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Abstract: In this paper, we present a new feature generation algorithm for sequence data sets called Mutated 
Subsequence Generation (MSG). Given a data set of sequences, the MSG algorithm generates features from 
these sequences by incorporating mutative positions in subsequences. We compare this algorithm with other 
sequence-based feature generation algorithms, including position-based, ݇-grams, and ݇-gapped pairs. Our 
experiments show that the MSG algorithm outperforms these other algorithms in domains in which 
presence, not specific location, of sequential patterns discriminate among classes in a data set. 

1 INTRODUCTION 

Finding useful patterns in sequential data is an active 
research area. Within this area, supervised sequence 
classification deals with the problem of learning 
models from labelled sequences. The resulting 
models can be used to assign appropriate class labels 
to unlabelled sequences. Sequence classification 
methods can be used for example to predict whether 
a segment of DNA is the promoter region of a gene 
or not. 

In general, sequence classification is more 
difficult than classification of tabular data, mainly 
because of two reasons: in sequence classification, it 
is unclear what features should be used to 
characterize a given data set of sequences (Figure 1 
shows three different candidate features whose 
presence, or lack of, in a sequence can be used to 
characterize the sequence); and the number of such 
potential features is very large. For instance, given a 
set of sequences of maximum length ݈, over an 
alphabet ܤ, where |ܤ| ൌ ݀, if subsequences that 
contain ݇ symbols are considered as features, then 
there are ݀௞ potential features. Furthermore, the 
number of potential features will grow exponentially 
as the length of subsequences under consideration 
increases, up to ݀௟. Thus, how to obtain features 
from sequences is a crucial problem in sequence 
classification. 

A mutation is a change in an element of a 
sequence. Like in DNA sequences, this could result 

from unrepaired damage to DNA or from an error 
when it is replicating itself. We are interested in 
whether these changes affect the sequences’ 
function. Thus, our research focuses on generating 
features that represent mutation patterns in the 
sequences; and on selecting the generated features 
that are most suitable for classification.  

More specifically, our proposed algorithm 
generates features from sequence data by regarding 
contiguous subsequences and mutated subsequences 
as potential features. Briefly, it first generates all 
contiguous subsequences of a fixed length from the 
sequences in the data set. Then it checks whether or 
not each pair of candidate feature subsequences that 
differ in only one position should be joined into a 
mutated subsequence. The join is performed if the 
resulting joint mutated subsequence has a stronger 
association with the target class than the two 
subsequences in the candidate pair do. If that is the 
case, the algorithm keeps the joint subsequence and 
removes the two subsequences in the candidate pair 
from consideration. Otherwise, the algorithm keeps 
the candidate pair instead of the joint mutated 
subsequence. After all the generated candidate pairs 
of all lengths have been checked, a new data set is 
constructed containing the target class and the 
generated features. 

The features in the resulting data set represent 
(possibly mutated) segments of the original 
sequences that have a strong connection with the 
sequences’ function. We then build classification 
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models over the new data set that are able to predict 
the function (i.e., class value) of novel sequences.  

The main contributions of this paper are the 
introduction of a new feature generation method 
based on mutated subsequences for sequence 
classification, and a comparison of the performance 
of our algorithm with that of other feature generation 
algorithms.  

The rest of this paper is organized as follows: 
section 2 surveys related work; section 3 provides 
background on the techniques used in this paper; 
section 4 describes the details of our algorithms; 
section 5 compares the performance of our algorithm 
with that of other sequence-based feature generation 
algorithms from the literature; and section 6 
provides some conclusions and future work. 

2 RELATED WORK 

Feature-based classification algorithms transform 
sequences into features for use in sequence 
classification (Xing, Pei, & Keogh, June 2010). A 
number of feature-based classification algorithms 
have been proposed in the literature. For example, k-
grams are substrings of k consecutive characters, 
where k is fixed beforehand, see Figure 1(a). 
Damashek used ݇-grams to calculate the similarity 
between text documents during text categorization 
(Damashek, 1995). In (Ji, Bailey, & Dong, 2005), 
the authors vary k-grams by adding gap constraints 
into the features, see Figure 1(b). Another kind of 
feature, k-gapped pair, is a pair of characters with 
constraint ݈ଶ െ ݈ଵ ൌ ݇, where k is a constant, and ݈ଵ 
and ݈ଶ are the locations in the sequence where the 
characters in the pair occur, see Figure 1(c). The k-
gapped pair method is used to generate features for 
Support Vector Machines in (Chuzhanova, Jones, & 
Margetts, 1998) and (Huang, Liu, Chen, Chao, & 
Chen, 2005). In contrast with our method, the 
features generated by their approach can not 
represent mutations in the sequences. 

Another method is mismatch string kernel 
(Leslie, Eskin, Cohen, Weston, & Noble, 2004). It 
constructs a (k, m) – mismatch tree for each pair of 
sequences to extract k-mer features with at most m 
mismatches. It then uses these features to compute 
the string kernel function. A similarity between this 
method and our method is that both generate 
features that are subsequences with mutations. 
However, there are three major differences between 
them.  
1) In mismatch string kernel, the features are 

generated from pairs of sequences and used to 

update the kernel matrix. In contrast, our MSG 
method generates features from the entire set of 
data sequences in order to transform the 
sequence data set into a feature vector data set. 

2) In the process of computing candidate mutated 
subsequences, our MSG method does not only 
consider mutations in the subsequences, but also 
takes into account correlations between these 
mutated subsequences and the target classes. In 
contrast, the mismatch string kernel method 
disregards the latter part. 

3) The mismatch string kernel method can be used 
in support vector machines and other distance 
based classifiers for sequence data. Our MSG 
approach is more general as it transforms the 
sequences into feature vectors. In other words, 
the data set that results from the MSG 
transformation can be used with any classifier 
defined on feature vectors. 

 

Figure 1: Example of different candidate features for a 
given sequence. (a) 4-grams: AACT; (b) 4-grams with gap 
1: g(TAAG,1); (c) 2-gapped pair: k(TA,2). 

3 BACKGROUND 

3.1 Feature Selection 

Feature selection methods focus on selecting the 
most relevant features of a data set. These methods 
can help prediction models in three main aspects: 
improving the prediction accuracy; reducing the cost 
of building the models; and making the models, and 
even the data, more understandable. 

To obtain the features that maximize 
classification performance, every possible feature set 
should be considered. However, exhaustively 
searching all the feature sets has been known as a 
NP-hard problem (Amaldi & Kann, 1998). Thus, a 
number of feature selection algorithms has been 
developed, based on greedy search methods like 
best-first and hill climbing. See (Kohavi & Johnb, 
1997). These greedy algorithms use three main 
search strategies: forward selection, backward 
deletion, and bi-directional selection. 
 Forward Selection: it starts at a null feature set. In 

each step, the importance of each unselected 
feature is calculated according to a specified 
metric, and then the most important feature is 
added into the feature set. This will go on until 
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there is no important feature to be added. 
 Backward Deletion: it starts at the full feature set, 

and in each step, it removes an unimportant feature 
from the feature set, until there is no more 
unimportant feature in the remaining feature set. 

 Bi-directional Selection: it also starts at a null 
feature set. In each step, it first applies forward 
selection on the unselected features, then it uses 
backward deletion on the selected features. This 
ends when a stable feature set is reached. 

3.2 CFS Evaluation 

The Correlation-based Feature Selection (CFS) 
algorithm introduces a heuristic function for 
evaluating the association between a set of features 
and the target classes. It selects a set of features that 
are highly correlated with the target classes, yet 
uncorrelated with each other. This method was 
introduced in (Hall & Smith, 1999). In this paper, 
we use this algorithm to select a subset of the 
generated features that is expected to have high 
classification performance. 

3.3 GINI Index 

In decision tree induction, the GINI Index is used to 
measure the degree of impurity of the target class in 
the instances grouped by a set of attributes (Gini, 
1912). Similarly in our research, the GINI Index is 
used to measure the strength of the association 
between candidate features and the target class. 
Specifically, we use it during feature generation to 
determine whether or not to replace a pair of 
subsequences (candidate features) that differ just in 
one position with their joined mutated subsequence.  
Details are described in section 4.1.3. The GINI 
Index of a data set is defined as: 1 െ ∑ ሺܿሻଶ௖∈஼݌ , 
where ܥ is the set of all target classes, and ݌ denotes 
probability (estimated as frequency in the data set). 
Given a discrete feature (or attribute) ܺ, the data set 
can be partitioned into disjoint groups by the 
different values of X.  The GINI Index can be used 
to calculate the impurity of the target class in each of 
these groups. Then, the association between ܺ and 
the target class can be regarded as the weighted 
average of the impurity in each of the 
groups:	݅݊݅ܩሺܺሻ ൌ ∑ ሻݔሺ݌ ∗ ሺ1 െ ∑ ሻଶ௖∈஼ݔ|ሺܿ݌ ሻ.௫∈௑  
 
 
 
 
 
 

4 OUR MSG ALGORITHM  

4.1 Feature Generation 

Our Mutated Subsequence Generation (MSG) 
algorithm belongs in the category of feature-based 
sequence classification according to the 
classification methods described in (Xing, Pei, & 
Keogh, June 2010). The MSG algorithm transforms 
the original sequences into contiguous subsequences 
and mutated subsequences, which are used as 
candidate features in the construction of 
classification models. 

The MSG algorithm generates features of 
different lengths according to two user-defined 
parameters: the minimum length ݈୫୧୬ and the 
maximum length	݈୫ୟ୶. The MSG algorithm first 
generates the candidate subsequences of length ݈୫୧୬, 
then length ݈୫୧୬ ൅ 1, and all the way to the 
subsequences of length	݈୫ୟ୶. Then it takes the union 
of all the generated subsequences of different 
lengths. Finally, the MSG algorithm constructs a 
new data set containing a Boolean feature for each 
generated subsequence. Each sequence in the 
original data set is represented as a vector of 0’s and 
1’s in the new data set,  where a feature’s entry in 
this vector is 1 if the feature’s corresponding 
subsequence is present in the sequence, and 0 if not.    

The feature generation process consists of five 
main steps described below. Figure 2 shows an 
example of the transformation of a sequence data set 
into the subsequence features, from Step ܽ to Step ݀. 
a)  The MSG algorithm generates all the 

contiguous subsequences of a specific length from 
each  original sequence (see section 4.1.1); 

b)  It divides the contiguous subsequences into ݊ 
categories according to which class they are most 
frequent in. ݊ is the number of different classes 
(see section 4.1.2); 

c)  For each category, it generates the mutated 
subsequences based on the GINI measure (see 
section 4.1.3); 

d)  It combines together all the features from each 
category (see section 4.1.4).  

e)  It repeats Step a to Step d with a different 
length, until features of all the lengths in the user 
defined range are generated. Then it combines 
these features prior to constructing the new data set 
(see section 4.1.5). 
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Class Sequence

1 accag

1 actag

0 ccctg

0 gctaa

ccag
ctag c[c|t]ag

acca
acta ac[c|t]a

 

Figure 2: This figure illustrates the mutated subsequence generation process from Step a) to Step d). In this example, 
features of length 4, including mutated subsequences and contiguous subsequences, are obtained. Here, the GINI Index of 
each of the mutated subsequences (ac[c|t]a and c[c|t]ag) is better than the GINI Indexes of  its forming contiguous 
subsequences.   

4.1.1 Computation of Contiguous 
Subsequences 

Contiguous Subsequence: given ݇ ൒ 1, a contiguous 
subsequence of length ݇ is a subsequence formed by 
taking ݇ consecutive symbols from the original 
sequence. For example, ݃ܿ is a contiguous 
subsequence of length 2 in the sequence ݃ܿܽݐ, while 
 .is not ݐ݃
 

Mutated Subsequence: a mutated subsequence is 
a subsequence of length ݇ (݇ ൒ 1) which contains ݎ 
mutative positions, where 1 ൑ ݎ ൑ ݇. In each 
mutative position, there are two or more 
substitutions. In this paper, we consider mutated 
subsequences with only one mutative position. For 
example, in the subsequence	݃ሾܿ|ܽሿݐ, the second 
position is a mutative position, with two possible 
substitutions ܿ and ܽ. Thus, a mutated subsequence 
has many representations, in our example ݃ܿݐ and 
 We say that a mutated subsequence is .ݐܽ݃

contained in an original sequence when any of its 
representations is contained in the original sequence. 
For example, the mutated subsequence ݃ሾܿ|ܽሿݐ	 is 
contained in the sequence ݃ܿܽݐ, as well as in the 
sequence ݃ܽܽݐ.  
 

The MSG algorithm starts with the generation of 
contiguous subsequences. Suppose that the original 
sequences have length ݐ, and that the contiguous 
subsequences to be computed have length ݇. First, 
each sequence is traversed and all of its contiguous 
subsequences of ݇symbols are extracted from 
starting locations 1 through (ݐ െ ݇ ൅ 1). Then, 
duplicate subsequences are removed. For example, 
the features in Table 1 are contiguous subsequences 
of length 4 for the sequences of the data set in Figure 
2. The table also includes the number of occurrences 
of each feature in data set sequences of a given 
target class. 
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Table 1: contiguous subsequences of length 4 and their 
frequency in each class of the data set in Figure 2. 

Feature Class 0 Class 1 
acca 0 1 
ccag 0 1 
acta 0 1 
ctag 0 1 
cact 1 0 
actg 1 0 
gcta 1 0 
ctaa 1 0 

4.1.2 Separation 

In this step, the algorithm separates the contiguous 
subsequences into ݊ categories. ݊ is the number of 
different classes in the data set. Each subsequence is 
assigned to a category according to which class it is 
most frequent in. For example, the first four features 
in Table 1 are assigned to Category 1, because they 
are more frequent in Class 1 than in Class 0, and the 
other four to Category 2. If a subsequence is 
maximally frequent equally in more than one class, 
it is randomly assigned to one of those classes. 

4.1.3 Generation of Mutated Subsequences 

Candidate pair: a candidate pair is a pair of 
subsequences which are different from each other in 
only one position. For instance, ′ܽܿܿܽ′ and ′ܽܿܽݐ′ is 
a candidate pair. The candidate pair could also 
contain mutated subsequences, like for instance 
′ܽܿܿܽ′ and ܽܿሾݐ|݃ሿܽ. 

Joinable checking: joinable checking is used to 
determine whether or not to join a candidate pair of 
subsequences together, depending on their 
correlation with the target class. In this paper, we 
use GINI to measure this correlation. For example, 
suppose 1ܾݑݏ is ܽܿܿܽ and 2ܾݑݏ is ܽܿܽݐ in Table 1. 
Their joint sequence 3ܾݑݏ is ܽܿሾܿ|ݐሿܽ. By matching 
them to the original sequences of the data set in 
Figure 2, the data is split into two groups by each 
one of these sequences: one group consists of the 
original sequences which contain the subsequence, 
marked as ݃݌ݑ݋ݎଵ

௦௨௕௜; the other group consists of the 
rest of sequences, marked as ݃݌ݑ݋ݎଶ

௦௨௕௜. Taking 
 as an example, there is only one sequence in 1ܾݑݏ

ଵ݌ݑ݋ݎ݃
௦௨௕ଵ, and it is in class 1; there are three 

sequences in ݃݌ݑ݋ݎଶ
௦௨௕ଵ, two of which are in class 0, 

and the other one is in class 1. Thus, by using the 
formula in section 3.3, we can calculate the GINI 
Index for 1ܾݑݏ as followings: 

ሺݕݐ݅ݎݑ݌݉݅ ଵ݃
௦௨௕ଵሻ ൌ 1 െ ൬

0
1
൰
ଶ

െ ൬
1
1
൰
ଶ

ൌ 0 

ሺ݃ଶݕݐ݅ݎݑ݌݉݅
௦௨௕ଵሻ ൌ 1 െ ൬

1
3
൰
ଶ

െ ൬
2
3
൰
ଶ

ൌ 0.444 

1ሻܾݑݏሺܫܰܫܩ ൌ ሺ݌ ଵ݃
௦௨௕ଵሻ ∗ ሺݕݐ݅ݎݑ݌݉݅ ଵ݃

௦௨௕ଵሻ 
																										൅݌ሺ݃ଶ

௦௨௕ଵሻ ∗ ሺ݃ଶݕݐ݅ݎݑ݌݉݅
௦௨௕ଵሻ 

																								ൌ 0 ∗
1
4
൅ 0.44 ∗

3
4
ൌ 0.333 

Similarly, we get the values	ܫܰܫܩሺ2ܾݑݏሻ ൌ 0.333,
3ሻܾݑݏሺܫܰܫܩ ൌ 0. Since 3ܾݑݏ has the best measure 
value, implying that it has the strongest association 
with the target class, then the candidate pair 1ܾݑݏ 
and 2ܾݑݏ is joinable. 

In this step, MSG performs joinable checking on 
every candidate pair in each category. Once a 
candidate pair is determined to be joinable, then the 
two subsequences are joined together to create a new 
subsequence, called ܾ݅ݑݏ, and they are also marked. 
Then the joinable checking is performed on ܾ݅ݑݏ 
with every other subsequence in the category. If 
there are other subsequences that are joinable with 
 ܾ݅ݑݏ then they are also joined together with ,ܾ݅ݑݏ
and marked. Finally, ܾ݅ݑݏ is added into the mutated 
subsequence set. After all candidate pairs are 
checked, the algorithm deletes the marked 
subsequences and the duplicate mutated 
subsequences. The pseudo code of mutated 
subsequences generation is shown in Figure 3. 

4.1.4 Combination of Categories 

In the previous step, some contiguous subsequences 
might remain intact. That is, they are not joined with 
other subsequences. Thus, in each category, there 
might be two types of features: mutated 
subsequences and unchanged contiguous 
subsequences. In this step, the algorithm combines 
the feature sets of all categories together into one 
feature set. In this set, all features have length	ݐ, as 
defined in Step 4.1.1. 

Table 2: Transformed data set obtained by applying MSG to the data set in Figure 2, with subsequence length 3 and 4. 

original 
sequence  taa gct ctg cac act cca acc [t|c]ag ctaa gcta actg cact c[t|c]ag ac[t|c]a Class 

accag 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 

actag 2 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 

ccctg 3 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 

gctaa 4 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 
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Figure 3: The pseudo code for mutated subsequences 
generation. ⊕ is the join operator. For example,      
ܽܿܿܽ ⊕ ܽݐܿܽ ൌ ܽܿሾܿ|ݐሿܽ and.ܽܿܿܽ ⊕ ܽܿሾݐ|݃ሿܽ ൌ
ܽܿሾܿ|ݐ|݃ሿܽ. 

4.1.5 Combination of Features of Different 
Length 

After all the features of the lengths in the user-
defined range are generated in Step 4.1.1 through 
Step 4.1.4, the MSG combines these features of 
different lengths together and constructs a new data 
set with them by matching them to the original 
sequence data. In this new data set, each data 
instance corresponds to a sequence in the original 
data set. The instance’s value for each feature is a 
Boolean value describing whether or not the feature 
is a subsequence of the instance. Table 2 shows the 
transformed data from the data set in FigureFigure  2 
in the range of length 3-4.  

4.2 Feature Selection 

In this paper, we use bi-directional feature selection 
based on the CFS evaluation, as described in section 
3, to select the best feature set from the transformed 
data set. This feature set is then used to build 
classification models. 

5 EXPERIMENTAL 
EVALUATION 

The performance of our MSG algorithm is compared 
with that of other feature generation algorithms 
which are commonly used for sequence 
classification. Such algorithms are: 
 Position-based (Dong & Pei, 2009): each position 

is regarded as a feature, the value of which is the 
alphabet symbol in that position. 

 ࢑-grams (Chuzhanova, Jones, & Margetts, 1998): 
a ݇-gram is a sequence of length ݇ over the 
alphabet of the data set. The value of a ݇-gram 
induced feature for a sequence S is whether the ݇-
gram occurs in S or not. 

 ࢑-gapped pair (Park & Kanehisa, 2003): in a ݇-
gapped pair	ሺݕݔ, ݇ሻ, ݕݔ is an ordered pair of letters 
over the alphabet of the data set, ݇ is a non-
negative integer. The value of a ݇-gapped pair 
induced feature for a sequence ܵ is 1 if there is a 
position ݅ in ܵ, where ݏ௜ ൌ ௜ା௞ାଵݏ and ݔ ൌ  .ݕ
Otherwise, the value is 0. 

To compare the performance of these algorithms, 
a number of experiments are carried out on three 
data sets, the first two are collected from UCI 
Machine Learning Repository (Bache & Lichman, 
2013), and the third one  was collected in our prior 
work (Wan, Barrett, Ruiz, & Ryder, 2013) from 
WormBase (WormBase, 2012):  
 E.coli promoter gene sequences data set: this 

data set consists of 53 DNA promoter sequences 
and 53 DNA non-promoter sequences. Each 
sequence has length 57. Its alphabet is {a, c, g, t}. 

 Primate splice-junction gene sequences data set: 
this data set contains 3190 DNA sequences of 
length 60. Also, its alphabet is {a, c, g, t}. Each 
sequence is in one of three classes: exon/intron 
boundaries (EI), intron/exon boundaries (IE), and 
non-splice (N). 745 data instances are classified as 
EI; 751 instances as IE; and 1694 instances as N.  

 C.elegans gene expression data set: this data set 
contains 615 gene promoter sequences of length 
1000. We use here expression in EXC cells as the 
classification target. 311 of the genes in this data 
set are expressed in EXC cells, and the other 304 
genes are not. 

The performance comparison in the following 
sections focuses on the prediction level of models 
built on the generated features, and on differences 
among the models. We implemented the four feature 
generation methods, MSG, k-grams, position-based, 
and k-gapped pairs, in our own Java code. To 
measure the prediction level, we utilize The WEKA 

Procedure: Mutated_Gen(C): generate 
the mutated subsequences from 
subsequence set C 

Initialization: S <- {} 
  for each pair of subsequences, 
sub1 and sub2, in C do 

if sub1 and sub2 is joinable 
then 
 sub3 <- sub1 ⊕ sub2 
 mark sub1; 
 mark sub2; 
 for each sequence subi in C do 
  if sub3 and subi is joinable  

then 
  sub3 <- sub3 ⊕ subi 
  mark subi 

 end if 
end for 
S <- S ∪ {sub3} 

 end if 
end for 
for each sequence subj in C do 
     if subj is marked then 
  C <- C – subj 
     end if 
end for 
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System of version 3.7.7 (Hall, et al., 2009) to build 
three types of prediction models: J48 Decision 
Trees, Support Vector Machines (SVMs), and 
Logistic Regression (LR). We use n-fold cross 
validation to test the models. Then we regard the 
models’ accuracy as their prediction level. To 
measure the difference between two models, we 
perform a paired t-test on their n-fold test results, 
and use p-value from the paired t-test to determine 
whether or not the difference in model performance 
is statistically significant.  

 

Figure 4: Patterns taken from (Towell, Shavlik, & 
Noordewier, 1990). Promoter sequences share these 
segments at the given locations. In these segments, “x” 
represents the occurrence of any nucleotide. The location 
is specified as an offset from the Start of Transcription 
(SoT). For example, “-37” refers to the location 37 base 
pair positions upstream from SoT. 

5.1 Results on the E.coli Promoter Gene 
Sequences Data Set 

5.1.1 Patterns from the Literature 

As found in the biological literature (Hawley & 
McClure, 1983) (Harley & Reynolds, 1987), and 
summarized in (Towell, Shavlik, & Noordewier, 
1990), promoter sequences share some common 
DNA segments. Figure 4 presents some of these 
segments. As can be seen in the figure, these 
segments can contain mutated positions. Also the 
segments are annotated with specific locations 
where the segments occur in the original sequences. 
This is an important characteristic distinguishing 
these segments from the subsequences generated by 
our algorithm.  The data set constructed by our MSG 
algorithm captures only presence of the 
subsequences (not their positions) in the original 
sequences. 

However, after examining the occurrences of the 
aforementioned segments in the Promoter Gene 
Sequences data set, we found that for the most part 
each segment occurs at most once in each sequence. 
Hence computational models created over this data 
set that deal only with presence of these patterns are 

expected to achieve a prediction accuracy similar to 
that of computational models that take location into 
consideration.  Therefore, since the precise location 
of the patterns seems to be irrelevant, we expect our 
MSG algorithm to perform well on this data set. 

5.1.2 Experimental Results 

Each of the four feature generation methods under 
consideration (MSG, k-grams, position-based, and k-
gapped pair) was applied to the Promoter Gene 
Sequence data set separately, yielding four different 
data sets. Parameter values used for the feature 
generation methods were the following: for MSG, 
the range for the length of transformed subsequences 
was 1-5; for ݇-grams, ݇ ൑ 5; and for ݇-gapped, 
݇ ൑ 10. Then, Correlation-based Feature Selection 
(CFS), described in section 3.2, was applied to each 
of these data sets to further reduce the number of 
features. The resulting number of features in each of 
the data sets was: 61 for the MSG transformed data 
set, 43 for ݇-grams, 7 for position-based, and 29 for 
݇-gapped pair. 5-fold cross validation was used to 
train and test the models constructed on each of 
these data sets. Three different model construction 
techniques were used: J4.8 decision trees, Logistic 
Regression (LR), and SVMs. Figure 5 shows the 
prediction accuracy of the obtained models. Table 3 
depicts the statistical significance of the 
performance difference between the models 
constructed over the MSG-transformed data set and 
the models constructed over data sets constructed by 
other feature generation methods.  

From Figure 5, we can observe that the 
prediction levels of the models constructed over 
features generated by MSG are superior to those of 
models constructed on other features. The t-test 
results in Table 3 indicate that this superiority of 
MSG is statistically significant at the p < 0.05 level 
in the cases highlighted in the table. As expected, the 
MSG algorithm generates a highly predictive 
collection of features for this data set.  This is in part 
due to the fact that for this data set, the presence 
alone, and not location, of certain subsequences (or 
segments)  discriminates well between promoter and 
non-promoter sequences. 
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Figure 5: Accuracy of models built on the features from four different feature generation methods (MSG, k-gram, Position-
based, and k-gapped pair), using three classification algorithms on the Promoter Gene Sequences data. 

Table 3: p-values obtained from t-tests comparing the 
prediction accuracies of models constructed over MSG-
generated features and models constructed over data sets 
generated by the other 3 feature generation methods. T-
tests were performed using 5-fold cross-validation over 
the Promoter Gene Sequence data set. Highlighted in the 
table are the cases in which the superiority of MSG is 
statistically significant at the p < 0.05 level. 

Baseline: MSG ݇-grams Position-based ݇-gapped pair

p-value: J48 0.08 0.02 0.03 

p-value: LR 0.01 0.06 0.01 

p-value: SVM 0.08 0.08 0.01 

Table 4: Sample features constructed by the MSG 
algorithm over the Promoter Gene Sequences data set, 
together with their correlation with the class feature. 

MSG features Correlation with target
at[t|a] -0.37 

ccc[a|g] -0.41 

t[t|a]ta -0.61 

[a|c]aaa -0.58 

aaa[g|a|t|c]t -0.50 

ta[a|g|c|t]aa -0.58 

ct[g|t|c|a]tt -0.41 

at[g|a|c]at -0.51 

ata[t|c|a|g]t -0.53 

tta[t|a|c]a -0.44 

aatt[c|a|t|g] -0.51 

a[a|g|c|t]aat -0.56 

aaa[t|c|a|g]c -0.44 

c[a|c|g|t]ggt 0.42 

tgag[g|a] 0.43 

5.2 Results on the Primate 
Splice-Junction Gene Sequences 
Data Set 

5.2.1 Patterns from the Literature 

Some patterns in this data set have been identified in 
the literature (Noordewier, Towell, & Shavlik, 
1991). Briefly, these patterns state that a sequence is 
in EI or IE classes if the triple nucleotides, known as 
stop codons, are absent in certain positions of the 
sequence. Such triplets are “TAA”, “TAG”, and 
“TGA”. Conversely, if a sequence contains any stop 
codons in certain specified positions, then the 
sequence is not an EI (or IE) sequence. To examine 
the effect of position in the patterns, we generated 
the following rules, and calculated their confidence 
(that is, prediction accuracy) on this data set. 
 

 Stop codons are present → not EI (74%) 
Stop codons are present at specified positions → not 
EI (95%) 

 Stop codons are present → not IE (77%) 
Stop codons are present at specified positions → not 
IE (91%) 
 

As can be seen, the position information is very 
important in these patterns. Hence, we might expect 
that the MSG algorithm will not perform well on this 
data set, because its generated features do not 
contain information about the location where 
subsequences appear in the original sequences. 
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Figure 6: Accuracy of models built on the features from four different feature generation methods (MSG, k-gram,    
Position-based, and k-gapped pair), using three classification algorithms on the Splice-junction Gene Sequence data. 

Table 5: p-Values obtained from t-tests comparing the 
prediction accuracies of models constructed over MSG-
generated features and models constructed over data sets 
generated by the other 3 feature generation methods. T-
tests were performed using 10-fold cross-validation over 
the Splice-junction Gene Sequences data set. Highlighted 
in the table are the cases in which the superiority of MSG 
is statistically significant at the p < 0.05 level. 

Baseline: MSG ݇-grams Position-based ݇-gapped pair 

p-value: J48 0.23 6.5E-18 2.12E-13 

p-value: LR 0.72 6.78E-16 7.3E-13 

p-value: SVM 0.15 2.3E-17 3E-14 

Table 6: Sample features constructed by the MSG 
algorithm over the Splice-junction Gene Sequences data 
set, together with their correlation with the class feature. 

MSG features Correlation with target

GT[A|G]A -0.35 

GGT[A|G] -0.38 

[G|T|A]GGTA -0.32 

GTA[G|A]G -0.34 

GTG[C|A]G -0.35 

GT[A|G]AG -0.50 

GGT[A|G]A -0.44 

AGGT[A|G] -0.35 

[T|C]AG -0.02 

T[C|T]TC 0.01 

TC[T|C]T -0.03 

5.2.2 Experimental Results 

Once again, each of the four feature generation 
methods under consideration (MSG, k-grams, 

position-based, and k-gapped pair) was applied to 
the Splice-junction Gene Sequences data set 
separately, yielding four different data sets. As in 
section 5.1.2, the parameters used for the feature 
generation algorithms were: for MSG, the range for 
the length of transformed subsequences was 1-5; for 
݇-grams, ݇ ൑ 5; and for ݇-gapped, ݇ ൑ 10. Then, 
Correlation-based Feature Selection (CFS), 
described in section 3.2, was applied to each of these 
resulting data sets. The size of the feature set 
generated by the MSG algorithm was 28, by ݇-
grams was 29, by position-based was 22, and by ݇-
gapped pair was 49.  

10-fold cross validation was used to construct 
and test models over these four data sets. Average 
accuracies of the resulting models are shown in 
Figure 6, and the t-test results in Table 5. On this 
data set, the position-based algorithm performed the 
best. This is expected given that location 
information is relevant for the classification of this 
data set’s sequences, as discussed above. The MSG 
generated features yielded prediction performance at 
the same level of that of k-grams; and statistically 
significantly higher performance (at the p < 0.05 
significance level) than that of k-gapped pair.  

5.3 Results on the C.elegans Gene 
Expression Data Set 

5.3.1 Patters from the Literature 

Motifs are short subsequences in the promoter 
sequences that have the ability to bind transcription 
factors, and thus to affect gene expression. For 
example, a transcription factor CEH-6 is necessary 
for the gene aqp-8 to be expressed in the EXC cell, 
by binding to a specific subsequence (ATTTGCAT) 
in the gene promoter region (Mah, et al., 2010). The 
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binding sites for a transcription factor are not 
completely identical, as some variation is allowed. 
These potential binding sites are represented as a 
position weight matrix (PWM), see Table 7. A motif 
is a reasonable matching subsequence according to a 
specific PWM. 

It has been shown that motifs at different 
locations in the promoter have different importance 
in controlling transcription (Reece-Hoyes, et al., 
2007), and that the order of multiple motifs and the 
distance between motifs can also affect gene 
expression (Wan, Barrett, Ruiz, & Ryder, 2013).  

5.3.2 Experimental Results 

Once again, each of the four feature generation 
methods under consideration (MSG, k-grams, 
position-based, and k-gapped pair) was applied to 
the C.elegans Gene Expression data set separately, 
yielding four different feature vector data sets. The 
parameters used for the feature generation 
algorithms were: for MSG, the range for the length 
of transformed subsequences was 1-6; for ݇-grams, 
݇ ൑ 6; and for ݇-gapped, ݇ ൑ 10. After CFS, the 
size of the feature set generated by the MSG 
algorithm was 97, by ݇-grams was 63, by position-
based was 122, and by ݇-gapped pair was 4. The 
average accuracies of the resulting models with 10-
fold cross validation are shown in Figure 7.  

On this data set, the MSG algorithm produced 
the best results, and the p-values in Table 6 indicate 
that these results are significantly better than the 
results of position-based and k-gapped pair (at the p 
< 0.05 significance level). MSG performed slightly 
better than k-grams, but not significantly better. 

Table 7: A PWM for PHA-4, found in (Ao, Gaudet, Kent, 
Muttumu, & Mango, 2004). It records the likelihood of 
each nucleotide at each position of the PHA-4 motifs. 

A C G T 

1 0.097 0.144 0.52 0.238 

2 0.003 0.755 0.003 0.238 

3 0.003 0.097 0.003 0.896 

4 0.003 0.896 0.097 0.003 

5 0.003 0.99 0.003 0.003 

6 0.849 0.003 0.144 0.003 

7 0.99 0.003 0.003 0.003 

8 0.614 0.05 0.191 0.144 

Table 8: p-Values obtained from t-tests comparing the 
prediction accuracies of models constructed over MSG-
generated features and models constructed over data sets 
generated by the other 3 feature generation methods. T-
tests were performed using 10-fold cross-validation over 
the Gene Expression data set. Highlighted in the table are 
the cases in which the superiority of MSG is statistically 
significant at the p < 0.05 level. 

Baseline: MSG ݇-grams Position-based ݇-gapped pair 

p-value: J48 0.18 0.41 0.01 

p-value: LR 0.18 6.89E-6 1.45E-5 

p-value: SVM 0.21 8.39E-5 4.59E-5 

5.4 Discussion 

Computational Complexity Comparison of the 
Methods. Suppose that a data set consists of ݊ 
sequences of length ݈, over an alphabet ܤ, where 
|ܤ| ൌ ݀ (for the three data sets considered in this 
paper, ݀ ൌ 4). The position-based method has the 
lowest computational complexity out of the four 
feature generation methods employed in this 
paper. It takes ܱሺ݈ሻ time to extract each location as a 

 
Figure 7: Accuracy of models built on the features from four different feature generation methods (MSG, k-gram, Position-
based, and k-gapped pair), using three classification algorithms on the Gene Expression data. 
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feature for each sequence, so its total complexity is 
ܱሺ݈݊ሻ. K-gapped pair method needs to compute 
݈ െ ݇ െ 1 pairs of symbols for each sequence for a 
given gap size ݇. In our experiments, we considered 
pairs with gap ൑ ݇, and since ݇ is much less than ݈, 
the time complexity for each sequence is ܱሺ݈݇ሻ. Its 
total complexity is ܱሺ݈݊݇ሻ. Similarly, the ݇-gram 
method takes ܱሺ݈݊݇ሻ time complexity to generate 
features of length ൑ ݇. 

The MSG method has the highest computational 
complexity among the four methods. Suppose that ݉ 
subsequences are given as input to the mutated 
subsequences generation process (pseudo code in 
Figure 3). There are two outer loops and one inner 
loop in this process. The first outer loop goes over 
all the ቀ݉2ቁ pairs of subsequences, and its inner loop 
takes at most ݉ iterations. The second outer loop 
traverses ݉ subsequences to delete the marked ones. 
So the time complexity of this method is ܱ ቀ݉ ∗

ቀ
݉
2ቁ ൅݉ቁ ൌ ܱሺ݉ଷሻ.	For a given length ݇, we can 

extract at most ݀݇ subsequences from the sequence 
data. Thus, its computational complexity is ܱሺ݀ଷ௞ሻ 
in the worst case.  

 

Experimental Comparison of the Methods. The 
experimental results on the three data sets above 
provide evidence of the usefulness of the proposed 
MSG feature generation algorithm. As we discussed 
above, patterns in the E.coli promoter gene 
sequences data set are position-independent, while 
patterns in the primate splice-junction gene 
sequences data set are position-dependent. Given 
that the MSG-generated features do not take location 
into consideration, MSG was expected to perform 
very well on the first data set but not on the second 
data set. Our experimental results confirm this 
hypothesis. In summary, MSG-generated features 
are most predictive in domains in which location is 
irrelevant or plays a minor role. Nevertheless, even 
in domains in which location is important, our MSG 
algorithm performed at the same level, or higher, 
than other feature generation algorithms from the 
literature. 

In the C.elegans gene expression data set, 
patterns are much more complex than in the other 
two data sets considered. Due to the simplicity of the 
transformed data set – binary values representing the 
presence/absence of features occurring in sequences, 
the MSG algorithm does not produce high 
classification accuracies on this data set. However, 
when compared to the other algorithms under 
consideration, MSG generates features that yield 
more accurate prediction models. One aspect that 

contributes to MSG’s comparably better 
performance on this data set is its ability to represent 
mutations in the data sequences.  

6 CONCLUSIONS AND FUTURE 
WORK 

In this work, we present a novel feature generation 
method, called Mutated Subsequence Generation 
(MSG), for feature based sequence classification. 
This method considers subsequences, possibly 
containing mutated positions, as potential features 
for the original sequences. It uses a metric based on 
the GINI Index to select the best features. We 
compare this method with other feature generation 
methods on three genetic data sets, focusing on the 
accuracy of the classification models built on the 
features generated by these methods. The 
experimental results show that MSG outperforms 
other feature generation methods in domains where 
presence, not specific location, of a pattern within a 
sequence is relevant; and can perform at the same 
level or higher than other non-position-based feature 
generation methods in domains in which specific 
location, as well as presence, is important. 
Additionally, our MSG method is capable of 
identifying one-position mutations in the 
subsequence generated features that are highly 
associated with the classification target. 

Further experimentation on much larger data sets 
is needed to confirm the aforementioned findings. 
This will be addressed in future work. Other future 
work includes a refinement of our MSG algorithm to 
reduce its time complexity. We also plan to extend 
our MSG method to allow for mutations in more 
than one subsequence position. Additionally, we 
plan to investigate approaches to and the effects of 
incorporating location information in the MSG 
generated features.  
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