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Abstract: In this paper, we explore the use of ranking functions in reasoning about belief change. It is well-known that
the semantics of belief revision can be defined either through total pre-orders or through ranking functions
over states. While both approaches have similar expressive power with respect to single-shot belief revision,
we argue that ranking functions provide distinct advantages at both the theoretical level and the practical level,
particularly when actions are introduced. We demonstrate that belief revision induces a natural algebra over
ranking functions, which treats belief states and observations in the same manner. When we introduce belief
progression due to actions, we show that many natural domains can be easily represented with suitable ranking
functions. Our formal framework uses ranking functions to represent belief revision and belief progression in
a uniform manner; we demonstrate the power of our approach through formal results, as well as a series of
natural problems in commonsense reasoning.

1 INTRODUCTION

The study ofbelief revisionis concerned with the
manner in which an agent’s beliefs change in response
to new information. Following the highly influen-
tial AGM model (Alchourrón et al., 1985), many ap-
proaches to belief revision rely on some form ofen-
trenchment ordering. The idea is simple: an a pri-
ori ordering over states is used to guarantee that an
agent always believes the formulas that are true in
the “most entrenched” states consistent with an ob-
servation. The literature is not always clear on ex-
actly what the ordering represents: in some cases, it
may represent the likelihood of each state, whereas
in other instances it may represent an agent’s strength
of belief. It is well known that AGM revision can
also be framed in terms of ranking functions (Spohn,
1988). In this paper, we illustrate that ranking func-
tions have significant advantages in modelling en-
trenchment, particularly when agents are able to ex-
ecute state-changing actions. We present a uniform
approach to modeling belief revision as well asbe-
lief progression, which is the change in belief that oc-
curs when an action is executed. We illustrate through
formal results and practical examples that there are
many situations where the choice between ranking
functions and entrenchment orderings is significant.

1.1 Motivation

Belief revision is often described as the belief change
that occurs when an agent receives new information
about a static world. For example, an agent might be-
lieve that the lamp is off in a certain room behind a
closed door. If the door is opened to reveal the lamp
is on, then the agent must modify their beliefs to in-
corporate this fact. One way to model this form of
belief change is by assuming an underlying ordering
≺ over all possible states, where precedence is under-
stood to represent plausibility. The≺-minimal states
would initially be ones in which the lamp was off. Af-
ter observing the light is on, the agent will believe the
actual state is among the least≺-states that are con-
sistent with this observation.

We are interested in domains where plausibility
can not easily be captured by an ordering. For ex-
ample, there are cases where evidence isadditive; the
agent might require two reports that the light is on be-
fore changing beliefs. In this case, an observation of
light might make certain states more plausible, with-
out actually changing the relative order of possible
states. Similiarly, there are cases were observations
are graded; light under the door could indicate the
lamp is on, or perhaps that the window is open. Fi-
nally there are cases where actions may haveunlikely
effects; opening the door might accidentally turn the
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light on. Each of these is difficult to capture in a situ-
ation where uncertainty is represented by an ordering,
without any mechanism for comparing magnitudes of
unlikely effects. Our aim in this paper is to provide
a flexible approach where uncertainty over states, ac-
tions, and observations is modeled by ranking func-
tions that can be compared and combined with basic
arithmetic.

1.2 Contributions

This paper makes several contributions to existing
work on belief change. First, we introduce a natural
algebra of belief revision that simplifies the semantics
for the general case, while simultaneously subsuming
AGM revision. Second, we introduce a formal model
of belief progression due to actions that is Markovian,
but still allows belief revision to respect the action his-
tory by excluding certain states after actions are exe-
cuted. Finally, we demonstrate through a series of
commonsense reasoning examples that a great deal of
practical expressive power can be gained by allowing
plausibility functions to range not only over states, but
also over possible actions.

2 BACKGROUND

2.1 AGM Belief Revision

We focus on propositional belief revision, so we
assume an underlying propositional signature. One
of the most influential approaches to belief revision is
the AGM approach (Alchourrón et al., 1985). In the
AGM approach, abelief setis a deductively closed
set of formulas. In this paper, we restrict attention to
finite propositional signatures, so a belief set can be
represented by a propositional formulaφ. The new
information to be incorporated is also represented by
a single formula, sayγ. An AGM revision operatoris
a binary function∗ that satisfies theAGM postulates.
The following reformulation of the postulates is due
to Katsuno and Mendelzon (Katsuno and Mendelzon,
1992).

[R1] φ∗ γ impliesγ.
[R2] If φ∧ γ is satisfiable, thenφ∗ γ ≡ φ∧ γ.
[R3] If γ is satisfiable, thenφ∗ γ is satisfiable.
[R4] If φ1 ≡ φ2 andγ1 ≡ γ2, thenφ1∗ γ1 ≡ φ2 ∗ γ2.
[R5] (φ∗ γ)∧β impliesφ∗ (γ∧β).
[R6] If (φ∗γ)∧β is satisfiable, thenφ∗(γ∧β) implies
(φ∗ γ)∧β.

The class of AGM revision operators can be char-
acterized in terms of orderings on states, where astate
is just an interpretation of the underlying proposi-
tional signature. Letf be a function that maps every
propositional formulaφ to a total pre-order�φ over
states. We say thatf is a faithful assignmentif and
only if

1. If s1,s2 |= φ, thens1 =φ s2.

2. If s1 |= φ ands2 6|= φ, thens1 ≺φ s2,

3. If φ1 ≡ φ2, then�φ1=�φ2.

The following characterization result indicates that
every AGM operator can be understood in terms of
minimization over a faithful assignment.

Proposition 1. (Katsuno and Mendelzon, 1992) A re-
vision operator∗ satisfies [R1]-[R6] just in case there
is a faithful assignment that maps eachφ to an order-
ing�φ such that

s |= φ∗ γ ⇐⇒ s is a �φ −minimal model ofγ.

A similar characterization can be given using
Spohn’s ordinal conditional functions (Spohn, 1988),
which are functions mapping each state to an ordinal.

2.2 Belief Change Due to Actions

We assume setA of action symbols. The effects
of actions are described by atransition function f:
S×A → S. Hence, a transition function takes a state
and an action as arguments, then it returns a new state.
Informally, the output is the state that results from ex-
ecuting the given action in the given state. We are pri-
marily concerned with actions that havedeterministic
effects, though we also allownon-deteministiceffects
in some examples. Throughout this paper, we will
let the lower case lettera (possibly with subscripts)
range over actions. A propositional signatureF to-
gether with a transition functionf overS is called an
action signature.

In the literature,belief updaterefers to the belief
change that occurs when an agent receives informa-
tion about a change in the state of the world (Katsuno
and Mendelzon, 1991). The classic approach to belief
update defines the operation on propositional formu-
las, just as belief revision is defined on propositional
formulas. This can lead to ambiguity because it is not
always clear when an agent should perform revision
and when they shoud perform update (Lang, 2007).

We avoid this ambiguity by modeling belief
change due to actions through the operation com-
monly calledbelief progression. Belief progression
operators take a belief state and anaction as input,
and return a new belief state that is obtained by pro-
gressing each possible world in accordance with the
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effects of the action. We remark that belief change
in our formal approach is Markovian in that the new
beliefs are completely determined by the orginal be-
liefs as well as the event (action or observation) that
has occured. The basic model is not able to represent
a class Markov Decision Process because we do not
incorporate any notion of likelihood on action effects;
we address this by adding such a measure in one of
the examples in §4.

3 PLAUSIBILITY FUNCTIONS

3.1 An Algebra for Belief Revision

We formally define plausibility functions as follows.

Definition 1. Let X be a non-empty set. A plausibil-
ity function over X is a function r: X → N such that
r(x) = 0 for at least one x∈ X.

If r is a plausibility function andr(x)≤ r(y), then
we say thatx is at least as plausible asy. Plausibil-
ity functions are similar to ordinal conditional func-
tions (Spohn, 1988), except that the domain can be
any arbitrary set and we restrict the range to the nat-
ural numbers. This definition is based on a similar
concept introduced in (Hunter and Delgrande, 2006).

When r is a plausibility function over states, we
can identify the minimal elements ofr with the states
currently believed possible. Let

Bel(r) = {x | r(x) = 0}.

The degree of strengthof a plausibility functionr is
the leastn such thatn = r(v) for somev 6∈ Bel(r).
Hence, the degree of strength is a measure of how dif-
ficult it would be for an agent to abandon the currently
believed set of states.

We use plausibility functions to represent initial
belief states, and also to represent new information
for revision. Hence, revision in this context is just a
binary operator on plausibility functions. Given any
pair of plausibility functionsr1 andr2, we can define
a new functionr1+ r2 such that(r1+ r2)(x) = r1(x)+
r2(x). Of course, the sum of two plausibility functions
need not be a plausbility function; but we can obtain
an equivalent plausibility function by normalizing.

Definition 2. Let r1 and r2 be plausibility functions
over X, and let m be the minimum value of r1 + r2.
Then r1 ∗ r2 is the function on X defined as follows:

r1 ∗ r2(x) = r1(x)+ r2(x)−m.

It should be clear thatr1∗ r2 is a plausibility func-
tion, because it attains a minimum value of 0. We use
the symbol∗ for this operation, because it can be seen

as a generalization of AGM belief revision. To make
this explicit, we introduce a basic definition.

Definition 3. A plausibility function r istwo-valued
iff the range of r is a set of size 2. If r is two-valued,
we write|r|= {s | r(s) = 0}.

A formula can be represented by a two-valued
plausibility function. We remark also that every plau-
sibility function defines a total pre-order. Hence,
AGM belief revision can be captured by taking a plau-
sibility function over states (the initial beliefs) and
adding a two-valued plausibility function (the formula
for revision).

The class of plausibility functions is clearly closed
under∗. We state some other basic properties.

Proposition 2. The operator∗ is associative. i.e.
(r1 ∗ r2)∗ r3 = r1 ∗ (r2∗ r3).

We remark that many approaches to iterated revi-
sion are not associative, so this result suggests that our
model of revision does not align directly with work in
this area. We accept this difference, as it has been ar-
gued that none of the existing appoaches to iterated
revision are completely satisfactory(Stalnaker, 2009).

In the following propositions, letrI be the plausi-
bility function such thatrI (x) = 0 for all x. We refer
to rI as theidentityfunction. As an initial belief state,
the identity function represents ignorance. As infor-
mation for revision, it represents a null observation.

Proposition 3. rI ∗ r = r ∗ rI = r for any plausibility
function r.

Proposition 4. For any plausibility function r, there
is a plausibility function r−1 such that r∗ r−1 = r−1∗
r = rI .

In abstract algebra, any closed system with an op-
erator satisfying Propositions 2, 3 and 4 is called a
group. If the operator is also commutative, the sys-
tem is called anabelian group.

Proposition 5. The class of plausibility functions is
an abelian group under∗.

The fact that∗ defines an abelian group means that
we can exploit all of the known results about groups
to analyze the symmetries and structure of revision
under this definition.

3.2 Adding Actions

In this section, we assume an underlying set of ac-
tion symbolsA as well as a transition functionf that
describes the effects of the actions inA. A belief pro-
gressionoperator is a function that maps an initial be-
lief state to a new belief state, given that some action
has been executed. When actions are introduced, we
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need to account for the fact that certain states may not
be possible following the execution of a particular ac-
tion.

To address this issue, we introduce the notion of
anextended plausibility function.

Definition 4. An extended plausibility function over
X is a function r: X → N∪{∞} such that r(x) = 0 for
at least one x∈ X.

We define∞ to be larger than every number inN.
Morever, we define addition as follows

p+∞ = ∞+ p= ∞ for any p∈ N∪{∞}.

For any plausibility functionr, let

imp(r) = {s | r(s) = ∞}.

Hence,imp(r) is the set of states that are “impossible”
according to the functionr. On the other hand, we
will refer to the complement ofimp(r) as the set of
“possible” states.

Proposition 6. If r1, r2 are extended plausibility func-
tions, then imp(r1 ∗ r2) = imp(r1)∪ imp(r2).

It follows that the set of possible states does not
change when we revise by a plausibility functionr
with imp(r)= /0. So we can think of an extended plau-
sibility function as a plausibility function together
with a setI of impossiblestates that are assigned the
plausibility ∞.

We are now able to define belief progression with
respect to extended plausibility functions.

Definition 5. Let a∈ A with deterministic transition
function f , and let r be an extended plausibility func-
tion over A. Then r· a is the extended plausibility
function:

r ·a(s)=

{

min({r(s′) | f (a,s′) = s})
∞ otherwise

This definition says that the plausibility of each
state following an action is obtained by progressing
forward the effects of actions. Hence, for each state
s with plausibility k, we say thatf (a,s) = k. This
just means that the plausibility of the state remains
the same before and after the execution of the action
a. However, since there may be more than one initial
states with the same outcome, we take the minimum
possible value. We need to assign∞ to some states is
because some states are not possible after executinga.
For example, in a deterministic world, all states where
the door is open will be impossible after an agent per-
forms aclosedooraction. Therefore,r ·a is the nat-
ural shifting ofr by the effects ofs for states in the
range ofa; for states that are not possible followinga,
the plausibility is defined to be∞.

In many applications, it is important to know if
an extended plausibility function is consistent with a
sequence of actions. We leta denote a sequence of
actions of indeterminate length, and we letr ·a denote
the sequential progression ofr by each element ofa.

Definition 6. An extended plausibility function r is
consistent with the action sequencea just in case
imp(r) = imp(rI ·a).

Hence,r is consistent witha if the execution of
a from a state of total ignorance leads to the same
collection of impossible states. Since we are primar-
ily interested in extended plausibility functions that
result from actions, we simply say that an extended
plausibility function isconsistentif it is consistent
with some action sequence.

Proposition 7. If the extended plausibility function r
is consistent, then r· a and r∗ r ′ are also consistent,
for any action a any plausibility function r′.

Hence, if every state is initially possible, then we
need only be concerned with consistent functions.
The following result says that the outcome of a se-
quence of actions is consistent provided all states
were initially possible.

Proposition 8. Let r1, r2 be plausibility functions and
let a be a sequence of actions. The extended plausi-
bility function r1 ·a∗ r2 is consistent witha.

A set of so-called “interaction properties” have
been proposed to ensure that observations following
actions are incorporated in a sensible manner (Hunter
and Delgrande, 2011). The main postulate can be re-
formulated in our notation as the following:

P5.Bel(r ·a∗ r ′)⊆ Bel(rI ·a)

The postulateP5 asserts that, regardless of the ini-
tial belief state and the observation, the final belief
state must be a possible outcome of the actiona. It
is straightforward to show that Proposition 8 entails
than interaction propertyP5.

3.3 Plausibility Functions Over Actions

A plausibility function over action symbols can be
used to represent an agent’s uncertainty about the ac-
tions that have been executed. We letA range over
plausibility functions over actions; so we think ofA
as a partially observed action. We extend the use of·
in the following definition.

Definition 7. Let r be an extended plausibility func-
tion and let A be a plausibility function overA. Then
r ·A is the extended plausibility function such that:

r ·A(s) = min({r(s′)+A(a) | f (a,s′) = s}).
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Informally, the definition just says that the most
likely final states are the states that result starting from
the most likely initial states and carrying out the most
likely actions.

Proposition 9. Let A be an extended plausibility func-
tion over actions, and suppose that Bel(A) = {a} and
A(a′) = ∞ for a′ 6= a. Then for any extended plausi-
bility function r, it follows that r·A= r ·a.

This proposition deals with the case whereA es-
sentially picks out a single actiona. In this case, we
get the same result we would get if we simply used
progression by the actiona.

The following proposition gives some indication
of the role played by∞ when we have uncertainty over
actions.

Proposition 10. If r is a plausibility function (i.e.
with domainN), then r·A(s) = ∞ just in case one of
the following holds:

1. A is inconsistent, or
2. If f(a,s′) = s, then A(a) = ∞.

Hence, ifA is consistent, then the only states ex-
cluded byr ·A are those that are not possible outcomes
of any action that is possible according toA.

Note that the model proposed here is only appro-
priate for action domains where the effects of an ac-
tion can not fail. We are using plausibility functions
to rank the likelihood that an action has occurred; if
an agent believes an action has occurred, then the ef-
fects of that action must hold. We will see in the ex-
amples, however, that it is possible to include non-
deterministic and failed actions by adding some addi-
tional ranking functions for effects.

4 REPRESENTING NATURAL
ACTION DOMAINS

In this section, we demonstrate how sequences of
plausibility functions can be used to represent natu-
ral action domains. In terms of notation, we useINIT
to represent the initial plausibility function. We useA
andO (possibly with subscripts) to represent plausi-
bility functions over actions and states, respectively.
We refer toO as an observation, as it is a ranking
function on states that provides new information. To
be clear, athoughINIT , A andO are all plausibility
functions, it may be the case thatINIT ·A∗O is an
extended plausibility function.

We now introduce a sequence of examples. In
each case, we assume that the actions and observa-
tions are (simple) plausiblity functions, and the final
belief state is an extended plausbility function where

some states are excluded. The final plausiblity values
can be obtained by minimizing the sum of all plausi-
bility values over actions and states, restricting atten-
tion to sequences of actions that are actually possible
in the underlying transition system. The agent there-
fore maintains a consistent representation of the plau-
sibility of a world together with the effects of actions.

Example (Additive Evidence). Bob believes that he
turned the lamp off in his office, but he is not com-
pletely certain. As he is leaving the building, he talks
first to Alice and then to Eve. If only Alice tells him
his lamp is still on, then he will believe that she is
mistaken. Similarly, if only Eve tells him his lamp
is still on, then he will believe that she is mistaken.
However, if both Alice and Eve tell Bob that his lamp
is still on, then he will believe that it is in fact still on.

The action signature contains, among others, a
propositional variableLampOnand an action sym-
bolTurnLampO f f. The underlying transition system
defines the effects of turning the lamp off in the obvi-
ous manner. LetON denote the set of states in which
LampOnis true. The following plausibility functions
describe this action domain.

1. INIT (s) = 0 if s∈ ON, INIT = 10 otherwise

2. A1(a) = 0 if a= TurnLampO f f, A1(a) = 3 oth-
erwise

3. O1(s) = 0 if s∈ ON, O1(s) = 2 otherwise

4. A2(a) = 0 if a= null, A2(a) = 10 otherwise

5. O2(s) = 0 if s∈ ON, O2(s) = 2 otherwise

It is easy to verify that, under this representation, two
observations ofON are required to make Bob believe
that he did not turn the lamp off.

Example (Graded Evidence). Bob receives a gift that
he estimates to be worth $7. He is curious about the
price, so he tries to glance quickly at the receipt with-
out anyone noticing. He believes that the receipt says
the price is $3. This is far too low, so Bob concludes
that he must have mis-read the receipt. Since a “3”
looks very similar to an “8”, he concludes that the
price on the receipt must have been $8.

To represent this example, it is useful to assume
that the set of actions includes a distinguished action
symbolnull that is just the identity function over the
setSof states. Define the plausibility functionA1 such
thatA1(null) = 0 andA1(a) = 10 for every non-null
actiona, because Bob believes that no actions have
occurred. We assume that there are propositional vari-
ablesCost1,Cost2, . . . ,Cost9 interpreted to represent
the cost of the gift. We define a plausibility function
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INIT representing Bob’s initial beliefs.

INIT (w) =







0 if w= {Cost7}
1 if w= {Cost6} or w= {Cost8}
3 otherwise

Note that Bob initially believes that the cost is $7, but
it is comparatively plausible that this cost is one dollar
more or less. Finally, we define a plausibility function
O1 representing the observation of the receipt.

O1(w) =







0 if w= {Cost3}
1 if w= {Cost8}
3 otherwise

Bob believes that the observed digit was most likely
a “3”, with the most plausible alternative being the
visually similar digit “8”.

Given these plausibility functions, the most plau-
sible conclusion is that the actual price is $8; this is
the result obtained through minimization. In order
to draw this conclusion, Bob needs graded evidence
about states of the world and he needs to be able to
weight this information against his initial beliefs.

The preceding examples illustrate that there are
commonsense reasoning problems in which an agent
needs to consider aggregate plausibilities over a se-
quence of actions and observations. Plausibility func-
tions are well-suited for reasoning about such prob-
lems. Total pre-orders over states, on the other hand,
are not. In the case of graded evidence, the important
point is that we need to be able to distinguish between
initial plausibilities and some measure of similarity
between observations. This is easy to represent us-
ing ranking functions; it is more difficult to represent
using orderings, as we need to introduce some mech-
anism for combining the “levels” of an ordering.

4.1 Non-deterministic and Failed
Actions

In this section, we consider actions with non-
deterministic effects, including actions that may fail.
Let f be a non-deterministic transition function, so
f (a,s) is a set of statesthat represents the possible
outcomes when actiona is executed in states. Given
such a transition function along with a plausibility
function over actions, it is not possible to give a clear
categorical procedure for choosing the effects of each
action in the most plausible world histories. This
problem can be solved by following (Boutilier, 1995),
and attaching a plausibility value to the possible ef-
fects of each action.
Definition 8. An effect ranking function is a function
δ that maps every action-state pair(a,s) to a plausi-
bility function over f(a,s).

Informally, an effect ranking function gives the
likelihood of each possible effect for each action. A
non-deterministic plausibility functionis a pair〈r,δ〉
wherer is a plausibility function over actions andδ is
an effect ranking function.

Example (Unlikely Action Effects). Consider an
action domain involving a single propositional vari-
ableLampOnindicating whether or not a certain lamp
is turned on. There are two action symbolsPress
andThrowPaperrespectively representing the acts of
pressing on the light switch, or throwing a ball of pa-
per at the light switch. Informally, throwing a ball
of paper at the light switch is not likely to turn on
the lamp. But suppose that an agent has reason to be-
lieve that a piece of paper was thrown at the lamp and,
moreover, the lamp has been turned on. DefineA1 so
thatThrowPaperis the most likely action at time 1.

λ Press ThrowPaper
A1 10 1 0

Next defineINIT andO1 so that initially the light is
off, and then the light is on.

/0 LightOn
INIT 10 0
O1 0 10

Finally, we define an effect ranking functionδ cap-
turing the fact that pressing is more likely to turn the
light on. This ranking function says nothing about
which action has actually occurred.

/0 {LightOn}
δ(Press,LightOn) 0 10

δ(Press, /0) 1 2
δ(ThrowPaper,LightOn) 0 10

δ(ThrowPaper, /0) 2 1

Introducing effect ranking functions makes the
distinction between action occurrences and action ef-
fects explicit, which in turn gives a straightforward
treatment of failed actions.

5 DISCUSSION

5.1 Prioritizing Plausibility Functions

In formalizing commonsense examples, we had a se-
quence of plausibility functions over states and ac-
tions. We executed a sequence of operations itera-
tively by minimization over plausibility values at each
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step. It is not clear if this is always appropriate, partic-
ularly if we know in advance that there will be several
plausibility functions to combine.

This issue has been discussed for belief revision
in (Delgrande et al., 2006), where it is suggested that
sequences of observations should should first be com-
bined through some form of prioritization, and then
the combination should be used as input for revision.
In our context, this could be accomplished by using a
large scalar multiple to prioritize certain ranking func-
tions, followed by summation to merge all informa-
tion together. It may also be interesting to consider
non-summation based aggregates; the important point
is that using a different aggregate does not introduce
a fundamental change to our framework.

We remark, however, that there is a distinction that
is lost here. In particular, there is a difference between
an action that fails to occur and an action that occurs,
but fails to produce an expected effect. Consider an
agent that tries to drop a glass on the ground to break
it. One possible outcome is that the agent executes
the drop action but it fails to occur; perhaps the glass
sticks to the agent’s hand. Alternatively, the glass
could be successfully dropped without breaking. In
our framework, both of these events are represented
by a dropping action with the null effect. In some
cases, this might not be appropriate.

5.2 Action Formalisms

The issues addressed in this paper have been ad-
dressed in related action formalisms. We have al-
ready mentioned related work that has been done in
the context of transition systems (Hunter and Del-
grande, 2006). Similar work has also been done in the
Situation Calculus (SitCalc). The SitCalc is an action
formalism based on first-order logic, summarized in
(Levesque et al., 1998). While the original formalism
does not incorporate any epistemic notions, knowl-
edge and belief have been added in extended versions.
The most relevant work for comparison with our ap-
proach is the framework for iterated belief change in
(Shapiro et al., 2011). In order to reason about belief
change, a ranked set of possible initial situations is in-
troduced and this set is refined over time as an agent
performs sensing actions.

On the surface, our work is distinguished from the
work in the SitCalc in that we use a less expressive
representation of action effects. By using transition
systems, we hope to focus entirely on the role played
by the relevant ranking functions in belief change.
The representation of belief change in the SitCalc
does not use rankings to measure an agents percep-
tion of the action that has been executed, nor does it

attempt to merge multiple forms of uncertainty due
to graded evidence and epistemic entrenchment. Of
course this is not a limitation of the approach: the Sit-
Calc is a very expressive formalism that can be used
to capture such notions. For instance, recent work has
provided a treatment of beliefs about failed actions
in the SitCalc (Delgrande and Levesque, 2012). Our
view is that it can be simpler to iron out the main is-
sues with respect to believe change in a simple AGM-
like framework first, before migrating the solutions to
a sophisticated formal framework such as the SitCalc.

5.3 Dynamic Epistemic Logic

Dynamic Epistemic Logic (DEL) is a broad term that
generally refers to formal models of changing knowl-
edge and belief following in the tradition of (Baltag
et al., 1998). For a complete discussion of work in
this area, we refer the reader to the extensive introduc-
tion in (van Ditmarsch et al., 2007). Broadly, work on
DEL is distinguished from the work presented here in
that DEL is based on the use of Kripke structures to
model knowledge and belief.

Recent work in DEL has incorporated key notions
of plausibility from the AGM tradition, as well as no-
tions of graded belief. For example, (Lorini, 2011)
provides an interesting example of graded belief in
DEL. This work is actually quite similar in spirit to
ours, and is fueled by the same kind of commonsense
reasoning examples. By using simple ranking functi-
nos over sets, our hope is to highlight the significant
aspects of belief change that need to be modeled be-
fore committing to the representation of belief that is
embodied by a Kripke structure.

5.4 Reasoning with Ordinals

The plausibility functions used in this paper are re-
ally a variation of Spohn’s ordinal conditional func-
tions(OCFs). In this paper, we have taken the posi-
tion that a single infinite value denoted by∞ can be
useful for representing impossiblity. Adding this no-
tion of impossibility makes our model largely equiva-
lent to work in possibilistic logic, where quantitative
measures of likelihood are combined with a “neces-
sity measure” of 0 (Dubois and Prade, 2004).

While our focus in this paper has been on reason-
ing with a single infinite value, we propose that there
are situations where we actually want greater expres-
sive power for discussing impossible states. For ex-
ample, we may want to reason about such states hypo-
thetically; in these situations, it can actually be useful
to allow plausibility values to range over all ordinals.

We suggest, for example, that it may be useful
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for an agent to reason counterfactually in worlds that
have plausibility starting from the ordinalω. Consider
a statement of the form “The present king of France
is bald.” We can reasonably expect an agent to revise
their beliefs about the present king of France, even if
they do not believe in his existence. For example, one
might be told “All french monarchs just had a hair
transplant.” In this case, it could be counterfactually
concluded that the present king of France is no longer
bald. This kind of reasoning can be modelled by iden-
tifying each limit ordinal (such asω) with a hypothet-
ical world configuration. In this manner, ordinals of
the formω+ i can then be used as plausibility val-
ues to represent events of varying degrees of implau-
sibility within these hypothetical worlds. The order-
ing on limit ordinals indicates which hypetheticals are
the most outlandish, but we are able to perform revi-
sion across each in a uniform manner. We leave this
application of plausibility functions for future work.

6 CONCLUSIONS

In this paper, we have discussed the use of plausiblity
functions for reasoning about belief change, with a
particular focus on action domains. We have demon-
strated that Spohn-style ranking functions can be used
to define an algebra of belief change, which can then
be extended to reason about belief progression due
to actions. We then used the same kind of rank-
ing functions to represent uncertainty over the actions
that have been executed. Through commonsense ex-
amples we demonstrated that ranking functions are a
flexible tool that can capture many different kinds of
uncertainty. At a formal level, it has long been known
that AGM revision can be defined in terms of rank-
ing functions or total pre-orders; but there is a sense
in which pre-orders are simpler, and they have tended
to be more popular in the literature. Our examples
give many situations that are easier to represent with
ranking functions, because the gap between different
levels of plausibility is important. In many cases, our
uniform treatment of belief states and observations
simplifies the algebra of belief change.
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