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Abstract: In this paper, a new subspace learning algorithm, called enhanced kernel uncorrelated discriminant nearest 
feature line analysis （EKUDNFLA）, is presented. The aim of EKUDNFLA is to seek a feature subspace 
in which the within-class feature line (FL) distances are minimized and the between-class FL distances are 
maximized simultaneously. At the same time, an uncorrelated constraint is imposed to get statistically 
uncorrelated features, which contain minimum redundancy and ensure independence, and thus it is highly 
desirable in many practical applications. Optimizing an objective function in a kernel feature space, 
nonlinear features are extracted. In addition, a weighting coefficient is introduced to adjust the proportion 
between within-class and between-class information to get an optimal effect. Experimental results on radar 
target recognition with measured data demonstrate the effectiveness of the proposed method. 

1 INTRODUCTION 

Automatic target recognition (ATR) (Chen et al., 
2005) is a research topic of high interest in modern 
radar technology. High resolution range profiles 
(HRRP) contain rather detailed structural 
information of a target, thus providing us with a 
more reliable tool for ATR. One of the key problems 
of radar target recognition using HRRP is how to 
extract robust and effective features (Yu and Liu, 
2008). Over the past few years, many classical 
methods have been developed and applied to radar 
target recognition successfully, such as principal 
component analysis (PCA) (Turk and Pentland, 
1991), linear discriminant analysis (LDA) 
(Belhumenur et al., 1997), locality preserving 
projections (LPP) (He et al., 2005), neighborhood 
preserving projections (NPP) (Pang et al., 2005), 
neighborhood preserving embedding (NPE) (He et 
al., 2005) and etc. Although these methods have 
achieved reasonably good performance for radar 
target recognition, they cannot perform satisfactorily 
when the number of training samples per class is 
small. 

In the NN-based classification, the representa-
tional capacity and the error rate depends on how the 
prototypes are chosen to account for possible 

variations and also how many prototypes are 
available. In practical applications, only a small 
number of training samples are available. In order to 
expand the representational capacity of limited 
training samples, Li et al. (1999) proposed nearest 
feature line (NFL), which uses linear interpolation 
and extrapolation between each pair of feature points 
to cope with various changes. The classification is 
done by using the minimum distance between the 
feature point of the query and the FL’s. The 
classification result also provides a quantitative 
position number as a byproduct which can be used to 
indicate the relative change between the query point 
and the two associated training samples. Owing to 
the excellent generalization capacity, NFL has been 
successfully used to address many recognition 
problems. However, it only used the NFL metric in 
classification stage.  

Over the past few years, some subspace learning 
algorithms based on the idea of NFL have been 
proposed. For instance, Zheng et al. (2006) proposed 
nearest feature line-based nonparametric discrimi-
nant analysis (NFL-NDA), Pang et al. (2007) put 
forward nearest feature line space (NFLspace). The 
good properties are achieved by adopting the idea of 
the nearest feature line to both subspace learning 
stage and classification stage. Lu et al. (2010) 
presented uncorrelated discriminant nearest feature 

155Wan C., Yu X., Zhou Y. and Wang X..
Enhanced Kernel Uncorrelated Discriminant Nearest Feature Line Analysis for Radar Target Recognition.
DOI: 10.5220/0004759701550160
In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), pages 155-160
ISBN: 978-989-758-018-5
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



line analysis (UDNFLA), and Yan et al.  (2011) 
proposed neighborhood discriminant nearest feature 
line analysis (NDNFLA). Among these methods, 
NFL-NDA and NFLspace only use the within-class 
information and do not consider the between-class 
information, which is deficient for subspace learning. 
UDNFLA and NDNFLA use both within-class and 
between-class information, but they all  use linear 
technique to compute the feature space, which is 
inadequate to describe the complexity of real data 
structure that is usually nonlinear. In addition, all of 
them give the same emphasis on within-class and 
between-class scatter matrix, which is not optimum 
because the two matrices make different influence 
on the recognition result.  

Motivated by the above observations, we 
propose in this paper a new nonlinear NFL-based 
subspace learning method, called enhanced kernel 
uncorrelated discriminant nearest feature line 
analysis (EKUDNFLA), for radar target recognition. 
Firstly, the data is nonlinearly mapped into an 
implicit high dimensional feature space, in which the 
data is as linearly separable as possible. Then, 
proposed method minimized the within-class FL 
distances and maximized the between-class FL 
distances simultaneously, as more discriminant 
information can be exploited. And meanwhile it 
imposed an uncorrelated constraint to make the 
extracted features statistically uncorrelated. 
Uncorrelated features contain minimum redundancy 
and ensure independence of features. They are 
highly desirable in practical applications. 
EKUDNFLA can exploit more discriminant 
information and is more suitable for recognition 
tasks. Kernel technique will be used to solve the 
transformation matrix in the high dimensional 
feature space. Finally, a weighting coefficient is 
introduced into the objective function to get the 
optimum proportion between the within-class and 
between-class information.  

2 NFL AND UDNFLA 

2.1 NFL 

Consider a data set 1[ , , ]NX x x   in DR . 

Suppose that mx and nx are two samples coming 

from the same class, the straight line passing through 
the two samples is called a feature line (FL), denoted 
as 

m nx x . The membership of query point 
qx  is 

measured by the Euclidean distance between 
qx  and 

its projection point 
px on the line 

m nx x , which is 

termed as the FL distance and denoted as 

q px x . The less the FL distance is, the more 

probability that 
qx belongs to the same class as mx  

and nx . The projection point (Pang, et al., 2007) 
px  

can be computed as below: 

( )p m n mx x x x    (1)

Where, ( ) ( ) / ( ) ( )T T
q m n m n m n mx x x x x x x x           . 

2.2 UDNFLA 

The aim of UDNFLA is to find a projection matrix 

V that maps each data point ix  to a lower 

dimensional subspace ( )dR d D  by 
T

i iy V x . The optimal transformation matrix V is 

obtained by solving the following optimization 
problem (Lu et al., 2010): 

m in ( ) ( )

   s .t .       

T

V

T
t

J V tr V A B V

V S V I

   



 (2) 

where,   1 , ( )
(1/ )

TN i i
P i mn i mni m n P i

A N x x x x
 

    , 

  1 , ( )
(1/ )

TN i i
R i mn i mni m n R i

B N x x x x
 

    , 

( )P i  denotes the samples sharing the same class 

label with ix , ( )R i  denotes the samples with 

different class label with ix ，
PN and

RN  are the 

numbers of samples in ( )P i  and ( )R i , respectively.  

The minimization of (2) can be converted to 
solve the following generalized eigenvalue problem 

( ) tA B v S v   (3)

Let 1, , dv v  be the eigenvectors of (3) 

corresponding to the d smallest eigenvalues, then the 
transformation matrix of UDNFLA is obtained by 

1[ , , ]dV v v  . 

3 EKUDNFLA 

As mentioned in section I, since UDNFLA is linear 
method, it may not perform satisfactorily when the 
data structure is highly nonlinear. Moreover, same 
emphasis is laid on the within-class distances and 
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between-class distances, which is not optimum for 
improving recognition performance.  

In this section, we first extend the UDNFLA to 
nonlinear form using kernel technique and yield 
kernel uncorrelated discriminant nearest feature line 
analysis (KUDNFLA), then it is modified with a 
weighting coefficient, which finally gives rise to the 
enhanced kernel uncorrelated discriminant nearest 
feature line analysis (EKUDNFLA).  

3.1 KUDNFLA 

To begin with, the data set is mapped into an 
implicit high-dimensional feature space F by using a 
nonlinear function : ( )Dx R x F     . 

Then, in the feature space F, the projection of  
( )ix  onto the FL formed by ( )mx  and 

( )nx can be defined as: 

, ( ) ( ( ) ( ))

(1 ) ( ) ( )

i
mn m n m

m n

x x x x

x x




 

   

   

  

  
 (4)

with 

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )

T
i m n m

T
n m n m

i m n m

n m n m

x x x x

x x x x

x x x x

x x x x

    
   
   
   

 


 
   


   

 (5)

where, ,   denotes inner product. By introducing 

a kernel function, 1 2 1 2( , ) ( ), ( )k x x x x   , (5) 

can be rewritten as: 

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
i n i m m n m m

n n n m m n m m

k x x k x x k x x k x x

k x x k x x k x x k x x
   


  
 (6)

Now, in order to minimize the within-class FL 
distances and maximize the between-class FL 
distances simultaneously, we need to solve the 
following minimization problem: 

2

,

1 , ( )

2

,

1 , ( )

1
min ( ) ( )

1
( )

( )

N
T T i

i mn
V

i m n P iP

N
T T i

i mn

i m n R iR

T

w b

J V V x V x
N

V x V x
N

tr V S S V





 





 

 

 

 

   

 

   (7)

where 
wS   and 

bS   are the within-class and between-

class FL distance scatter matrix, respectively, which 
are defined as: 

  

2

,
1 , ( )

, ,
1 , ( )

1
( )

1
( ) ( )

N
i

w i mn
i m n P iP

N
Ti i

i mn i mn
i m n P iP

S x x
N

x x x x
N




 



 

 

 

 

  

 

 
 (8)

  

2

,
1 , ( )

, ,
1 , ( )

1
( )

1
( ) ( )

N
i

b i mn
i m n R iR

N Ti i
i mn i mn

i m n R iR

S x x
N

x x x x
N




 



 

 

 

 

  

 

 

 
(9)

Next, to make the extracted features statistically 
uncorrelated, the following uncorrelated constraint 
(Yu and Wang, 2008) is considered: 

T
tV S V I   (10)

where,   1

1
( ) ( )

TN

t i ii
S x m x m

N
   


   is 

the total scatter matrix in F, 
with  

1
1/ ( )

N

ii
m N x 


  . 

Combing (7) and (10), the KUDNFLA can be 
formulated as the following constrained 
minimization problem: 

min ( )
T

t

T
w b

V S V I
tr V S S V



 


    (11)

Since each column of V should lie in the span 

of 1 2 n( ), ( ), , ( )x x x    , we can write 

1, ,1 1
( ), , ( ) ( )

N N

i i d i ii i
V x x X A    

 
      (12)

where 
, ( 1, 2, , )j i j d   denotes the i-th entry   

of the coefficient vector 
j , and 

1 2[ , , , ] N d
dA R     .  

Let  ,( )T i
i mnQ V x x  , and considering 

(12) and (4),  we have 

( ) ( ) (1 ) ( ) ( )

(1 )

T T
i m n

T
i m n

Q A X x x x

A

 

 

     

    

     
     

 
(13)

where ， 
 

 
 

1

1

( ) ( ) ( ), ( ) , , ( ), ( )

( , ), , ( , )

i

TT

i i N i

T

i N i

X x x x x x

k x x k x x

          






 

 1( ) ( ) ( , ), , ( , )
TT

m m m N mX x k x x k x x    
 

 1( ) ( ) ( , ), , ( , )
TT

n n n N nX x k x x k x x    
 

Then, we can get:  
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 

 
,

1 , ( )

1 , ( )

,

1
( )

1

( )

N
T T i

w i mn
i m n P iP

N
T

i m n P iP

T FL
w

T
i

i mn

V S V V x x
N

QQ
N

A K A

x x V










 

 

 





 

 

 

 
(14)

T T F L

b bV S V A K A   (15)

where FL
wK and FL

bK are called kernel within-class 

and between-class FL distance scatter matrix, 
respectively, with 




1 , ( )

1
(1 )

                                 (1 )

N
FL
w i m n

i m n P iP

T

i m n

K
N

 

 

    

    

 

     

    

 



 
(16)




1 , ( )

1
(1 )

                                 (1 )

N
FL
b i m n

i m n R iR

T

i m n

K
N

 

 

    

    

 

     

    

 



 
(17)

Similarly, (10) is converted to 

T
tA K A I  (18)

where， 

  
1

1 N
T

t i i
i

K c c
N

 


    (19)

is kernel total scatter matrix,  

with  
1

1/
N

ii
c N 


  . 

Therefore, (11) becomes 

m in ( )
T

t

T F L F L
w b

A K A I
tr A K K A


  

 (20)

3.2 EKUDNFLA 

To further enhance the discrimination power of the 
learned subspace, we introduce a weighting 
coefficient β into (20) and give rise to the 
EKUDNFLA algorithm:  

  min (1 )T FL FL

w b
A K A IT

t

tr A K K A 


   (21)

Where β is a constant between 0 and 1. Obviously, if 
β=0.5 , the EKUDNFLA is reduced to KUDNFLA.  

Generally speaking, the between-class FL 
distances in the feature space F have been enlarged 

by some extent, and more emphasis should be paid 
on minimizing the within-class FL distances, so the 
value of  β should be greater than 0.5.  

Finally, the constrained minimization problem 
above is reduced to a generalized eigenvalue 
problem: 

 
(1 )F L F L

w b tK K K                (22) 

 
The matrix A is determined by eigenvectors 

corresponding to the eigenvectors corresponding to 
the d smallest nonzero eigenvalues of (22).  Once A 

is obtained, for any point Dx R , it can be mapped 
to a d-dimensional point z by: 

 

( )T Tz V x A                           (23) 

 

Where    1( , ), , ( , )
T

Nk x x k x x   . 

4 EXPERIMENTS AND RESULTS 

To evaluate the performance of the proposed 
algorithm, two experiments were performed on radar 
target recognition with measured HRRPs from three 
flying airplanes, including An-26, Yark-42, and 
Cessna Citation S/II.  For each airplane, 260 profiles 
over a wide range of aspects are adopted, and each 
profile is preprocessed by energy normalization (Yu 
and Wang, 2008).  

In the first experiment, the performance of 
EKUDNFLA is compared with two classical kernel 
methods KPCA (Scholkopf, et al., 1998) and KFDA 
(Mika, et al., 1999). The Gaussian 
kernel

1 2 1 2

2
2exp(( , ) / σ )k x x x x   , is adopted, and 

the parameter σ  is empirically set as 0.2. For 
EKUDNFLA, the parameter β should be greater than 
0.5 as what is said above. It is difficult to determine 
the optimal value of β analytically since it depends 
on the original data. But we can get a value which is 
optimal for our data experimentally with limited 
training samples. We find that a relatively good and 
stable result can be obtained if β is within the range 
between 0.85 and 0.98. So, the parameter β is set as 
0.9 in the following experiments. Since we only 
focus on feature extraction, as for classification, the 
nearest neighbor classifier using Euclidean distance 
is employed for the sake of simplicity.  

For each airplane, 26, 18 and 13 of all profiles 
are used for training, respectively, and the remainder 
for test. Table I tabulates the recognition rates 
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attained by each method with different number of 
training samples per target (NTSPT). 

As can be seen from Table I, the proposed 
EKUDNFLA outperforms KPCA and KFDA with 
gains of 9.58% and 2.29% when the NTSPT is only 
13, and 13.63% and 2.06% when the NTSPT is 18. 
and 10.69% and 0.01% when the NTSPT is 
increased to 26. It indicates that the FL distance can 
better characterize the geometrical structure of 
samples than the conventional euclidean distance, 
especially when the number of training samples per 
class is small.   

Table 1: Recognition rate (%) obtained by each method. 

Method 
Recognition rate (%) 

26  18 13 
KPCA 77.06 77.41 76.51 
KFDA 87.74 88.98 83.80 

EKUDNFLA 87.75 91.04 86.09 

In the second experiment, we fix the NTSPT as 18. 
Since the merit of EKUDNFLA stems from two 
factors: kernel technique and weighting coefficient, 
we also evaluated the performance when only one 
factor is applied. Hence, we derived the kernel 
uncorrelated discriminant nearest feature line 
analysis (KUDNFLA) and enhanced uncorrelated 
discriminant nearest feature line analysis (EUDNFL-
A), respectively. We have also compared EKUDNF-
LA with PCA, LDA, and two other NFL-based 
methods NFLspace and UDNFLA as well.   Figure 1 
shows the recognition rates versus feature 
dimensions of all those methods mentioned above 
except LDA, since the extracted feature deimension 
is only 2 for our experiment. The top recognition 
rates along with the corresponding dimensions 
obtained by each method are listed in Table II. The 
following observantions can be made from the 
experimental results: 

 

Figure 1: Recognition rates versus feature dimensions of 
each method. 

1) The proposed EKUDNFLA is overall superior to 
all the other NFL metric subspace learning methods 
involved in our experiments in terms of recognition 
rate. 
2) Compared with the linear NFL metric method 
UDNFLA, KUDNFLA attains higher recognition 
rate at almost each dimension. This is mainly 
because KUDNFLA is a nonlinear method and the 
kernel technique is helpful for improving its 
discriminative power.  
3) EKUDNFLA significantly outperforms 
KUDNFLA in terms of recognition rate. It can be 
attributed to the introduction of the weighting 
coefficient, which gives more emphasis on 
minimizing the within-class FL distances than 
maximizing the between-class FL distance, so as to 
use the within-class and between-class information 
more effectively.  
4) As we can see, the proposed EKUDNFLA also 
outperforms conventional linear method  PCA and 
LDA with gains of 8.46% and 12.27%. 

Table 2: Top recognition rate (%) and corresponding 
dimension of each method. 

Method 
NFL
space

UD 
NFLA

EUD 
NFLA 

KUD 
NFLA 

EKUD 
NFLA 

LDA PCA

Recognition 
rate (%) 

79.48 76.45 76.99 81.68 91.18 78.91 82.72

Dimension 45 45 50 45 5 2 45 

5 CONCLUSIONS 

We have proposed in this paper a new subspace 
learning method, called enhanced kernel 
uncorrelated discriminant nearest feature line 
analysis (EKUDNFLA), for radar target recognition. 
The method achieves good discrimination ability by 
minimizing the within-class FL distances and 
maximizing the between-class FL distances, 
simultaneously. Furthermore, an uncorrelated 
constraint is imposed to make the extracted features 
statistically uncorrelated. Mapping the input data to 
some high-dimensional feature space using the 
kernel technique, nonlinear features are extracted. In 
addition, weighting coefficient is introduced to 
adjust the proportion between within-class and 
between-class matrix. Experimental results on radar 
target recognition with measured data show that 
EKUDNFLA is overall superior to other NFL-based 
methods in terms of recognition accuracy. And 
compared with other conventional feature extraction 
methods, like PCA, LDA, KPCA and KFDA, 
EKUDNFLA also shows competitive performance. 
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