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Abstract: The problem of robust extraction of ego-motion from a sequence of images for an eye-in-hand camera 
configuration is addressed. A novel approach toward solving planar template based tracking is proposed 
which performs a non-linear image alignment and a planar similarity optimization to recover camera 
transformations from planar regions of a scene. The planar region tracking problem as a motion 
optimization problem is solved by maximizing the similarity among the planar regions of a scene. The 
optimization process employs an evolutionary metaheuristic approach in order to address the problem 
within a large non-linear search space. The proposed method is validated on image sequences with real as 
well as synthetic image datasets and found to be successful in recovering the ego-motion. A comparative 
analysis of the proposed method with various other state-of-art methods reveals that the algorithm succeeds 
in tracking the planar regions robustly and is comparable to the state-of-the art methods. Such an application 
of evolutionary metaheuristic in solving complex visual navigation problems can provide different 
perspective and could help in improving already available methods. 

1 INTRODUCTION 

Accurate relative position estimation by keeping 
track of   salient regions of a scene can be 
considered to be the core functionality of a 
navigating body such as a mobile robot. These 
salient regions are often referred to as “Landmarks” 
and the process of position estimation and 
registration of landmarks on a local representation 
space (i.e. a Map) is called SLAM (Simultaneous 
Localization and Mapping). The choice of 
landmarks and their representation depends on the 
environment as well as the configuration of a robot. 
In the case of vision based navigation, feature 
oriented land-marking is often employed, where 
features can be represented in many ways (e.g. by 
points, lines, ellipses and moments) (Torr and 
Zisserman, 2000). Such techniques either do not 
exploit rigidity of the scene (Eade and Drummond 
2006; Davison, 2003; Scaramuzza et al., 2009) or 
geometrical constraints are loosely coupled by 
keeping them out of the optimization process (Klein 
and Murray, 2009; Pirchheim and Reitmayr, 2011; 
Wagner et al., 2009). These techniques can therefore 
have inaccurate motion estimation due to small 
residual errors incurred in each iteration which make 

motion estimations inaccurate as these errors get 
accumulated. In order to mitigate this, an additional 
correction step is often added which either exploits a 
robot’s motion model to predict the future state 
using an array of extended Kalman-Filters 
(Montemerlo et al., 2002) or minimizes the 
integrated error calculated over a sequence of 
motion (More, 1978).  

Generally, feature-oriented ego-motion 
estimation approaches (Zhou, Green et al., 2009; 
Zhou, Wallace et al., 2009) follow three main steps; 
feature extraction, correspondence calculation and 
motion estimation. The extracted features are mostly 
sparse and the process of extraction is decoupled 
from motion estimation. Sparsification and 
decoupling makes a technique less computationally 
expensive and also allows it to handle large 
displacements in subsequent images, however 
accuracy suffers when the job is to localize a robot 
and map the environment for a longer period of 
time. Since finding correspondences is itself an 
error-prone task, a large portion of the error is 
introduced in a very early phase of motion 
estimation. 

There is another range of methods that utilize all 
pixels of an image region when calculating camera 
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displacement by aligning image regions and hence 
enjoy higher accuracy due to exploitation of all 
possible visual information present in the segments 
of a scene (Irani and Anandan, 2000). These 
methods are termed “direct image alignment” based 
approaches for motion estimation because they do 
not have feature extraction and correspondence 
calculation steps and work directly on image 
patches. Direct methods  are often avoided due to 
their computational expense which overpowers the 
benefits of accuracy they might provide, however an 
intelligent selection of the important parts of the 
scene that are rich in visual information can provide 
a useful way of dealing with the issue (Silveira et al., 
2008). In addition to being direct in their approach, 
such methods can also better exploit the geometrical 
structure of the environment by including rigidity 
constraints early in the optimization process. The 
use of all visual information in a region of an image 
and keeping track of gain or loss in subsequent 
snapshots of a scene is also relevant, since it is the 
way some biological species navigate. For example, 
there are evidences that desert ants use the amount 
of visual information which is common between a 
current image and a snapshot of the ant pit to 
determine their way to the pit (Philippides et al., 
2012).  

An important step in a direct image alignment 
based motion estimation approach is the 
optimization of similarity among image patches. The 
major optimization technique that is extensively 
used for image alignment is gradient descent 
although a range of algorithms (e.g. Gauss-Newton, 
Newton-Raphson and Levenberg-Marquardt 
(Bjorck, 1996; More, 1978)) are used for calculation 
of a gradient descent step. Newton’s method 
provides a high convergence rate because it is based 
on second order Taylor series approximation, 
however, Hessian calculation is a computationally 
expensive task. Moreover, a Hessian can also be 
indefinite, resulting in convergence failure. These 
methods perform a linearization of the non-linear 
problem which can then be solved by linear-least 
square methods. Since these methods are based on 
gradient descent, and use local descent to determine 
the direction of an optimum in the search space, they 
have a tendency to get stuck in the local optimum if 
the objective function has multiple optima. There 
are, however, some bio-inspired metaheuristics that 
mimic the behavior of natural organisms (e.g. 
Genetic Algorithms (GAs)  and Particle Swarm 
Optimization (PSO) (Goldberg, 1989; Kennedy and 
Eberhart, 1995; Baik et al., 2013) ) or the physical 
laws of nature to cater this problem (Aarts and 

Korst, 1988). These methods have two common 
functionalities: exploration and exploitation. During 
an exploration phase, like any organism explores its 
environment, the search space is visited extensively 
and is gradually reduced over a period of iterations. 
The exploitation phase comes in the later part of a 
search process, when the algorithm converges 
quickly to a local optimum and the local optimum is 
accepted as the global best solution. This two-fold 
strategy provides a solid framework for finding the 
global optimum and avoiding the local best solution 
at the same time. In this case, PSO is interesting as it 
mimics the navigation behavior of swarms, 
especially colony movement of honeybees if an 
individual bee is represented as a particle which has 
an orientation and is moving with a constant 
velocity. Arbitrary motion in the initial stage of the 
optimization process ensures better exploration of 
the search space and a consensus among the 
particles reflects better convergence.   

In this paper, the aim is to solve the problem of 
camera motion estimation by directly tracking planar 
regions in images. In order to learn an accurate 
estimate of motion and to embed the rigidity 
constraint of the scene in the optimization process, a 
PSO based camera tracking is performed which uses 
a non-linear image alignment based approach for 
finding the displacement of camera within 
subsequent images. The major contributions of the 
paper are: a) a novel approach to planar template 
based camera tracking technique which employs a 
bio-metaheuristic for solving optimization problem 
b) Evaluation of the proposed method using multiple 
similarity measures and a comparative performance 
analysis of the proposed method. 

The rest of the paper is organized as follows: In 
section 2 the most relevant studies are listed, in 
section 3 the details of the method are described, 
section 4 explains the experimental setup and 
discussion of the results, and section 5 presents the 
conclusion and potential future work. 

2 RELEVANT WORK 

There are many studies that focus on feature 
oriented camera motion estimation by tracking a 
template in the images. However, here we focus on 
the direct methods that track a planar template by 
optimizing the similarity between a reference and a 
current image. A classic example of such a direct 
approach toward camera motion estimation is the 
use of a brightness constancy assumption during 
motion and is linked to optical flow measurement 
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(Irani and Anandan, 2000). Direct methods based on 
optical flow were later divided into two major 
pathways: Inverse Compositional (IC) and Forward 
Compositional (FC) approaches (Lucas and Kanade 
1981; Baker and Matthews, 2004; Jurie and Dhome, 
2002). The FC approaches solve the problem by 
estimating the iterative displacement of warp 
parameters and then updating the parameters by 
incrementing the displacement. IC approaches, on 
the other hand, solve the problem by updating the 
warp with an inverted incremental warp. These 
methods linearize the optimization problem by 
Taylor-series approximation and then solve it by 
least-square methods. In (Cobzas and Sturm, 2005) a 
multi-plane estimation method along with tracking is 
proposed in which region-based planes are firstly 
detected and then the camera is tracked by 
minimizing the SSD (Sum of Squared Differences) 
between respective planar regions in 2D images. 
Another example of direct template tracking is 
(Cobzas and Sturm, 2005) which improves the 
tracking method by replacing the Jacobian 
approximation in (Baker and Matthews, 2004) with 
a Hyper-plane Approximation.  The method in 
(Cobzas and Sturm, 2005) is similar to our method 
because it embeds constraints in a non-linear 
optimization process (i.e. Levenberg-Marquardt 
(More, 1978)) although it differs from the method 
proposed here since the latter employs a bio-inspired 
metaheuristic based optimization process which 
maximizes the mutual information in-between 
images and also the proposed method does not use 
constraints among the planes. 

3 METHODOLOGY 

The problem that is being addressed deals with 
estimation of a robot’s state at a given time step that 
satisfies the planarity constraint. Let ࢞ሺݔ௧, ௥ሻݔ ∈ Թ଺ 
be the state of the robot with ݔ௧ ∈ Թଷ, ௥ݔ ∈ Թଷ being 
the position and orientation of the robot in Euclidean 
space. Let’s also consider ܫ,  ௥ to be the current andܫ
reference image, respectively. If the current image 
rotates ࡾ ∈ ॺॹሺ3ሻ and translates ݐ ∈ Թଷ from the 
reference image in a given time step then the motion 
in terms of homogeneous representation ࢀ ∈ ॺॱሺ3ሻ 
can be given as: 

ሻ࢞ሺࢀ ൌ 	 ൤̂ݏ
ሺ࢘࢞ሻ ࢚࢞

૙ࢀ 1
൨ (1)

where ̂ݏ is the skew symmetric matrix. It is 
indeed this transformation that we ought to recover 
given the current state of the robot and reference 
template image. 

3.1 Plane Induced Motion 

It is often the case that the robot’s surrounding is 
composed of planar components, especially in the 
case of indoor navigation where most salient 
landmarks are likely to be planar in nature. In such 
cases the pixels in an image can be related to the 
pixels in the reference image by a projective 
homography H that represents the transformation 
between the two images (Hartley and Zisserman, 
2000). If ݌ ൌ ሾݑ, ,ݒ 1ሿ் be the homogeneous 
coordinates of the pixel in an image and ݌௥ ൌ
ሾݑ௥, ,௥ݒ 1ሿ்be the homogenous coordinates of the 
reference image then the relationship between the 
two set of pixels can be written as given in equation 
2. 

࢖ ∝ (2) ࢘࢖ࡴ

Let’s now consider that the plane that is to be 
tracked or the plane which holds a given landmark 
has a normal ࢘࢔ ∈ 	Թଷ, which has its projection in 
the reference image ܫ௥. In case of a calibrated 
camera, the intrinsic parameters, which are known, 
can be represented in terms of a matrix ࡷ	 ∈ 	Թଷ௫ଷ. 
If the 3D transformation between the frames is ࢀ, 
then the Euclidean homography with a non-zeros 
scale factor can be calculated as: 

,ࢀሺࡴ ሻ࢘࢔ ∝ ࡾሺࡷ ൅ ૚ (3)ିࡷሻࢀ࢘࢔࢚

3.2 Model-based Image Alignment 

The next step after modeling the planarity of the 
scene is to relate plane transformations in the 3D 
scene to their projected transformations in the 
images. For that reason a general mapping function 
that transforms a 2D image given a projective 
homography can be represented by a warping 
operator w and is defined as follows: 

,ࡴሺ࢝ ሻ࢘࢖

ൌ ൤
݄ଵଵݑ௥ ൅ ݄ଵଶݒ௥ ൅ ݄ଵଷ
݄ଷଵݑ௥ ൅ ݄ଷଶݒ௥ ൅ ݄ଷଷ

,
݄ଶଵݑ௥ ൅ ݄ଶଶݒ௥ ൅ ݄ଶଷ
݄ଷଵݑ௥ ൅ ݄ଷଶݒ௥ ൅ ݄ଷଷ

൨
ࢀ

 
(4)

If the normal of the tracked plane is known then the 
problem to be addressed is that of metric model 
based alignment or simply model based non-linear 
image alignment. It is the transformation  ࢀ ∈ ॺॱሺ3ሻ 
that is to be learned by warping the reference image 
and measuring the similarity between the warped 
and the current image. Since the intensity of a pixel 
 ሻ is a non-linear function, we need a non-linear࢖ሺࡵ
optimization procedure. More formally, the task is to 
learn an optimum transformation ࢀ෡ ൌ  ሻ that࢞ሺࢀ
maximizes the following: 
 

Bio-inspired�Metaheuristic�based�Visual�Tracking�and�Ego-motion�Estimation

571



max
Թల
࢘ࡵ൬࣒ ቀ࢝൫ࡴ൫ ෠ܶ, ,୰൯࢔ ൯ቁ࢘࢖ , ሻ൰ (5)࢖ሺࡵ

where ࣒ is a similarity function and ෠ܶ  is updated as 
෠ܶ ⇠ ܶሺݔሻ ෠ܶ  for every new image in the sequence. 

3.3 Similarity Measure 

In order for any optimization method to work 
effectively and efficiently, the search space needs to 
be modeled in such a way that it captures the 
multiple optima of a function but at the same time 
suppresses local optima by enhancing the global 
optimum. It is also important that such modeling of 
similarity must provide enough convergence space 
so that the probability of missing the global 
optimum is minimized. This job is performed by a 
selection of similarity measure that is best suited for 
a given problem context. An often used measure is 
SSD (Sum of Squared Differences) that can be given 
as: 

ࡰࡿࡿ࣒ ൌ 	෍ቀ࢘ࡵ൫࢝ሺࡴ, ሻ൯࢘࢖ െ ሻቁ࢖ሺࡵ  (6)

where ‘N’ is the total number of pixels in a 
tracked region of the image.  
Similarly, another relevant similarity measure is the 
cross correlation coefficient of the given two data 
streams. Often a normalized version is used to 
restrict the comparison space to the range [0, 1]. The 
normalized cross correlation between a current 
image patch ܫ and a reference image patch ܫ௥, with 
,ߤ  :௥ being their respective means, can be written asߤ

࡯࡯ࡺ࣒ ൌ෍
ሺ࢘ࡵሺ࢏, ሻ࢐ െ ,࢏ሺࡵሻሺ	࢘ࣆ ሻ࢐ െ ሻ	ࡵࣆ

ඥሺ࢘ࡵ૛ሺ࢏, ,࢏૛ሺࡵሻሺ	࢘ࣆሻെ࢐ ሻ࢐ െ ࡵࣆ ሻ࢐,࢏

 (7)

The similarity measures presented in equation 6 and 
7 have the ability to represent the amount of 
information that is shared by the two data streams; 
however, as can be seen in figure 1, the convergence 
space and the emphasis on the global optimum need 
improvement. A more intuitive approach for 
measuring similarity among the data is Mutual 
Information (MI), taken from information theory, 
that measures the amount of data that is shared 
between the two input data streams (Shannon, 2001).  

The application of MI in image alignment tasks 
and its ability to capture the shared information have 
also proven to be successful (Dowson and Bowden, 
2006; Dowson and Bowden, 2008). The reason for 
avoidance of MI in robotics tasks has been its 
relatively higher computational expense, since it 
involves histogram computation. However, the gains 
are more than the losses, so we choose to use MI as 
our main similarity measure. Formally, the MI

 

Figure 1: Convergence surface of various similarity 
functions along with motion of a PSO particle on its way 
towards convergence depicted by green path. First Row: 
Sum of squared difference  , Second Row: Normalized 
Cross Correlation, Third Row: Mutual Information. 

between two input images can be computed as: 

ࡵࡹ࣒ ൌ ሻࡵሺࡱ ൅ ሻ࢘ࡵሺࡱ െ ,࢘ࡵሺࡱ  ሻࡵ

ሻࡵሺࡱ ൌ െ෍ߩ

ே಺

௜ୀ଴ ூ

ሺ݅ሻ݈݃݋ሺߩூሺ݅ሻሻ 

,࢘ࡵሺࡱ ሻࡵ ൌ െ෍෍ߩ

ே಺

௝ୀ଴ ஈ

ሺ݅, ݆ሻ݈݃݋ሺߩஈሺ݅, ݆ሻሻ

ே಺

௜ୀ଴

 

(8)

where ࡱሺࡵሻ, ,࢘ࡵሺࡱ ,ሻࡵ ூܰ are the entropy, joint 
entropy and maximum allowable intensity value 
respectively. Entropy according to Shannon 
(Shannon, 2001) is the measure of variability in a 
random variable I, whereas ‘i’ is the possible value 
of I and ߩூሺ݅ሻ ൌ Pr	ሺ݅ ൌൌ  ሻሻ is the probability࢖ሺࡵ
distribution function.  

3.4 Optimization Procedure 

The problem of robust retrieval of Visual Odometry 
(VO) in subsequent images is challenging due to the 
non-linear and continuous nature of the huge search 
space. The non-linearity is commonly tackled using 
linearization of the problem function; however, this 
approximation is not entirely general due to 
challenges in exact modeling of image intensity.
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Figure 2: A depiction of PSO particles (i.e. robot states) 
taking part in an optimization process. Blue arrows show 
the velocity of a particle and the local best solution is 
highlighted by an enclosing circle.   

Another route to solve the problem is to use non-
linear optimization such as Newton Optimization 
which gives fairly good convergence due to the fact 
that it is based on Taylor series approximation of the 
similarity function. However, it requires 
computation of the Hessian which is 
computationally expensive and also it must be 
positive definitive for a convergence to take place.  

The proposed method seeks the solution to the 
optimization problem presented in equation 5. In 
order to find absolute global extrema and not get 
stuck in local extrema we choose a bio-inspired 
metaheuristic optimization approach (i.e. PSO). 
Particle Swarm Optimization (PSO) is an 
evolutionary algorithm which is directly inspired by 
the grouping behavior of social animals, notably in 
the shape of bird flocking, fish schooling and bee 
swarming The primary reason for interest in learning 
and modeling the science behind such activities has 
been the remarkable ability possessed by natural 
organisms to solve complex problems (e.g 
scattering, regrouping, maintaining course, etc.) in a 
seamlessly and robust fashion. The generalized 
encapsulation of such behaviors opens up horizons 
for potential applications in nearly any field. The 
range of problems that can be solved range from 
resource management tasks (e.g intelligent planning 
and scheduling) to real mimicked behaviors by 
robots. The particles in a swarm move collectively 
by keeping a safe distance from other members in 
order to avoid obstacles while moving in a 
consensus direction to avoid predators and maintain 

a constant velocity. This results in behavior in which 
a flock/swarm moves towards a common goal (e.g. a 
Hive, food source) while intra-group motion seems 
random. This makes it difficult for predators to focus 
on one prey while it also helps swarms to maintain 
their course, especially in case of long journeys that 
are common, e.g., for migratory birds. The exact 
location of the goal is usually unknown as it is in the 
case of any optimization problem where the 
optimum solution is unknown. A pictorial depiction 
of the robot’s states represented as particles in an 
optimization process can be seen in figure 2. 

PSO is implemented in many ways with varying 
levels of bioinspiration reflected in terms of the 
neighborhood topology that is used for convergence 
(Günther and Nissen, 2009). Each particle maintains 
it current best position ݌௕௘௦௧ and global best ݃௕௘௦௧ 
position. The current best position is available to 
every particle in the swarm. A particle updates its 
position based on its velocity, which is periodically 
updated with a random weight. The particle that has 
the best position in the swarm at a given iteration 
attracts all other particles towards itself. The 
selection of attracted neighborhood as well as the 
force to which the particles are attracted depends on 
the topology being used. Generally a PSO consists 
of two broad functions: one for exploration and one 
for exploitation. The degree and extend of time that 
each function is performed depends again on the 
topology being used. A common model of PSO 
allows more exploration to be performed in the 
initial iterations while it is gradually decreased and a 
more localized search is performed in the later 
iterations of the optimization process.  

The process of PSO optimization starts with 
initialization of the particles. Each particle is 
initialized with a random initial velocity ࢏࢜ and 
random current position ࢏࢞ represented by a k 
dimensional vector where ‘k’ is the number of 
degrees of freedom of the solution. The search space 
is discretized and limited with a boundary constraint 
|࢏࢞| ൑ ,࢏࢈ ࢏࢈ ∈ ሾܾ௟, ܾ௨ሿ where ܾ௟, ܾ௨ are lower and 
upper bounds of motion in each dimension. This 
discretization and application of boundary 
constraints helps reduce the search space assuming 
that the motion in between subsequent frames is not 
too large. After initialization, particles are moved 
arbitrarily in the search space to find the solution 
that maximizes the similarity value as given in 
equation 8. Each particle updates its position based 
on its own velocity and the position of the best 
particle in the neighborhood. The position and 
velocity update is given in equation 9: 

 

ଵݔ
௥ 

ଶݔ
௧ 

ଷݔ
௧ 

ଵݔ
௧ 

ଶݔ
௥ 

ଷݔ
௥ 
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ݐሺ࢏࢞ ൅ 1ሻ ൌ ሻݐሺ࢏࢞ ൅ ݐሺ࢏࢜ ൅ 1ሻ 
ݐሺ࢏࢜ ൅ 1ሻ ൌ ሻݐሺ࢏࢜	࣓ ൅ ࢏ࢉ௖ߪ௖ߙ ൅ ࢏࢙௦ߪ௦ߙ

(9)

where ω is the inertial weight and is used to 
control the momentum of the particles. When a large 
value of inertial weight is used, particles are 
influenced more by their last velocity and collisions 
might happen with very large values. The cognitive 
(or self- awareness) component of the velocity 
update is represented by ࢏ࢉ ൌ ࢏࢞

࢈ െ ࢏࢞ ሻ whereݐሺ࢏࢞
 ࢈

is the personal best solution of the particle. 
Similarly, the social component is represented as  
࢏࢙ ൌ ࢏࢞

ࢍ െ ࢏࢞ ሻ whereݐሺ࢏࢞
 is the best solution in the ࢍ

particle’s neighborhood. Randomness is achieved by 
,ࢉ࣌ ࢙࣌ ∈ ሾ0,1ሿ for cognitive and social components 
respectively. The constant weights ߙ௖,  ௦ control theߙ
influence of each component in the update process.   

3.5 Tracking Method 

The proposed plane tracking method consists of 
three main steps: initialization, tracking and 
updating. A pictorial depiction of the whole process 
is given in figure 3. These steps are given as follows: 

1) The planar area in the image that is to be 
tracked is initialized in the first frame and an initial 
normal of the plane is provided. If the plane 
normal is not already known then a rough estimate 
of the plane in the camera coordinate frame is 
given. The search space of the problem is 
discretized and constrained within an interval. PSO 
is initialized with a random solution and a suitable 
similarity function is provided. 

2) The marked region in the template image is 
aligned with a region in the current image and an 
optimum solution of the 6-dof transformation is 
obtained. The optimization process continues until 
it meets one of the following conditions: (i) max 
number of iterations is reached, (ii) the solution 
has not improved in a number of consecutive 
iterations, or (iii) a threshold for solution 
improvement is reached. 

3) The global camera transformation is updated 
and process repeats. 

4 EXPERIMENTAL RESULTS 

In order to evaluate the proposed method, an 
experiment setup must conform to the basic 
assumptions of the planarity of the scene and small 
subsequent motion. The planarity of the scene means 
that there should be a dominant plane in front of the 
camera   whose normal is either estimated by using 

 
Figure 3: System architecture of the proposed method. 

another technique or using an approximated unit 
normal without scale, however the rate of 
convergence and efficiency is affected in the latter 
case. The second important assumption of the 
system is that the amount of motion in subsequent 
frames is small, since large motions increase the 
search space significantly. In addition to this, if the 
planar region that is to be tracked is textured, the 
results can be improved due to the presence of 
greater variance of similarity between the reference 
and the current image region. Keeping these 
assumptions in mind, the algorithm was evaluated 
for both simulated and real robotic motion. 

4.1 Synthetic Sequence 

The proposed method was evaluated on a benchmark 
tracking sequence (Benhimane and Malis, 2007). 
The sequence consisted of a real image with a 
textured plane facing the camera and its 100 
transformed variations, while the motion within the 
subsequent transformation was kept small. The 
tracking region was marked in the template image in 
order to select the plane and the optimization 
algorithm was initialized. The tracking method 
succeeded in capturing the motion, as shown on 
figure 4. In order to test behavior of the similarity 
measures, the method was repeated with all three 
similarity functions, and the error surface was 
analyzed as seen in the figure 1, which also show the 
path of a particle in the swarm on its way toward 
convergence. It was found that MI provides a better 
convergence surface than the other two participating 
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similarity measures and hence it was used for later 
stages of the evaluation process.  

 

Figure 4: The result of the tracking when applied on a 
benchmarking image sequence with synthetic 
transformations.  

 
Figure 5: The example images of experimental setup(s).  

In order to determine whether the algorithm could 
accommodate variations in the degrees of freedom, 
the sequence was run multiple times with different 
dimensions of the solution that was to be learned. 
The increase in the number of parameters to be 
learned affects the convergence rate, however the 
algorithm successfully converged for all the 
variations, as seen in figure 6. With an increase in 
degrees of freedom, the search space expands 
exponentially, making it harder to converge in the 
same number of iterations as needed for lower 
degrees of freedom. This can be catered for in 
multiple ways: a) increasing the overall number of 
iterations needed by the algorithm to converge, b) 
increasing the number of iterations dedicated for 
exploration, and c) putting more emphasis on 
exploration by setting the appropriate inertial and 
social weights in equation 9.  

4.2 Real Sequence 

The proposed tracking method was also tested on 
two real image benchmarking datasets. The result of 
evaluations for each dataset is given in forthcoming

sections.  

4.2.1 MAV Dataset 

A sequence of images that was recorded by a 
downward looking camera mounted on a 
quadrocopter (Lee et al., 2010). The sequence 
consisted of 533 images with the resolution 752x480 
recorded by flying the quadrocopter at ~15Hz while 
it hovers at one meters above the ground. The 
dataset provides VICONTM measurements which are 
used as ground truth. The important variable that 
was unavailable in this case of real images was the 
absolute normal of the tracked plane. There could 
have been two ways to solve this problem: using an 
external plane detection method to estimate the 
normal or using a rough estimate of the plane 
(virtual-plane) and leaving the rest to optimization 
processes. The former approach was preferable and 
could lead to a better convergence rate. However, to 
show the insensitivity of the proposed method to 
absolute plane normal and depth estimates, we used 
the latter approach for evaluation. The rest of the 
parameterization and initialization process was 
similar to the simulated sequence based evaluation 
process described earlier.  

As shown in figure 7, even though initial 
transformation of the marked region was not correct 
and the absolute normal was unknown; the tracking 
method learned the correct transformation over a 
period of time and successfully tracked the planar 
region. A thorough error analysis was provided, as 
shown in figure 8, which shows that the proposed 
tracking method has robust tracking ability with very 
low error rates when the motion is kept within the 
bounds of the search space. A good way to keep the 
motion small was attained by using high frame-rate 
cameras. 

4.2.2 Road Dataset 

The second dataset consists of an image sequence 
recorded by a car mounted camera (see figure 5) that 
is driven in an urban environment (Warren et al. 
2010).  A total of 2800 images of resolution 
1024x768 at 30Hz were used in the evaluation 
process. The images contained multiple turns 
performed by vehicle as well as with lighting 
variation due to cloudy as well as bright sunny 
weather.  The GPS measurements are taken as the 
ground truth for evaluation. The planar patches of 
the road segment were used in the optimization 
process. In order to reduce the effect of scale 
ambiguity while estimating the motion of the 
camera, the images were rectified so that ground 
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plane normal becomes parallel to the image plane. 
The motion of the vehicle on the road can be 
approximated by a camera moving on a plane. This 
approximation reduces the desired motion 
parameters to three parameters ሺ ௫ܶ, ௭ܶ, Ω௭ሻ whereas 
former two represent the lateral and forward 
translation while latter parameter represents the 
angular motion along optical axis. The results of the 
error analysis are presented in the figure 8.   

 

Figure 6: Convergence with variation in DOF and 
similarity measures. X,Y, Z, ߠ, ߶, ߰ represent motion 
along various degrees of freedom. The rows represent 
similarity measures SSD, NCC and MI respectively and 
columns represent DOF (2 and 4). 

4.3 Comparative Analysis 

The proposed method performs camera tracking 
using non-linear image alignment for optimization. 
Comparative analyses with various modifications of 
PSO and also with other state of the art methods 
helped us to determine the method’s significance in 
real applications. Figure 9 presents a comparison of 
the multiple variations of PSO. The Trelea-PSO 
(Trelea 2003) is good at converging to optimum 
similarity values in all cases, although its 
convergence rate is not the fastest due to being 
explorative in nature. PSO common (Kennedy & 
Eberhart 1995) on the other hand, finds its way 
quickly towards solutions, although it may not find 

global optima due to being more exploitative in 
nature. A group of three state of the art plane 
tracking methods (IC (Baker & Matthews 2004), FC 
(Lucas and Kanade, 1981) and HA (Jurie and 
Dhome, 2002)) are applied on the same image 
sequence and a normalized root mean squared error 
is measured for the image sequence and the number 
of iterations. As it can be visualized from the figure 
10, that the performance of the algorithm is 
comparable to IC and FC while it performs better 
than HA over mean squared error. In order to 
address the randomness the experiment is repeated 
multiple times and mean performance is measured. 

 
Figure 7: The result of the tracking when applied on a 
benchmarking image sequence with real transformations.  

It can be noted that IC and HA miss the track of 
the plane after the 40th iteration, most probably due 
to intensity variation that is introduced in the 
sequence for which Taylor series approximation 
failed to capture the intensity function. As a 
comparison, if we check the performance of the 
methods with different degrees of freedom (see 
figure 11), we can see that the proposed PSO-Track 
method performs better on average. A relatively 
larger error in one dimension of the translation, as 
well as the rotation for the synthetic transformation 
sequence, is observable which could be attributed to 
the greater amount of motion in that direction. The 
error computation for the real images contains only 
the part of the sequence for which the marked region 
is valid and remains in the field of view of the 
camera.  

5 CONCLUSIONS 

In this paper, we presented a novel approach toward 
solving a camera tracking problem by non-linear 
alignment  and  tracking  of  the planar regions in the 
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Figure 8: Translation and rotation error of the proposed 
tracking method plotted for each image in the dataset 
(index). First row: error on the synthetic transformation 
sequence, second row: error when MAV dataset is used. 
Third row: translation and rotation error incurred by all the 
participating methods on road dataset.  

 

Figure 9: Comparison of the convergence rate for 2 and 4-
DOF over  number of iterations (epochs).  

images. A non-linear image alignment is performed 
and correct parameters of the transformation are 
recovered by optimizing the similarity between the 
planar regions in the images. A thorough 
comparative analysis of the method over simulated 
and real sequence of images reveal that the proposed 
method has ability to track planar surfaces when the 
motion   within  the  frames  is  not too  large.  Large 

 

Figure 10: Performance comparison of proposed method 
with other state-of-the-art plane tracking methods. From 
top Left: performance of the methods using synthetic 
transformations, result of MAV dataset. and performance 
of road respectively.  

 

Figure 11: Performance comparison of the proposed 
method with other plane tracking methods over different 
dimensions of the motion estimation. First chart is the 
result of synthetic sequence, second chart shows the result 
of first dataset and third chart shows the result of second 
dataset.  

motions could also be handled by increasing the 
number of iterations for an exploration phase of the 
method. The insensitivity of the method toward 
brightness variations as well as to unavailability of 
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true plane normal is also tested and algorithm has 
been found resilient to such environmental changes. 
A possible improvement could be a joint method 
with other state-of-the-art methods such as Inverse 
Compositional alignment. One way could be to 
initialize the IC with the proposed technique which 
is run for short number of iterations to obtain a 
rough estimate of solution in global search space and 
then IC is used for refinement of the solution.  
Robust handling of occlusions could also be an 
interesting future direction.  
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