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Abstract: Lately, derived from the Big Data problem, researchers in Machine Learning became also interested not only
in accuracy, but also in scalability. Although scalability of learning methods is a trending issue, scalability of
feature selection methods has not received the same amount of attention. In this research, an attempt to study
scalability of both Feature Selection and Machine Learning on microarray datasets will be done. For this sake,
the minimum redundancy maximum relevance (mRMR) filter method has been chosen, since it claims to be
very adequate for this type of datasets. Three synthetic databases which reflect the problematics of microarray
will be evaluated with new measures, based not only in an accurate selection but also in execution time. The
results obtained are presented and discussed.

1 INTRODUCTION

The advent of DNA microarray technology has
brought the possibility of simultaneously measuring
the expressions of thousands of genes. However, due
to the high cost of experiments, sample sizes of gene
expression measurements remain in hundreds, a very
small number compared to tens of thousands of genes
involved (Mundra and Rajapakse, 2010). Theoreti-
cally, having more genes should give more discrimi-
nating power. But actually, this fact can cause several
problems, such as increasing computational complex-
ity and cost, too many redundant or irrelevant genes
and estimation degradation in the classification er-
ror. Having much higher number of attributes than in-
stances causes difficulties for most machine learning
methods, since they cannot generalize adequately and
therefore, they obtain very poor test performances. To
deal with this problem, and according to Occams ra-
zor (Blumer et al., 1987), the need to reduce dimen-
sionality was soon recognized and several works have
used methods of feature (gene) selection (Saeys et al.,
2007).

Feature selection consists of detecting the rele-
vant features and discarding the irrelevant ones to re-
duce the input dimensionality, and most of the time,
to achieve an improvement in performance (Guyon,
2006). Moreover, several studies show that most
genes measured in a DNA microarray experiment are
not relevant for an accurate distinction among differ-
ent classes of the problem (Golub et al., 1999). To
avoid this curse of dimensionality (Jain and Zongker,

1997), feature selection plays a crucial role in DNA
microarray analysis. Although the efficiency of fea-
ture selection in this domain (and in other areas with
high dimensional datasets), is out of doubt, it is of-
ten forgotten in discussions of scaling, which is an
important issue when dealing with high dimensional
datasets, as it is the case in this research.

Among the different feature selection methods
(Guyon, 2006), filters only rely on general character-
istics of the data, and not on the learning machines;
therefore, they are faster, and more suitable for large
data sets. A common practice in this approach is to
simply select the top-ranked genes where the ranks
are determined by some dependence criteria, and the
number of genes to retain is usually set by human
intuition with trial-and-error. A deficiency of this
ranking approach is that the selected features could
be dependent among themselves. Therefore, a mini-
mum Redundancy Maximum Relevance (mRMR) ap-
proach is preferred in practice (Peng et al., 2005), that
also minimizes the dependence among selected fea-
tures. This filter method has been widely used to deal
with microarray data (Mundra and Rajapakse, 2010;
Zhang et al., 2008; El Akadi et al., 2011). However,
it is a computationally expensive method and its scal-
ability should be evaluated. Therefore, this prelim-
inary research will be focused on the scalability of
the mRMR method over an artificial controlled ex-
perimental scenario, paving the way to its application
to real microarray datasets.

The rest of the paper is organized as follows: sec-
tion 2 describes the mRMR feature selection method,
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section 3 introduces the experimental settings, sec-
tion 4 presents the experimental results and, finally,
section 5 reveals the conclusions and future lines of
research.

2 THE FILTER: mRMR

As mentioned in the Introduction, filters are more
suitable for large datasets, as it is the case in this re-
search. Within filters, one can distinguish between
univariate and multivariate methods (Bolón-Canedo
et al., 2013). Univariate methods (such as filters
which just evaluate the information gain between a
feature and the class label) are fast and scalable, but
ignore feature dependencies so the features could be
correlated among themselves. On the other hand,
multivariate filters (such as mRMR) model feature de-
pendencies and detect redundancy, but at the cost of
being slower and less scalable than univariate tech-
niques.

To rank the importance of the features of the
datasets included in this research, the mRMR method,
that was first developed by Peng, Long and Ding
(Peng et al., 2005) was used for the analysis of mi-
croarray data. The mRMR method can rank features
based on their relevance to the target, and at the same
time, the redundancy of features is also considered.
Features that have the best trade-off between max-
imum relevance to target and minimum redundancy
are considered as “good” features. The feature selec-
tion purpose is to findmaximum dependency, a fea-
ture setSwith m features{xi}, which have the largest
dependency on the target classc, described by the au-
thors (Peng et al., 2005) as:

max D(S,c), D = I({xi , i = 1, ...,m};c)

Implementing the maximum dependency criterion
is not an easy-to-solve task because of the charac-
teristics of high-dimensional spaces. Specifically,
the number of samples is often insufficient and,
moreover, estimating the multivariate density usually
implies expensive computations. An alternative is
to determine themaximum relevancecriterion. The
maximum relevance consists of searching features
which satisfy the following equation:

maxD(S,c),D =
1
|S| ∑

xi∈S

I(xi ;c) (1)

Selecting the features according to the maximum
relevance criterion can bring a large amount of
redundancy. Therefore, the following criterion of

minimum redundancy must be added, as suggested
by (Peng et al., 2005) :

min R(S), R= 1
|S|2 ∑xi ,xj∈SI(xi ,x j)

Combining the above two criteria and trying to
optimize D and R at the same time, the criterion
called minimum redundancy maximum relevance
(mRMR) arises.

maxΦ(D,R), Φ = D−R

In practice, the next incremental algorithm can be
employed:

maxxj∈X−Sm−1[I(x j ;c)− 1
m−1 ∑xi∈Sm−1

I(x j ;xi)]

As mentioned above, mRMR is a multivariate
method so it is expected to be slow and its scalabil-
ity might be compromised. For these reason it is very
interesting to perform a scalability study, which will
be presented in next sections.

3 EXPERIMENTAL SECTION

3.1 Materials

Three synthetic datasets were chosen to evaluate the
scalability of mRMR. Several authors choose to use
artificial data since the desired output is known, there-
fore a feature selection algorithm can be evaluated
with independence of the classifier used. Although
the final goal of a feature selection method is to test its
effectiveness over a real dataset, the first step should
be on synthetic data. The reason for this is twofold
(Belanche and González, 2011):

1. Controlled experiments can be developed by sys-
tematically varying chosen experimental condi-
tions, like adding more irrelevant features. This
fact facilitates to draw more useful conclusions
and to test the strengths and weaknesses of the ex-
isting algorithms.

2. The main advantage of artificial scenarios is the
knowledge of the set of optimal features that must
be selected; thus, the degree of closeness to any
of these solutions can be assessed in a confident
way.

The three synthetic datasets selected (SD1, SD2
and SD3) (Zhu et al., 2010) reflect the problematic of
microarray data. They are challenging problems be-
cause of their high number of features (around 4,000)
and the small number of samples (75), besides of a
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high number of irrelevant attributes. In this context,
Zhu et al. (Zhu et al., 2010) introduced two new defi-
nitions of multiclass relevancy features: full class rel-
evant (FCR) and partial class relevant (PCR) features.
On the one hand, FCR features are useful for distin-
guishing any type of cancer. On the other hand, PCR
features only help to identify subsets of cancer types.

SD1, SD2 and SD3 are three-class synthetic
datasets with 75 samples (each class containing 25
samples) and 4000 irrelevant features, generated fol-
lowing the directions given in (Dı́az-Uriarte and
De Andres, 2006). The number of relevant features
is 20, 40 and 60, respectively, which are divided in
groups of 10. Within each group of 10 features, only
one of them must be selected, since they are redun-
dant with each other.

To sum up, the characteristics of these three
datasets are depicted in Table 1, where one can see
the number of features, the number of features and
samples and the relevant attributes which should be
selected by the feature selection method, as well as
the number of full class relevant (FCR) and partial
class relevant (PCR) features. Notice thatGi means
that the feature selection method must select only one
feature within thei-th group of features.

Table 1: Characteristics of SD1, SD2 and SD3 datasets.

Dataset
No. of No. of Relevant No. of No. of

features samples features FCR PCR

SD1 4020 75 G1,G2 20 –

SD2 4040 75 G1−G4 30 10

SD3 4060 75 G1−G6 – 60

It has to be noted that the easiest dataset in order to
detect relevant features is SD1, since it contains only
FCR features and the hardest one is SD3, due to the
fact that it contains only PCR genes, which are more
difficult to detect.

For assessing the scalability of the mRMR
method, different configurations of these datasets
were used. In particular, the number of features
ranges from 26 to 212 whilst the number of samples
ranges from 32 to 35 (all pairwise combinations). No-
tice that the number of relevant features is fixed (2 for
SD1, 4 for SD2 and 6 for SD3) and it is the number
of irrelevant features the one that varies. When the
number of samples increases, the new instances are
randomly generated.

3.2 Evaluation Metrics

At this point, it is necessary to remind that mRMR
does not return a subset of selected features, but a
ranking of the features where the most relevant one

should be ranked first. The goal of this research
is to assess the scalability of mRMR feature selec-
tion method. For this purpose, some evaluation mea-
sures need to be defined, motivated by the measures
proposed in (Zhang et al., 2009). Oneerror, cover-
age, rankingloss, averageprecision and training time
were considered. In all measures,f eat sel is the
ranking of features returned by the mRMR method,
f eat rel is the subset of relevant features andf eat irr
stands for the subset of irrelevant features. Notice that
all measures mentioned below except training time
are bounded between 0 and 1.

• Theoneerror measure evaluates if the top-ranked
(the first selected in the ranking) feature is not in
the set of relevant features.

oneerror =

{

1; f eat sel(1) 6∈ ( f eat rel)

0;otherwise

• The coverage evaluates how many steps are
needed, on average, to move down the ranking in
order to cover all the relevant features. At worst,
last ranking feature would be relevant so cover-
age would be 1 (since this measure is bounded
between 0 and 1).

coverage= max( f eat sel( f eat rel(i)))
# f eat sel

• The ranking lossevaluates the number of irrele-
vant features that are better ranked than the rel-
evant ones. The fewer irrelevant features are on
the top of the ranking, the best classified are the
relevant ones.

ranking loss= (coverage∗ # f eat sel) − # f eat rel
# f eat rel ∗ # f eat irr

• Theaverageprecision: evaluates the mean of av-
erage fraction of relevant features ranked above a
particular feature of the ranking.

averageprecision=
1

# f eat rel ∗
∑ j ; f eat sel( j) ∈ f eat rel ∩ j<i

i; f eat rel(i)

• Thetraining timeis reported in seconds.

For example, suppose we have 4 relevant fea-
tures, x1, . . . ,x4, 4 irrelevant features,x5, . . . ,x8
and the following ranking returned by mRMR:
x5,x3,x8,x1,x4,x2,x7,x6. In this case, theoneerror
is 1, because the first feature in the ranking is not a
relevant one. For calculating thecoverage, it is nec-
essary to move down 6 steps in the ranking to cover
all the relevant features. Regarding theranking loss,
there are 2 irrelevant features better ranked than the
relevant ones. As for theaverageprecision, the num-
ber of relevant features ranked above each feature of
the ranking are the following: 0,0,1,1,2,3,4,4.
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Motivated by the methodology proposed in (Son-
nenburg et al., 2008), we define 5 figures from
which 13 scalar measures are extracted. Note that
the evaluation of mRMR algorithm relies on the bi-
dimensional features-samples space (X-Y -axes). So,
these evaluation measures shape a surface (Z-axis) in
a three-dimensional space.

• Oneerror surface:Feature sizevs Sample sizevs
Oneerror. It is obtained by displaying the evolu-
tion of the Oneerror measure across the feature-
sample space. The following scalar measures are
computed:

1. OeMin: the minimum amount of data (features
x samples) for which the Oneerror measure
achieves its minimum value.

2. VuOe: volume under the Oneerror surface.

• Coverage surface:Feature sizevs Sample sizevs
Coverage. It is obtained by displaying the evo-
lution of the Coverage across the feature-sample
space.

3. Coverage: minimum coverage.
4. Co5%: the minimum amount of data (features

x samples) for which the coverage drops below
a threshold (5% of coverage).

5. VuCo: volume under the coverage surface.

• Rankingloss surface:Feature sizevsSample size
vs Rankingloss. It is obtained by displaying the
evolution of the rankingloss across the feature-
sample space.

6. Rankingloss: minimum rankingloss.
7. Rl5%: the minimum amount of data (features x

samples) for which the rankingloss drops be-
low a threshold (5% of rankingloss).

8. VuRl: volume under the rankingloss surface.

• Averageprecision surface:Feature sizevs Sam-
ple sizevs Averageprecision. It is obtained by
displaying the evolution of the averageprecision
across the feature-sample space.

9. Averageprecision: maximum aver-
ageprecision.

10. Ap95%: the minimum amount of data
(features x samples) for which the aver-
ageprecision rises above a threshold (95% of
averageprecision).

11. VuAp: volume under the Averageprecision sur-
face.

• Training time surface:Feature sizevs Sample
sizevs Traning time. It is obtained by display-
ing the evolution of the averageprecision across
the feature-sample space.

12. Training time: training time in seconds for the
maximum amount of data tested.

13. VuTt: volume under the training time surface.

Those measures related to Oneerror, Coverage,
Rankingloss and Training time (i.e. VuOe, Cover-
age, VuCo, Rankingloss, VuRl, Training time and
VuTt) are desirable to be minimized, whilst those re-
lated to Averageprecison and amount of data (i.e.
Averageprecison, VuAp, Co5%, Rl5% and Ap95%)
are desirable to be maximized.

4 RESULTS

This section shows the scalability results for mRMR
according to the measures explained above. Figure 1
plots these measures of scalability after applying a 10-
fold cross validation. Remind that all the metrics but
Averageprecision are desirable to be minimized. In
general terms, Oneerror, Coverage and Rankingloss
are more influenced by sample size whilst the training
time is more affected by feature size. In the case of
Averageprecision, which should be maximized, this
measure seems to be affected by feature size, since
having more features would make harder the task of
ranking the relevant features on top. Notice that in
the figures related with Coverage and Rankingloss
the X-Y axes are shifted for visualization purposes.

As expected, the best results on the measures that
assess the adequacy for selecting the most relevant
features in the highest positions of the ranking (Cov-
erage, Rankingloss and Averageprecision) are ob-
tained on SD1 (the easiest dataset) whilst the perfor-
mance deteriorates on SD2 and SD3. It has to be no-
ticed that the coverage depends on the dataset, since
the number of relevant features has influence on the
calculation of this measure. Regarding Oneerror, it
can be seen for all the three datasets that, in most of
the cases, the top ranked feature is not in the subset
of relevant features, which gives an idea of the hard
challenge of the microarray problem.

Regarding the training time (see Figures 1(m),
1(n) and 1(o)), mRMR is sharply affected by the fea-
ture size (as expected for a multivariate filter tech-
nique), remaining almost constant with respect to the
sample size.

Table 2 depicts the thirteen scalar measures related
with Figure 1. These results confirm the trends seen
in Figure 1, reflecting the adequacy of these mea-
sures which are reliable and confident and can give
us a global picture of the scalability properties of the
mRMR filter method. In terms of Coverage and Rank-
ing loss, it can be seen that mRMR achieves good
results, especially on SD1 dataset. In fact, for this
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(a) Oneerror surface in SD1
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(b) Oneerror surface in SD2
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(c) Oneerror surface in SD3
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(d) Coverage surface in SD1
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(e) Coverage surface in SD2
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(f) Coverage surface in SD3

0
2000

4000

0
100

200

0

0.1

0.2

feat sizesample size

ra
nk

in
g_

lo
ss

(g) Rankingloss surface in SD1
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(h) Rankingloss surface in SD2

0
2000

4000

0
100

200

0

0.1

0.2

feat sizesample size

ra
nk

in
g_

lo
ss

(i) Ranking loss surface in SD3
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(j) Averageprecision surface in SD1

0
2000

4000

0
100

200

0.7

0.8

0.9

1

feat_sizesample_size

av
er

ag
e_

pr
ec

is
io

n

(k) Averageprecision surface in SD2
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(l) Averageprecision surface in SD3
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Figure 1: Measures of scalability of mRMR filter in the SD1 (Figures a, d, g, j and m), SD2 (Figures b, e, h, k and n) and SD3
datasets (Figures c, f, i, l and o).

dataset, the minimum value of these metrics is really
close to zero. As for the Averageprecision, it is re-
markable the result obtained on SD1, which obtains a
maximum value very close to one, and an acceptable
value (95 % of the maximum) is achieved with a small
number of data (15552).

Table 3 shows an overview of the behavior of
mRMR according to the different evaluation metrics
over the different datasets studied, where the larger
the number of dots, the better the behavior. To eval-
uate the goodness of the method it was computed a
trade-off between the scalability in terms of number

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

384



Table 2: Evaluation metrics of mRMR filter in the SD1,
SD2 and SD3 datasets.

Measure SD1 SD2 SD3
Oneerror 0.4 0.5 0.8
Oe5% 9216 4608 9216
VuOe 17.00 17.38 17.70
Coverage 0.0017 0.0293 0.1474
Co5% 995328 497664 497664
VuCo 4.49 9.70 11.79
Rankingloss 0.0006 0.0068 0.0115
Rl5% 995328 497664 15552
VuRl 2.19 2.39 1.93
Averageprecision 0.9990 0.9893 0.9676
Av95% 15552 124416 248832
VuAp 15.61 13.85 13.25
Training time 1179 1144 1162
VuTt 2577 2577 2589

Table 3: Overview of the behavior regarding scalability of
mRMR on the SD1, SD2 and SD3 datasets.

Measure SD1 SD2 SD3
Oneerror • • •
Coverage ••• •• ••
Rankingloss •••• ••• •
Averageprecision •••• ••• ••
Training time ••• ••• •••
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Figure 2: Training time vs. number of features for mRMR
on SD1, SD2 and SD3 datasets.

of samples and number of features. In this manner, it
is easy to see at a glance that mRMR does not achieve
good results in terms of Oneerror, whilst shows
strength in terms of Coverage and Rankingloss, es-
pecially with SD1. With regard to the training time,
the difficulty of the dataset has little impact on the
time required to apply the filter, since it is almost con-
stant for the three datasets tested. As can be seen in
Figure 2, the training time is not linear for the num-
ber of features employed. In fact, when using 2000
features, the training time takes around 300 seconds,
while when using double of features (4000), the train-
ing time increases by a factor of four.

5 CONCLUSIONS

With the advent of high dimensional scenarios in ma-
chine learning, scalability is becoming a very impor-
tant trending issue. An algorithm is said to be scalable
if it is suitable, efficient and practical when applied to
large datasets. However, the current state is that the
issue of scalability is far from being solved although
is present in a diverse set of problems such as learn-
ing, clustering or feature selection.

In this research, our attention was focused on the
scalability of feature selection, that has not received
yet as much consideration in the literature as in the
case of learning. In particular, this work is devoted
to analyze the scalability of the well-known mRMR
filter method, which is said to be suitable for microar-
ray datasets. The method was evaluated over three
synthetic datasets which reflect the problematic of mi-
croarray data. For analyzing scalability, these mea-
sures needed to be based not only in the accuracy of
the selection, but also taking into account the execu-
tion time. Finally, the adequacy of the proposed mea-
sures to give a global picture on the mRMR method
on the issue of scalability was shown.

In terms of accuracy of the selection, the mRMR
method was demonstrated to be suitable and scalable
for microarray datasets, since for most of the eval-
uation measures an increase in the amount of data
does not produce a significantly degradation in per-
formance. As for the training time, this filter is multi-
variate, and so the time raises exponentially when the
number of features increases.

For future work, we plan to extend this research
to other datasets and feature selection methods (fil-
ters, wrappers and embedded) in order to draw reli-
able conclusions. A methodology for fusing the pro-
posed evaluation measures seems to be also necessary
when comparing different methods so as to be able to
obtain a ranking of the results, to establish final con-
clusions.
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