Testing Discovered Web Services Automatically

Pinar Karagoz® and Selma Utku?
1Department of Computer Eng, Middle East Technical University, Ankara, Turkey
2pselsan Inc, Ankara, Turkey

Keywords:

Abstract:

Web Service, Web Service Testing, Semantic Dependency Analysis, Mutation Analysis.

The reliability of web services is important for both users and software developers. In order to guarantee the

reliability of the web services that are invoked and integrated at runtime, mechanisms for automatic testing
of web services are needed. A basic issue in web service testing is to be able to generate appropriate input
values for web services and to estimate whether the output obtained is proper for the functionality. In this
work, we propose a method for automatic web service testing that uses semantics dependency-based and data
mutation-based techniques to generate different test cases and to analyze web services. We check whether the
services function properly under the input values generated and enriched from various data sources and we
check robustness of web services by generating random and erronous data inputs. Experimental evaluation
with real web services show that proposed mechanisms provide promising results for automatic testing of web

services.

1 INTRODUCTION

Web services provide interaction between different
distributed applications and the use of web services
becomes one of the most preferable technologies by
software developers and web users. They are pub-
lished in high numbers, they become outdated very
rapidly, and there is no standard control mechanism
for their reliability. Traditional offline and manual
testing processes are not always applicable to testing
of web services. Therefore, it is necessary to have a
mechanism for online and automated testing of dy-
namically discovered and selected web services to be
included in a software application (Wang et al., 2007),
(Dranidis et al., 2007).

In this work, we present a method for automated
testing of web services. An important issue that we
target in this work is to generate appropriate input val-
ues for web services automatically. To this aim, we
adopt two previous techniques from different areas:
mutation analysis, and semantic analysis. In mutation
analysis, a web service is tested by using random and
specified values in different ranges that are set accord-
ing to the parameter type. Whereas in semantic anal-
ysis, dependencies among web services that are pub-
lished by the same service provider are semantically
analysed. Different test cases are generated and the
test score of a web service is obtained by examining

160 Karagoz P. and Utku S..
Testing Discovered Web Services Automatically.
DOI: 10.5220/0004833601600167

the outputs in two dimensions. Since we do not know
the exact behaviour of the services, we aim to employ
simple yet effective methods here. In the first dimen-
sion, if an exception occurs during the execution of
the web service request, the web service is consid-
ered unsuccessful. The second dimension is based on
checking whether the web service returns different re-
sults for different test cases.

In this study, we work on web services specified
in Web Services Description Language (WSDL)?,
which is the prominent specification method for web
services. The methods proposed in this work do not
need semantic description of services. The reason be-
hind this choice is based on the observation that al-
most all of the published web services do not have
semantic definitions. One basic assumption is that
web services have providers and they publish a set
of services, and these service are generally related
such that they belong to the same domain and out-
put of one service may be input for another one. We
use such dependencies in semantic analysis of web
services. The proposed method is implemented in a
domain specific web service discovery system. The
web service testing module in this system is in charge
of checking whether the discovered services function
correctly. The performance of the proposed method
is evaluated on synthetic and real world web services.

Lhttp:/imww.w3.org/TR/wsdl

In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 160-167

ISBN: 978-989-758-023-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

The experimental results indicate the usability of the
approach.

The main contribution of this work in comparison
to previous work can be summarized as follows: The
proposed method does not rely on an external mech-
anism or framework, it can be easily applied. It does
not assume availability of semantic service descrip-
tion or description of internal mechanism of web ser-
vice. For input generation for web services, it com-
bines data mutation based technique with semantic
dependency analysis among web services. Test score
generation process is performed automatically.

The rest of this paper is organized as follows. In
Section 2, related work is summarized. In Section 3,
general architecture of the proposed web service test-
ing method is described. In Section 4, mutation-based
analysis is presented. In Section 5, semantic based
analysis is given and this is followed by the score gen-
eration described in Section 6. Evaluation results are
presented in Section 7. The paper is concluded in Sec-
tion 8 with an overview and future work.

2 RELATED WORK

Before using the web service by service consumers,
testing is needed to guarantee the correctness and ro-
bustness of web services. The study of Martin et al.
(Martin et al., 2006) is one of studies that empha-
size the robustness testing of web services by using
WSDL. It presents a framework to generate and exe-
cute robustness test cases automatically.

In (Bai et al., 2005), Bai et al. propose an ap-
proach about WSDL-based test generation and test
case documentation to provide reusability of gener-
ated test cases. Test cases are generated in four levels:
test data generation, individual test operation gener-
ation, operation flow generation, and test specifica-
tion generation. Test data is generated by analyzing
WSDL message definitions. In individual test oper-
ation generation level, input parameters of web ser-
vices are analyzed and test operations are generated.
In operation flow generation level, the sequence of the
web services are determined by the analysis of depen-
dencies between the web services. In this approach,
three dependencies are used; input dependency, in-
put/output dependency and output dependency.

Siblini et al. (Siblini and Mansour, 2005) propose
a mutation testing method for web services. The aim
of this approach is to find errors relevant to both the
WSDL interface and the logic of web service pro-
gramming. In their work, mutant operators to the
WSDL document of web services are defined and mu-
tated web service interfaces are generated. With each

Testing Discovered Web Services Automatically

modification, a new version of test case is created and
it is called a mutant. Mutant operators are applied
to input parameters and output parameter of web ser-
vices and the data types that are defined in the WSDL
document. .

Obtaining valid inputs and outputs is a tedious
work and often such information is not readily avail-
able. AbuJarour et al. (AbuJarour and Oergel, 2011)
propose an approach to generate annotations for web
services, i.e.., valid input parameters, examples of
expected outputs and tags, by sampling invocations
of web services automatically. The generated anno-
tations are integrated to web forms to help service
consumers for actual service invocations. In this ap-
proach, in order to generate valid parameters, various
resources such as random values, outputs of other web
services that are provided by the same web service
provider and different providers, external data sources
such as WordNet, DBpedia, Freebase, are used.

Although the proposed method have similarities
with (Bai et al., 2005), (Siblini and Mansour, 2005)
and (AbuJarour and Oergel, 2011), as the basic dif-
ference, in this study, the emphasis is on generating
appropriate inputs for testing and generate an overall
test score automatically.

3 GENERAL ARCHITECTURE

The proposed work aims to automatically test web
services that are specified in WSDL. Each service
provider has a WSDL document to specify the infor-
mation about the provided web services. This doc-
ument contains the names of the web services, the
attributes of input and output parameters of the web
services and also user defined types. This document
provides valuable information for service invocation.
However, this information is not sufficient to test the
web services. Since the behavioral information of
web service is not available, only black-box testing
can be performed for validation and testing of web
service.

Within the scope of this work, web service valida-
tion is defined as the process of checking whether the
web service is still alive and accessible or not by in-
voking the web service by simple appropriate param-
eter values. On the other hand, web service testing is
the task of checking whether a web service functions
as it should be. Both processes require generation of
input values for test cases. To this aim, firstly, the
types of the input and output parameters of a given
web service should be identified. As the atomic pa-
rameter types, boolean, character, integer and floating
point number are the most common ones. By using

161

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Analysis of Relations

Get Validated
Web Services of
a Service Provider

P —

Download
WSDL of
a Service Provider

- Input Dependency
- Output Dependency
- Input/Output Dependency|

H

Get URLs

i | Data Mutation-Based | !
i |Input Value Assignment | :

! | Semantic Dependency
i Analysis-Based H
i | Input Value Assignment | |

Service
Invocation

Service
Invocation

- Calculation of Ratio of Successful Invocation

Analysis of Invocation Results
- Checking Difference of Return Values

Database

Figure 1: General Architecture of Web Testing Approach.

the atomic types, user-defined complex types can be
constructed. To analyze and generate a value for ba-
sic types is more straightforward than that of complex
types. In order to generate test data of complex data
types, the structure is recursively analyzed until it en-
counters with basic data types. Since the aim of the
validation process is to check whether the web service
is still alive and accessible or not by invoking the web
service, setting simple default values to input param-
eters is sufficient for validation process.

In order to test a web service, one criteria is that no
exception is taken when the web service is invoked by
using the generated input values. Another important
point is to check whether the service generates dif-
ferent outputs for different input values. If a service
always returns the same value in spite of different in-
put parameters, it is considered that it is a test service
or this service has no implementation. Such services
fail the test.

The general architecture of the proposed approach
is shown in Figure 1. Web service testing process
starts with getting the URLSs of service providers. At
this point, we assume that the service is already dis-
covered, and hence service provider’s address is avail-
able. By downloading and analyzing the content of
WSDL documents, information as to which web ser-
vices are provided and how to invoke are obtained.
For each provided web service, the validation process
is performed in order to check whether it is alive or
not. On the validated services set, input dependency;,
output dependency and input/output dependency rela-
tions are analyzed.

The next step is test case generation with data
mutation-based method. By this method, the values
of input parameters are generated according to the pa-

162

rameter type declarations in the service description.
With the generated input parameters, the web service
is invoked and the invocation result is saved for score
calculation. Following this, test case generation with
semantic dependency analysis is performed. For each
web service, the values for input parameters of web
service are determined according to the semantic de-
pendency analysis and the web service is invoked with
the generated input parameters. As in the previous
step, for each invocation, the results are saved. Fi-
nally, for each web service, the final test result is cal-
culated on the basis of the results of all invocations.

4 MUTATION ANALYSIS

In software engineering, the purpose of the mutation
testing is to help the tester develop effective tests
or locate weaknesses in the test data used for the
program or in sections of the code that are seldom
or never accessed during execution. The proposed
method is inspired from mutation testing methods,
however the aim is quite different. The aim of mu-
tation testing is to measure test adequacy. On the
other hand, the aim of data mutation in the proposed
method is to generate test cases. In traditional muta-
tion testing, mutation operators are used to transform
the program under test. In contrast, this method is
applied for generating random and erroneous data in-
puts.

In mutation-based test case generation, a param-
eter can have different values in the range of its type
domain. In this method, the various random and error-
prone data input values are generated and they are
grouped. When we use the generated values in each

range for input parameter, we expect that invoked web
service presents different behaviours.

We mention that types of input parameters can be
fundamental or complex type. In case of complex
type, the generator recursively analyzes the structure
of the input parameter type until it reaches the funda-
mental type. Various values in the range of its type are
generated and the generated values are grouped. For
each group, the range of parameter value is also con-
strained. We apply several versions of data nutation.
In Mutant Version 0, positive values are generated for
input parameters. When the web service is invoked
by using these values, it is expected that invoked web
service returns a proper value. In Mutant Version 1,
2, 3,4, 5and 6, erroneous input values are generated.

For numeric types, in Mutant Version 1, input pa-
rameter is set to 0. By this way, it can be checked
whether the web service prevents division by zero er-
ror or pointer address error. In Mutant Version 2,
the numeric input parameter is set to -1 and thus it is
checked whether unsigned to signed conversion error,
out-of-bounds memory access error, signed/unsigned
mismatch warning in comparison is prevented by web
service. Incorrect sign conversions can lead to unde-
fined behaviour and the web service can be crashed.
In Mutant Version 3 and 4, boundary values are gen-
erated. In Mutant Version 5 and 6, very high and low
values are generated randomly. Thus, the fault resis-
tance of the web service is checked. For each type, the
values that can be generated are different. Therefore,
the mutant groups are constructed differently with re-
spect to the parameter type.

For String typed parameters, it is very hard to gen-
erate valid values. Although the web services are not
annotated, if we know the domain of the web ser-
vices, it is possible that the instances can be directly
taken from the ontology or the ontology can be popu-
lated with instances by using public resources. As the
first step, the name of input parameters are semanti-
cally compared with the ontology terms in order to
find the similarity value and ontological position of
the input parameters. We obtain the ontology terms
with matching degree above the threshold value. We
check whether there is any instance for the ontology
term corresponding to the name of input parameter.
If it has at least one instance, a random one of them
is used for input parameter value in test case genera-
tion. Otherwise, the hyponym terms of the name of
input parameter are searched and if any term is ob-
tained, the instances of the obtained hyponym terms
are used, if available.

Testing Discovered Web Services Automatically

5 SEMANTIC DEPENDENCY
ANALYSIS

A service provider generally publish multiple services
and some of them have interactions with each other.
In such a situation, for testing atomic web services,
test cases can be generated by using these interac-
tions. Semantic dependency analysis considers the
following three types of dependencies:

Input dependency: A web service WS1 is input
dependent on WS2 if and only if WS1 and WS2
share at least one input parameter that has the
same type and same name.

Output dependency: A web service WS1 is output
dependent on WS2.if and only if output parame-
ters of WS1 and WS2 have the same type and the
same name.

Input/output dependency: A web service WS1 is
input/output dependent on WS2 if and only if at
least one input parameter of WS1 has the same
type and similar name with at least one field of
output parameter of WS2.

In this work, especially, semantic input/output de-
pendency is used. The generation of the values for in-
put parameters of each web service that are provided
by the same service provider is a very time consuming
process. To deal with this problem, the input depen-
dency and output dependency are also used. How-
ever, the output and input dependency analysis is per-
formed just syntactically by comparing the types of
input or output parameters of the web services.

Initially, input dependencies, output dependencies
and the input/output dependencies between all vali-
dated services of each service provider are analyzed.
On this basis of this analysis, test cases are generated.
A web service may have no input parameter and also
may return no value. For each validated web service
with at least one input parameter, the dependencies
with the other validated web services that are pro-
vided by the same service provider are analyzed.

For semantic input/output dependency analysis,
similarity between the names of the parameters is
found through matching degree calculation. For
this calculation phase, the functions of word match-
ing library presented in (Canturk and Senkul, 2011)
is used. This matching method is extended from
WordNet and it performs both syntactic and semantic
matching. It is possible to use any other word match-
ing tool that returns a score for similarity. However,
we preferred to use this new matching technique since
it has shown to provide promising improvement over
similar techniques, especially for semantic matching.

While finding matches, each term in the first pa-

163

WEBIST 2014 - International Conference on Web Information Systems and Technologies

rameter is compared with the all of the terms in sec-
ond parameter. As the result of this similarity calcu-
lation, we obtain a similarity degree array with length
of n. However, we desire to get a single value as the
similarity degree of whole output term to whole input
term. Therefore, the average value of these similarity
degrees is calculated for the final similarity value (s1)
by using Equation 1.

n
sim(terml;termgwordj)

j=1
(1)
We devise also another method to calculate the
similarity degree between input and output terms
where domain ontology is available. Note this on-
tology is not for service description, but for describ-
ing the domain of the services, such as Car or Movie
domain. In this method, the distance between the in-
put term and each ontology term and the distance be-
tween each output term and each ontology term are
calculated. These distances are used to determine the
ontological positions of the terms.- By calculating
the average of the differences of these distance val-
ues with each ontology term, the similarity value (S2)
between input term and output term is calculated by
using Equation 2.

sim(termy;termy) =

Sl

n
jsim(termy;ontTermy)
k=1
sim(termy; ontTermy)j

. 1
ontsim(termy;termy) =1 -

where n is the number of ontology terms.

The final similarity value with the name of the out-
put term and the web service whose output parameter
is analyzed are recorded to input/output dependency
list of analyzed input parameter. A sample list of
input/output dependency relations of web services is
shown in Figure 2.

6 OVERALL TEST SCORE
GENERATION

Overall test score of a web service is calculated
through its performance in mutation-based and se-
mantic dependency analysis based test generation
phases. For all of validated web services, different
test cases based on both semantic analysis operation
and data mutations are generated.

Firstly, the test case generation based on data mu-
tant analysis is performed. By using each version of
mutant value generation mentioned in the previous

164

section, different values are generated for each input
parameter. Web service is invoked with these input
parameters and return value is obtained. In Mutant
Version 0, five different values in the given range are
generated for each input parameter. By setting the in-
put parameters to these generated values, the test case
is prepared for the web service. The next step is test
case execution. In this phase, web services are in-
voked and the results are checked. If an exception oc-
curs during the execution of the web service request,
then the web service is accepted as unsuccessful. This
result is recorded to statistics of testing of web ser-
vice. On the other hand, it is expected that the web
services that cause no exception have different return
values. Currently, a web service pass the test if it pro-
duces different outputs.to different inputs. However,
the obtained result value will be further analyzed in
detail. The similar steps are followed in the other mu-
tant versions. In Mutant Version 1, 2, 3, 4, 5 and 6,
just one test case is generated. To test the web ser-
vice successfully, it is expected that no exception is
occurred. In Mutant Version 5 and 6, the possibility
of being failed is higher than the other versions be-
cause the web services might not handle the values in
these ranges. As mentioned for Mutant Version 0, the
return values are analyzed in detail and the test results
are recorded.

For mutant version in which the values of input
parameters from ontology instances are obtained, one
test case is generated in which the values of input pa-
rameters from WordNet instances are obtained. As
the last mutation version, input parameter switching
is performed. The test cases that are generated in mu-
tant version 0 and that provide successful test result
are used again in switching version, if the parameters
are suitable.

As the second phase, test case generation based on
dependency analysis is performed. If the web service
has no input parameter, it is invoked without generat-
ing any input value and the invocation result is ana-
lyzed. If it has at least one input parameter, the value
set is generated for each input parameter by perform-
ing the following steps.

Firstly, the dependency list is analyzed. If it has
no dependency with the return parameters of the other
web services, considering its type, a random value
is generated by using version 0 in the mutant-based
method. Otherwise, by starting with the first web ser-
vice in the dependency list, the test cases of web ser-
vices is analyzed to get the appropriate value from its
return value. The dependency relation list is sorted by
dependency degree, therefore the analysis operation
is started with the first one. If the first web service in
the list has no successful test case, it is not used for

URLID Methaodi Methad2
385 getbirportzinCity getiirports
385 gethirwayslnFlightline aetFlightLines

385 gethirmaysinFlightline
385 getdirwapsinFlightLine
385 gethirwayslnFlightLine
385 getFlightLinesFram

385 getdirwayslnFlightline
385 gethinwaysinFlightline
385 gefflightLinesFrom

getFlightLinesFram
getFlightLine0fairine
getFlightLinezTa
getFlightLineDirine
getFlightLinesTo
getFlightLine0tirline
getFlightLinesTo

385 gefFlightLinesFrom getFlightLines
385 gethinwapslnFlightline getFlightLines
385 gefFlightLinesTo getFlightLines

385 gefFlightLinesTo
385 gefFlightLinesTo
385 geffFlightLine0fairline
385 getFlightLine0fAirdine
385 getFlightLine0fAirdline
385 gefFlightlinesTo
385 getFlightlinesTa
385 gefFlightLinesTo

aetFlightLineDirine
getFlightLinesFram
getFlightLines
aetFlightLinesFram
getFlightLinesTo
getFlightLineQiAiline
getFlightLines
getFlightLinesFrom

385 getdirwapslnFlightLineBplD getdirports
385 gethinmapslnFlightlineBpl D gethirports
385 gefFlightLinesTo getdirports

InputParamt ame OutputTerm DependencyDeares
city city 1
arrival arrivaldirpart 1
arrival arrivaldirpart 1
arrival arrivaldirport |
arrival arrivaldirpart 1
takeaff departuredirport 0.9728947877883..
takeoff departuredirport 0972894 7877883,
takenff departuredirpart 09728947877883

takeoff departuredirport 0.9728347877883...
takeoff departuredirport 0972894 7877883...
takeaff departuredirport 0.9728947377883..
coming anivaldirpart 0.9676315734454.
coming arrivaldirpart 0.9676315754454. .
coming arrivaldirpart 0.9676315734454.
airline aitaiay 0.919993957084E. ..
airling aitw'ay 0.9199999570846. ..
airline airteday 0.9199999570846. ..
destination airday 0.7549993952316...
destination airtiay 0.75499995952316

deslination aitwday 0.7543333952316...
anivalderodromel D airportl D 0.7126315832138..
takeoffteradromel 1 airpart| D 0.6963157653808. .
destination airporttame: 0.6857334659042. .

Testing Discovered Web Services Automatically

Figure 2: Input/Output Dependency Relations of Web Services.

generation and the analysis is continued with the next
web service in the dependency list.

7 EXPERIMENTAL EVALUATION

7.1 Analysis Method for Test Results

As we described in previous sections, web service in-
vocation results are obtained by calling a web ser-
vice by using the input parameters that are generated
with data mutation and semantic dependency analy-
sis based method. The test results are generated by
examining the invocation results in two dimensions.
The first one is based on checking the execution re-
sults. An exception can occur during the execution of
the web service request. In this case, the web service
is accepted as unsuccessful. On the other hand, if it
works properly and causes no exception, it is accepted
as successful.

The second dimension is based on checking
whether the service gives different outputs for differ-
ent input values. If a service always returns the same
value in spite of different input parameters, it is con-
sidered as a test service or this service has no imple-
mentation. If the same output value is obtained after
all successful execution of test cases, the web services
is failed for this point.

The other checking is for the input parameter
switching method. It is expected that different return
values are obtained after the executions of the test
cases that use the switching method and the source
test cases whose input parameters are switched to

generate the new test case. For each test case using
input parameter switching method, if the return val-
ues of itself and source test case are different, it is
accepted as successful in this checking process. Oth-
erwise it fails the test.

By using the obtained results of the web services
for two dimensions mentioned above, the final test re-
sult is calculated. In testing of a web service, its suc-
cessful invocation is more important than its returning
different values. The web services that throw excep-
tion when they are invoked are never preferred by the
service consumers. Therefore, the overall success re-
sult of the test cases is more weighted than having dif-
ferent outputs for different input values. Therefore, a
weighted average is applied, where the weight of first
dimension is set to 0.7, under empirical evaluation.

7.2 Experiments with Synthesized Web
Services

In this set of experiments, we created web service
providers that include various services, whose be-
haviours are already known. These web services be-
long to Aviation and Car domains. For Aviation do-
main, the provided web services are used to get the
information about flights in Turkey.

For each web service, the proposed approach is
applied and the test results are obtained after the test-
ing process. As we mentioned in previous sections,
different input values are generated for each param-
eter and with these generated input parameters, web
services are invoked. After the invocation, the return
values of web services are analyzed.

165

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Table 1: MSE on Synthesized Data Set.

Web Service Name Expected(T) Estimated(E) (E T)?
sayHello 0.5 0.7 0.04
getAirways 1 0.7 0.09
getAirports 1 0.7 0.09
getFlightLines 1 0.7 0.09
getAirportsinCity 1 1 0
getFlightLinesTo 1 1 0
getFlightLinesFrom 1 1 0
getAirwaysInFlightLine 1 0.85 0.0225
getAirwaysInFlightLineByID 1 0.94 0.0036
getFlightLineOfAirline 1 1 0
isRouteBidirectional 0 0 0
getValue 0.5 0.7 0.04
getAllCities 1 0.7 0.09
getAllCarModels 1 0.7 0.09
getCostumers 1 0.7 0.09
getAvailableCarsIinTown 1 0.85 0.0225
getCarBookingsByTownld 1 1 0
getCarBookingsBy TownName 0 0.63 0.3969
getCarBookingsByDate 1 0.7 0.09
getCarBookingsOfPerson 1 1 0
insertNewCarBookingltem 1 0.97 0.0009
MSE 0.2346

Table 2: Statistical Information on Web services in Car Domain.

Total number of web service providers

904

Total number of validated web services

5713

Total number of input parameters

15284

Total number of string input parameters

9966

Total number of string input parameters
whose value can be assigned from WordNet instances

Average number of services per service provider 6.3

Average number of input parameter per web service 2.7

In order to obtain the accuracy of our proposed
algorithm, we calculate the root mean square error
(RMSE). Accuracy results for the syntactically gener-
ated web services and average accuracy are presented
in Table 1. The proposed testing method predicts the
reliability of this set of web services with 0.2346 ac-
curacy error. Since the similar studies in the literature
do not produce a comparable overall test score, it is
not possible to make a direct comparison with the lit-
erature. However, this error value is promising for the
usability and effectiveness of the proposed method.

7.3 Experiments with Real Web
Services

In addition to experiments with synthetic data set, the
proposed method is tested on a set of real web ser-
vices collected in Car, Aviation, Film and Sports do-
mains. In this set of experiments, it is not possible to
obtain a success rate, as the services are not annotated.
The results rather provides an approximate picture of
the current situation for the reliability of the published
services. The web services are collected through web
search given the domain name as the keyword. The
number of the web services that are provided by the
same provider, and the number and type of the param-
eters have a high variation in this collection. Due to
space limitation, we present the results for web ser-

166

vices in Car domain.

Some of the statistical information for the web ser-
vices collected in Car domain is given in Table 2. In
this collection, out of all web services, 349 services
have the overall test score of 1 hence they success-
fully passed the test cases. The overall test score of
2545 web services is 0, which means that they are to-
tally failed in the test process. 2501 web services are
successfully invoked in all test cases of data mutation-
based method. 2649 web services are successful in
all test cases that are generated by using semantic
dependency-based method. 2474 web services are
successful in both of two methods. Number of web
services that return same value under switching of in-
put values is 2453. Sample results for this set of web
services is given in Figure 3.

8 CONCLUSION

In this work, we proposed a method to test discovered
web services and to generate a test scores automati-
cally. To realize the proposed method, an application
is designed and a graphical user interface is also pre-
sented to test the web services automatically through
running the method step by step for a given web ser-
vice.

In our approach, data mutation based and seman-

ID ServiceDescriptionlD DateTime FinalResult
! 226 2510.2011 03:45:05 1
227 2510.2011 03:43:05 1

© 237 2510201035038 0.042

21 238 2510.2011 03:50:38 1
2 239 2510.2011 03:50:38 07
23 240 2510.2011 03:50:38 0.7
24 241 2510.2011 0350:38 07
% 242 2510.2011 03:50:38 085
% 243 2510.2011 03:50:38 0.88
27 244 2510.2011 03:50:38 0.7
2 245 2510.2011 03:50:38 085
29 246 2510.2011 03:50:38 0.7
30 247 25102011 0350:38 08127272
3 248 2510.2011 03:50:38 0.7
2 249 2510.2011 03:50:38 0.7
k< 250 25.10.2011 03:50:38 0.7
34 251 2510.2011 03:50:38 0.7
B 252 2510.2011 03:50:38 07
k3 253 2510.2011 0350:38 091
37 254 2510.2011 03:51:40 0.042
8 255 2510.2011 0351:40 0.042
9 256 2510.2011 0351:40 07
40 257 25.10.2011 0351:40 0.042
] 258 25.10.2011 0351:40 07
42 259 26.10.2011 035308 0.042
43 260 2510.2011 035306 0.7
44 261 2510.2011 035306 0.7

Testing Discovered Web Services Automatically

SuccessResult DifferenceResult isTestMethod DifferenceDfSwitchersion
1 1 1
1 1 1
0.05 0 0 I
1 1 1
1 0 0 0
1 0 0 0
1 0 0 0
1 05 1 0
1 08 1 02
1 0 0 0
1 05 1 0
1 0 0 0
0.8181818181 08 1 06
1 0 0 0
1 0 0
1 0 o G
1 0 0
1 0 0
1 07 1 04
0.08 0 0
0.05 0 0 [
1 0 0 0
0.0 0 0
1 0 0 0
0.08 0 0
1 0 0
1 0 0

Figure 3: Sample test results for Web Services in Car Domain.

tic dependency based input data generation methods
are used. In data mutation, web services are tested by
using random and specific values in different ranges.
Values in the specified ranges are generated accord-
ing to the input type. Different data mutation groups
are constructed to generate values for input parame-
ters. Since the internal working mechanism of web
services are not available in practice, and for most of
the time, the exact respond is not known as well, we
prefer to use simple, yet as much as possible tech-
niques for testing.

To be able to evaluate the success of the proposed
method, we generated a synthetic data set whose be-
haviour is known. In this data set, error value is 0.23
under RMSE. It is not possible to make a direct com-
parison with similar studies since they do not generate
such an overall test score. However, this error value
is promising for the applicability of the approach. In
addition to synthetic data set, we tested the real web
services. In this evaluation, it is not possible to pro-
vide a success rate as these services are not annotated.
This evaluation show that the number of web services
that can pass all test cases is about 20%.

REFERENCES

AbulJarour, M. and Oergel, S. (2011). Automatic sampling
of web services. In Proc. IEEE Int. Web Services Conf.
(ICWS), pages 291-298.

Bai, X., Dong, W., Tsai, W. T., and Chen, Y. (2005).

WSDL-based automatic test case generation for web
services testing. In Proc. of SOSE, pages 207-212.

Canturk, D. and Senkul, P. (2011). Semantic annotation of
web services with lexicon-based alignment. In Proc.
of IEEE 7th World Congress on Services (SERVICES),
page 355362.

Dranidis, D., Kourtesis, D., and Ramollari, E. (2007). For-
mal verification of web service behavioral confor-
mance through testing. Annals of Mathematics, Com-
puting and Teleinformatics, 1:36—43.

Martin, E., Basu, S., and Xie, T. (2006). Automated ro-
bustness testing of web services. In Proc. of the 4th
SOAWS.

Siblini, R. and Mansour, N. (2005). Testing web services. In
Proc. 3rd ACS/IEEE Int. Computer Systems and Ap-
plications Conf.

Wang, Y., Bai, X., Li, J., and Huang, R. (2007). Ontology-
based test case generation for testing web services. In
JProc. of ISADS, page 4350.

167

