recom-
mendation of an item to a user (Gunawardana and Shani,
2009).

Recommended Not recommended
Preferred True-Positive (tp) False-Negative (fn)

Not preferred False-Positive (fp) True-Negative (tn)

On the 18 movies, we examine punctual prefer-
ences expressed by 5 expert users on the top 6 items of
the recommendation list, for this evaluation we con-
sider the “similar” and “not similar” judgement ex-
pressed by the users. Thus for each recommendation
list we calculate the precision of the system based on
the user judgement.

We computed the average precision among users
(AVG P@6) and the standard deviation among the
movies (DEV M P@6) and the users (DEV U P@6)
(see table 8). AVG P@6 reflects the average ratio of
the number of relevant movies over the top-6 recom-
mended movies for all users.

We found that the precision of LDA is quite low
(about half as much as the LSA precision), while both
LSA and IMDb reach a good precision. From this
preliminary evaluation (that is quite limited since it
is performed only on 5 users), it seems that the aver-
age precision on the entire set of movies of LSA is
quite the same as the precision of IMDb. As it can
be noticed, there is however a strong deviation of the
precision value among different movies.

Table 8: Precision of the systems based on a punctual user
preference evaluation.

AVG P@6 DEV M P@6 DEV U P@6
LDA 0.215 0.163 0.133
LSA 0.468 0.258 0.056

IMDb 0.416 0.281 0.064

4.5 Results and Discussion

Based on the results of the above-mentioned experi-
ments, we can draw some conclusions:

• LDA does not have good performance on movie
recommendations: it is not able to suggest movies

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

180

Figure 5: A screenshot of the beginning of a page of the surveys: LDA-LSA survey on the left, and LSA-IMDb survey on the
right.

of the same saga and it suggests erroneous en-
tries for movies that have short plot with words
that are present also in the plot of the target
movie (Sect.4.3), also the user evaluation under-
lines poor quality of the LDA recommendations
(Sect.4.4.1,4.4.3);

• LSA achieves good performance on movie recom-
mendations: it is able to suggest movies of the
same saga and also unknown movies related to the
target one (Sect.4.3), also the user evaluation un-
derlines the good quality of the LSA recommen-
dations (Sect.4.4.1,4.4.2,4.4.3);

• Although our system did not outperform the
IMDb performance (Sect.4.4.2), an in-deep eval-
uation of users preferences has shown that the av-
erage precision gained by LSA is very close to the
precision of IMDb (Sect.4.4.3); it would therefore
be necessary to conduct an online analysis of the
behaviour of the system in order to better under-
stand how it performs compared to IMDb.

Finally, we can not ignore that IMDb is strongly
affected by user experiences: it uses features such
as user votes, genre, title, keywords, and, most im-
portantly, user recommendations themselves to gen-
erate an automatic response. On the contrary, our
content-based recommendations system is user inde-
pendent.Thus, our system can be also used to make
recommendations when knowledge of users prefer-
ences is not available.

5 RELATED WORK

Recommendation algorithms are usually classified in
content-based and collaborative filtering (Ekstrand

et al., 2011). Collaborative filtering systems are
widely industrially utilized, for example by Amazon,
MovieLens and Netflix, and recommendation is com-
puted by analysing user profiles and user ratings of the
items. When user preferences are not available, as in
the start-up phase, or not accessible, due to privacy is-
sues, it might be necessary to develop a content-based
recommendation algorithm, or combined different ap-
proaches as in hybrid systems.

Among recommendation systems (Adomavicius
and Tuzhilin, 2005), content-based recommendation
systems rely on item descriptions that usually consist
of punctual data.

Jinni18 is a movie recommendation system that
analyses as well movie plots, but, differently from our
approach, relies on user ratings, manual annotations
and machine learning techniques.

LSA was shown to perform better than the sim-
pler word and n-gram feature vectors in an interesting
study (Lee and Welsh, 2005) where several types of
vector similarity metrics (e.g., binary vs. count vec-
tors, Jaccard vs. cosine vs. overlap distance measure,
etc.) have been evaluated and compared.

Due to the high computational cost of LSA there
have been many work around in the area of approxi-
mate matrix factorization; these algorithms maintain
the spirit of SVD but are much easier to compute (Ko-
ren et al., 2009). For example, in (Gemulla et al.,
2011) an effective distributed factorization algorithm
based on stochastic gradient descent is shown. We
opted for a scalable implementation of the process
that does not require the term-document matrix to be
stored in memory and is therefore independent of the
corpus size (Řehůřek and Sojka, 2010).

Also the LDA Topic Model has been already ap-

18http://www.jinni.com/

Comparing�Topic�Models�for�a�Movie�Recommendation�System

181

plied in recommendation systems to analyze textual
information. In particular in (Jin et al., 2005) a Web
recommendation system to help users in locating in-
formation on the Web is proposed. In this system
LDA is used as technique for discovering hidden se-
mantic relationships among Web items by analyzing
their content information. Another interesting appli-
cation is described in (Krestel et al., 2009) where the
authors propose a tag recommendation system where
LDA is exploited to suggest tags for new resources.

In the specific domain of movie recommendation
systems, we found only few frameworks that make
use of plots. In particular in (Shi et al., 2013) a
Context-Aware Recommendation algorithm is intro-
duced, the framework combines the similarity based
on plot keywords with a mood-specific movie similar-
ity for providing recommendations. Also in (Mosh-
feghi et al., 2011) authors attempts to solve the
cold start problem (where there is no past rating for
an item) for collaborative filtering recommendation
systems. The paper describes a framework, based
on an extended version of LDA, able to take into
account item-related emotions, extracted from the
movie plots, and semantic data, inferred from movie
features.

6 CONCLUSIONS AND FUTURE
WORK

The paper presented a plot-based recommendation
system. The system classifies two videos as being
similar if their plots are alike. Two Topic Models,
LDA and LSA, have been implemented and integrated
within the recommendation system. The techniques
have been compared and tested over a large collec-
tion of movies. The local movie database MongoDB
has been created to store a large amount of metadata
related to multimedia content coming from different
sources with heterogeneous schemata.

Experimental evaluation of both LDA and LSA
has been conducted to provide answers in term of ef-
ficiency and effectiveness. LSA turns out to be supe-
rior to LDA. The performance of both the techniques
have been compared to user evaluation, and commer-
cial approaches. LSA has been revealed to be bet-
ter then LDA in supporting the suggestion of similar
plots, however it does not outperform the commer-
cial approach (IMDb). However, it is important to
notice that our system does not rely on human effort
and can be ported to any domain where natural lan-
guage descriptions exist. Moreover, a nice feature of
the system is its independence from the movie ratings
expressed by users; thanks to this independence, it is

able to propose famous and beloved movies as well
as old or unheard movies/programs that are similar to
the content of the video the user has watched. This
allows the system to find strongly related movies that
other recommendation systems, such as IMDb, do not
consider, as they has a low number of ratings.

The results shown in this paper highlight some
limitations and stimulate some future directions for
our research.

The plot-based recommendation techniques as-
sume that the main feature a user likes in a movie is
the plot, i.e. the content of the movie, if this is not the
case, the system will fail in suggestion similar movies.
Thus, we should couple our recommendation system
with other techniques that do not totally rely on the
plot.

Another major limitation is the description, i.e.
the content of the plot. Most of the entries in the
DBpedia collection do not have a plot. Even within
a database like IMDb (the most accurate) not all the
plots are described in a similar manner. Some are de-
scribed by only one or two sentences, others, instead,
are meticulously detailed. In addition to this, in most
of the movies, the plot is not completely revealed, and
this leads to have several movie descriptions that are
partial.

While LDA deals with polysemy issue, LSA does
not. This problem can be faced by making use of a
lexical database as WordNet19. Each keyword might
be replaced by its meaning (synset), before the appli-
cation of the weight techniques. To understand which
of the synsets better express the meaning of a keyword
in a plot we may adopt Word Sense Disambiguation
techniques (Navigli, 2009). The semantic relation-
ships between synsets can be used for enhancing the
keyword meaning by adding all its hypernyms and hy-
ponyms (Po and Sorrentino, 2011; Sorrentino et al.,
2010).

We used our system to compute the similarity of a
movie with other movies in the database. However, in
general we can use it to evaluate the similarity of tex-
tual descriptions such as plots of movies not present
in the DB or news, book plots, book reviews etc.

For example, the system can find movies that con-
tain a story similar to the one tell in a book, e.g. a
movie or a television series that used it as a script,
or dramatic movies based on true events similar to a
news. The database could be expanded with other
contents to suggest further items similar to the se-
lected movie (e.g. if I liked a movie about the war
in Cambodia I should be interested in newspaper arti-
cles, essays, or books about that topic).

19http://wordnet.princeton.edu/

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

182

ACKNOWLEDGEMENTS

We want to express our gratitude to Tania Farinella,
Matteo Abbruzzo and Olga Kryukova, master stu-
dents in Computer Engineering and Science at the De-
partment of Engineering “Enzo Ferrari” at University
of Modena and Reggio Emilia for their contribution
in term of implementation of the first and second ver-
sion of the system (without and with LDA) and for
their support during the evaluation of the system.

Particular appreciation goes to Thomas Werner
and Andreas Lahr20, founders of vfree.it, for their
suggestions and valuable comments on the paper.

REFERENCES

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
on Knowl. and Data Eng., 17(6):734–749.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of Machine Learning Re-
search, 3:993–1022.

Debnath, S., Ganguly, N., and Mitra, P. (2008). Feature
weighting in content based recommendation system
using social network analysis. In Proceedings of the
17th international conference on World Wide Web,
WWW ’08, pages 1041–1042, New York, NY, USA.
ACM.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society
for Information Science, 41(6):391–407.

Dumais, S. T. (2004). Latent semantic analysis. An-
nual Review of Information Science and Technology,
38(1):188–230.

Ekstrand, M. D., Riedl, J. T., and Konstan, J. A. (2011).
Collaborative filtering recommender systems. Found.
Trends Hum.-Comput. Interact., 4(2):81–173.

Farinella, T., Bergamaschi, S., and Po, L. (2012). A non-
intrusive movie recommendation system. In OTM
Conferences (2), pages 736–751.

Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y.
(2011). Large-scale matrix factorization with dis-
tributed stochastic gradient descent. In Proceedings
of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’11,
pages 69–77, New York, NY, USA. ACM.

Griffiths, T., Steyvers, M., and Tenenbaum, J. (2007). Top-
ics in semantic representation. Psychological Review,
114(2):211–244.

Gunawardana, A. and Shani, G. (2009). A survey of ac-
curacy evaluation metrics of recommendation tasks.
The Journal of Machine Learning Research, 10:2935–
2962.

20thomas.werner@vfree.tv, andreas.lahr@vfree.tv

Jin, X., Mobasher, B., and Zhou, Y. (2005). A web rec-
ommendation system based on maximum entropy. In
ITCC (1), pages 213–218. IEEE Computer Society.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.

Krestel, R., Fankhauser, P., and Nejdl, W. (2009). La-
tent dirichlet allocation for tag recommendation. In
Bergman, L. D., Tuzhilin, A., Burke, R. D., Felfernig,
A., and Schmidt-Thieme, L., editors, RecSys, pages
61–68. ACM.

Lee, M. D. and Welsh, M. (2005). An empirical evaluation
of models of text document similarity. In Proceed-
ings of the 27th Annual Conference of the Cognitive
Science Society, CogSci2005, pages 1254–1259. Erl-
baum.

Moshfeghi, Y., Piwowarski, B., and Jose, J. M. (2011).
Handling data sparsity in collaborative filtering using
emotion and semantic based features. In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, pages 625–634, New York, NY, USA.
ACM.

Musto, C. (2010). Enhanced vector space models for
content-based recommender systems. In Proceedings
of the Fourth ACM Conference on Recommender Sys-
tems, RecSys ’10, pages 361–364, New York, NY,
USA. ACM.

Navigli, R. (2009). Word sense disambiguation: A survey.
ACM Comput. Surv., 41(2).

Park, L. A. F. and Ramamohanarao, K. (2009). An analysis
of latent semantic term self-correlation. ACM Trans.
Inf. Syst., 27(2):8:1–8:35.

Po, L. and Sorrentino, S. (2011). Automatic generation
of probabilistic relationships for improving schema
matching. Inf. Syst., 36(2):192–208.

Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learn-
ing preferences of new users in recommender systems:
an information theoretic approach. SIGKDD Explor.
Newsl., 10(2):90–100.

Řehůřek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta.
ELRA. http://is.muni.cz/publication/884893/en.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector
space model for automatic indexing. Commun. ACM,
18:613–620.

Shi, Y., Larson, M., and Hanjalic, A. (2013). Mining con-
textual movie similarity with matrix factorization for
context-aware recommendation. ACM Trans. Intell.
Syst. Technol., 4(1):16:1–16:19.

Sorrentino, S., Bergamaschi, S., Gawinecki, M., and Po,
L. (2010). Schema label normalization for improving
schema matching. Data Knowl. Eng., 69(12):1254–
1273.

Comparing�Topic�Models�for�a�Movie�Recommendation�System

183

