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Abstract: We consider a problem arising in the context of industrial production planning, namely the multi-product dis-
crete lot-sizing and scheduling problem with sequence-dependent changeover costs. We aim at developping
an exact solution approach based on a standard Branch & Bound procedure for this combinatorial optimiza-
tion problem. To achieve this, we propose a new family of multi-product valid inequalities which enables
us to better take into account in the mixed-integer linear programming formulation the conflicts between dif-
ferent products simultaneously requiring production on the resource. We then present both an exact and a
heuristic separation algorithm in order to identify the most violated valid inequalities to be added in the initial
MILP formulation within a cutting-plane generation algorithm. We finally discuss preliminary computational
results which confirm the practical usefulness of the proposed valid inequalities at strengthening the MILP
formulation and at reducing the overall computation time.

1 INTRODUCTION

Capacitated lot-sizing arises in industrial production
planning whenever changeover operations such as
preheating, tool changing or cleaning are required be-
tween production runs of different products on a ma-
chine. The amount of the related changeover costs
usually does not depend on the number of products
processed after the changeover. Thus, to minimize
changeover costs, production should be run using
large lot sizes. However, this generates inventory
holding costs as the production cannot be synchro-
nized with the actual demand pattern: products must
be held in inventory between the time they are pro-
duced and the time they are used to satisfy customer
demand. The objective of lot-sizing is thus to reach
the best possible trade-off between changeover and
inventory holding costs while taking into account both
the customer demand satisfaction and the technical
limitations of the production system.

An early attempt at modelling this trade-off can be
found in (Wagner and Whitin, 1958) for the problem
of planning production for a single product on a single
resource with an unlimited production capacity. Since
this seminal work, a large part of the research on lot-
sizing problems has focused on modelling operational
aspects in more detail to answer the growing industry
need to solve more realistic and complex production

planning problems. An overview of recent develop-
ments in the field of modelling industrial extensions
of lot-sizing problems is provided in (Jans and De-
graeve, 2008).

In the present paper, we focus on one of the vari-
ants of lot-sizing problems mentioned in (Jans and
Degraeve, 2008), namely the multi-product single-
resource discrete lot-sizing and scheduling problem
or DLSP. As defined in (Fleischmann, 1990), several
key assumptions are used in the DLSP to model the
production planning problem:
- A set of products is to be produced on a single ca-
pacitated production resource.
- A finite time horizon subdivided into discrete peri-
ods is used to plan production.
- Demand for products is time-varying (i.e. dynamic)
and deterministically known.
- At most one product can be produced per period and
the facility processes either one product at full capac-
ity or is completely idle (discrete production policy).
- Costs to be minimized are the inventory holding
costs and the changeover costs.

In the DLSP, it is assumed that a changeover be-
tween two production runs for different products re-
sults in a changeover cost. Changeover costs can
depend either on the next product only (sequence-
independent case) or on the sequence of products
(sequence-dependent case). We consider in the
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present paper the DLSP with sequence-dependent
changeover costs (denoted DLSPSD in what fol-
lows). Sequence-dependent changeover costs are
mentioned in (Jans and Degraeve, 2008) as one of the
relevant operational aspects to be incorporated into
lot-sizing models. Moreover, a significant number
of real-life lot-sizing problems involving sequence-
dependent changeover costs have been recently re-
ported in the academic literature: see among (Silva
and Magalhaes, 2006) for a textile fibre industry or
(Ferreira et al., 2012) for soft drink production.

A wide variety of solution techniques from the
Operations Research field have been proposed to
solve lot-sizing problems: the reader is referred to
(Buschkühl et al., 2010; Jans and Degraeve, 2007) for
recent reviews on the corresponding literature. The
present paper belongs to the line of research dealing
with exact solution approaches aiming at providing
guaranteed optimal solutions for the problem. A large
amount of existing exact solution techniques consists
in formulating the problem as a mixed-integer lin-
ear program (MILP) and in relying on a Branch &
Bound type procedure to solve the obtained MILP.
However the computational efficiency of such a pro-
cedure strongly depends on the quality of the lower
bounds used to evaluate the nodes of the search tree.
In the present paper, we seek to improve the quality
of these lower bounds so as to decrease the total com-
putation time needed to obtain guaranteed optimal so-
lutions for medium-size instances of the problem.

Within the last thirty years, much research has
been devoted to the polyhedral study of lot-sizing
problems in order to obtain tight linear relaxations
and improve the corresponding lower bounds: see e.g.
(Pochet and Wolsey, 2006) for a general overview
of the related literature and (Belvaux and Wolsey,
2001; Gicquel et al., 2009; van Eijl and van Hoesel,
1997) for contributions focusing specifically on the
DLSP. However, these procedures mainly focus on
the underlying single-product subproblems and thus
fail at capturing the conflicts between multiple prod-
ucts sharing the same resource capacity. This leads
in some cases to significant integrality gaps for multi-
product instances of the DLSPSD. In what follows,
we propose a new family of multi-product valid in-
equalities to partially remedy this difficulty and dis-
cuss both an exact and a heuristic algorithm to solve
the corresponding separation problem. To the best of
our knowledge, this is one of the first attempts focus-
ing on improving the polyhedral description of multi-
product lot-sizing problems.

The main contributions of the present paper are
thus twofold. First we introduce a new family of valid
inequalities representing conflicts on multi-period

time intervals between several products simultane-
ously requiring production on the resource. Second
we formulate the corresponding separation problem
as a quadratic binary program and propose to solve it
either exactly by relying on a quadratic programming
solver or approximately through a Kernighan-Lin
type heuristic algorithm. The results of the prelim-
inary computational results carried out on medium-
size instances show that the proposed valid inequali-
ties are efficient at strengthening the linear relaxation
of the problem and at decreasing the overall compu-
tation time needed to obtain guaranteed optimal solu-
tions of the DLSPSD.

The remainder of the paper is organized as fol-
lows. In Section 2, we recall the initial MILP formu-
lation of the multi-product DSLPSD and the previ-
ously published single-product valid inequalities. We
then present in Section 3 the proposed new multi-
product valid inequalities and discuss in Section 4
both an exact and a heuristic algorithm to solve the
corresponding separation problem. Preliminary com-
putational results are discussed in Section 5.

2 MILP FORMULATION

We first recall the initial MILP formulation of the
DLSPSD. We use the network flow representation of
changeovers between products, which was proposed
among others by (Belvaux and Wolsey, 2001), as this
leads to a tighter linear relaxation of the problem. We
then discuss the valid inequalities first proposed by
(van Eijl and van Hoesel, 1997) to strengthen the un-
derlying single-product subproblems.

2.1 Initial MILP formulation

We wish to plan production for a set of products de-
noted p= 1:::P to be processed on a single production
machine over a planning horizon involving t = 1:::T
periods. Product p = 0 represents the idle state of the
machine and period t = 0 is used to describe the initial
state of the production system.

Production capacity is assumed to be constant
throughout the planning horizon. We can thus w.l.o.g.
normalize the production capacity to one unit per pe-
riod and express the demands as binary numbers of
production capacity units: see e.g. (Fleischmann,
1990). We denote dpt the demand for product p in
period t, hp the inventory holding cost per unit per
period for product p and Spq the sequence-dependent
changeover cost to be incurred whenever the resource
setup state is changed from product p to product q.
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Using this notation, the DLSPSD can be seen as
the problem of assigning at most one product to each
period of the planning horizon while ensuring de-
mand satisfaction and minimizing both inventory and
changeover costs. We thus introduce the following bi-
nary decision variables:
- ypt where ypt = 1 if product p is assigned to period
t, 0 otherwise.
- wpqt where wpqt = 1 if there is a changeover from p
to q at the beginning of t, 0 otherwise.

This leads to the following MILP formulation de-
noted DLSPSD0 for the problem.

ZLS0 =min
P

å
p=1

T

å
t=1

hp

t

å
t=1

(ypt�dpt)

+
P

å
p;q=0

Sp;q

T�1

å
t=1

wp;q;t (1)

t

å
t=1

ypt �
t

å
t=1

dpt 8p;8t (2)

P

å
p=0

ypt = 1; 8t (3)

yp;t =
P

å
q=0

wq;p;t 8p;8t (4)

yp;t =
P

å
q=0

wp;q;t+1 8p;8t (5)

ypt 2 f0;1g 8p;8t (6)
wp;q;t 2 f0;1g 8p;8q;8t (7)

The objective function (1) corresponds to the min-
imization of the inventory holding and changeover
costs over the planning horizon. å

t
t=1(ypt� dpt) is

the inventory level of product p at the end of pe-
riod t. Constraints (2) impose that the cumulated de-
mand over interval [1; t] is satisfied by the cumulated
production over the same time interval. Constraints
(3) ensure that, in each period, the resource is either
producing a single product or idle. Constraints (4)-
(5) link setup variables ypt with changeover variables
wpqt through equalities which can be seen as flow
conservation constraints in a network. They ensure
that in case product p is setup in period t, there is a
changeover from another product q (possible q = p)
to product p to at the beginning of period t and a
changeover from product p to another product q (pos-
sible q = p) at the end of period t.

2.2 Single-product Valid Inequalities

We now recall the expression of the valid inequali-
ties proposed by (van Eijl and van Hoesel, 1997) for

the single product DLSP. We denote dp;t;t the cumu-
lated demand for product p in the interval ft; :::;tg
and Dp;v the vth positive demand period for product p.
Dp;dp;1;t+v is thus the period with the vth positive unit
demand for product p after period t occurs.

t

å
t=1

(ypt�dpt)+
w

å
v=1

h
yp;t+v +

Dp;dp;1;t+v

å
t=t+v+1

å
q 6=p

wq;p;t

i
� w

8p;8t;8w 2 [1;dp;t+1;T ] (8)

The idea underlying valid inequalities (8) is to
compute a lower bound on the inventory level of a
product p at the end of a period t, å

t
t=1(ypt� dpt),

by considering both the demands and the resource
setup states for this product in the forthcoming pe-
riods t = t + 1:::Dp;dp;1;t+v. The reader is refered to
(van Eijl and van Hoesel, 1997) for a full proof of
validity for these inequalities. In the computation ex-
periments to be presented in Section 5, we use a stan-
dard cutting-plane generation algorithm to strengthen
the formulation DLSPSD0 by adding violated valid
inequalities of family (8). The resulting improved for-
mulation is denoted DLSPSD1.

Constraints (8) can be understood as a way to
strengthen the demand satisfaction constraints (2) by
expressing in a more detailed way the need for each
individual product to access the resource in order
to satisfy its own demand on a given subinterval of
the planning horizon. However, in the resulting DL-
SPSD1 formulation, the conflicts between different
products simultaneously requiring production on the
resource will only be handled by the single-period ca-
pacity constraints (3). In what follows, we propose to
improve this representation of the conflicts between
different products by considering multi-period multi-
product valid inequalities.

3 NEW MULTI-PRODUCT VALID
INEQUALITIES

We now present the multi-period multi-product valid
inequalities we propose to strengthen the linear
relaxation of the multi-product DLSPSD.

Proposition 1.
Let SP� f0:::Pg be a subset of products.
Let t 2 [1;T ] be a period within the planning horizon.
Let (q1; :::;qp; :::;qP) 2 [0;T ]P be a set of periods
such that qp < t if p 2 SP. For each period t 2 [1;T ],
we denote SDt = fp = 1:::Pjqp > tg.
The following inequalities are valid for the multi-
product DLSPSD.
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h P

å
q=1

dq;1;qq

ih
å

p2SP
ypt

i
�

T

å
t=1

C̃t (9)

where C̃t is defined by:

C̃t =min
�

å
q2SDt

yq;t; å
p2SP

yp;t

�
if t =2 [t�1; t +1]

C̃t�1 = å
q2SDt�1;p2SP

wqpt

C̃t = 0

C̃t+1 = å
p2SP;q2SDt+1

wpq;t+1

Before providing the proof for Proposition 1, we
briefly explain the idea underlying valid inequalities
(9). We choose a subset SP of products. If none of
these products is assigned for production in period t
(i.e. åp2SP ypt = 0), all corresponding valid inequal-
ities are trivially respected. But if one of these prod-
ucts is produced in period t (i.e. åp2SP ypt = 1), then
we have to make sure that we are able to satisfy the
total cumulated demand å

P
q=1 dq;1;qq on the remaining

periods 1:::t�1; t +1:::T . In this case, the right hand
side of inequalities (9) computes a tight upper bound
(åT

t=1 C̃t) of the total production capacity remaining
to satisfy this cumulated demand.

Proof. Let (y;w) be a feasible solution of the DL-
SPSD. We arbitrarily choose a subset of products SP,
a period t and a vector of periods (q1; :::;qp; :::;qP)
such that qp < t if p 2 SP and show that all proposed
inequalities (9) are valid for the considered feasible
solution.

We distinguish two main cases:
- Case 1: åp2SP ypt = 0

In this case, the left hand side of the inequalities is
equal to 0 whereas the right hand side is nonnegative.
All inequalities (9) are thus trivially true.
- Case 2: åp2SP ypt = 1

In this case, the left hand side of inequalities (9)
is equal to the total cumulated demand over intervals
[1;qq] for products q = 1::P, i.e. to å

P
q=1 dq;1;qq .

åp2SP ypt = 1 means that period t is devoted to
the production of one of the products in SP. As we
have qp < t for each product p 2 SP, period t can-
not be used to satisfy the cumulated demand dp;1;qp
of any product in SP. Hence (y;w) can be a feasible
solution of the DLSPSD if and only if the remaining
total cumulated production capacity over the periods
1:::t�1; t+1:::T is sufficient to satisfy the cumulated
demand å

P
q=1 dq;1;qq .

We now seek to compute a tight upper bound for
the production capacity Ct available in each period

t 2 [1; t � 1]\ [t + 1;T ] to satisfy the cumulated de-
mand å

P
q=1 dq;1;qq :

- By capacity constraints (3), we have Ct � 1, i.e.
Ct � åp2SP ypt .
- Moreover, the cumulated demand dq;1;qq for a prod-
uct q can only be satisfied by a production for q in
period t if t � qq as demand backlogging is not al-
lowed here. Hence period t can be used to satisfy part
of demand å

P
q=1 dq;1;qq only if the resource is setup

for one of products q = 1::P such that t � qq. This
gives Ct � åq2SDt

yq;t.
We thus obtain Ct � min(åq2SDt

yq;t;åp2SP ypt)
8t 2 [1; t�1]\ [t +1;q].

Now, we can exploit our knowledge of the setup
state of the resource in period t to further strengthen
these inequalities. Namely, we know that a product p
belonging to SP is produced in period t. A changeover
to (resp. from) this product p thus has to take place
at the beginning (resp. at the end) of period t. This
means that:
- If period t � 1 is to be used to satisfy the demand
of one of the products belonging to SDt�1, there
must be a changeover from this product q 2 SDt�1
to the product p 2 SP at the beginning of period t.
The production capacity available in period t = t�1
for the products in SDt�1 is thus limited by Ct�1 �
åp2SP;q2SDt�1 wq;p;t .
- Similarly, if period t + 1 is to be used to sat-
isfy the demand of one of the products belonging to
SDt+1, there must be a changeover from the prod-
uct p 2 SP to this product at the end of period t.
The production capacity available in period t = t +1
for the products in SDt+1 is thus limited by Ct+1 �
åp2SP;q2SDt+1 wp;q;t+1.

We can thus strengthen the upper bound
of Ct�1 (resp Ct+1) by replacing the term
min(åq2SDt

yq;t;åp2SP ypt) by åp2SP;q2SDt�1 wq;p;t
(resp. åp2SP;q2SDt+1 wp;q;t+1) and obtain the inequali-
ties (9) discussed in Proposition 1.

4 SEPARATION PROBLEM

The number of valid inequalities (9) grows very fast
with the problem size. It it therefore not possible to
include them a priori in the MILP formulation of the
problem. This is why we use a cutting-plane genera-
tion strategy to add to the MILP formulation only the
most violated valid inequalities of the family. This re-
quires solving the corresponding separation algorithm
which, given a fractional solution (y;w) of the DL-
SPSD, will either identify a violated valid inequality
or prove that no such inequality exists.
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4.1 Exact Separation Algorithm

We first discuss an exact separation algorithm, i.e.
an algorithm which is guaranteed to find an inequal-
ity violated by a fractional solution (y;w) of the
DLSPSD if one exists. We consider each period t
and seek to identify the subset SP and the vector
(q1; :::;qp; :::;qP) which provide the largest violation
of inequalities (9). To achieve this, we formulate the
separation problem for a given t as follows.

We introduce the following decision variables:
- ap = 1 if product p 2 SP, 0 otherwise.
- bq;q = 1 if qq = q, 0 otherwise.
- gt = 1 if capacity Ct is limited by å

P
p=0 yptap, 0 if

Ct is limited by å
P
q=0 å

T
q=t

yq;tbq;q.
With this notation, the separation problem QBPt

for a given t and a solution (y;w) is formulated as:

max
P

å
p=0

P

å
q=1

T

å
q=1

dq;1;qyptapbq;q

�
P

å
p=0

P

å
q=1

T

å
q=t�1

wq;p;tapbq;q

�
P

å
p=0

P

å
q=1

T

å
q=t+1

wp;q;t+1apbq;q

� å
t=1:::t�2

t+2:::q

h P

å
p=0

yptapgt

+
P

å
q=1

T

å
q=t

yq;tbq;q(1� gt)
i

(10)

ap +
T

å
q=t

bp;q � 1 8p (11)

T

å
q=0

bp;q = 1 8p (12)

ap 2 f0;1g 8p (13)
bp;q 2 f0;1g 8p;8q (14)
gt 2 f0;1g 8t (15)

The objective function (10) corresponds to the
maximimization of the violation of the inequalities,
i.e. we seek to identify SP and(q1; :::;qp; :::;qP) so
as to maximize the difference between the left and
the right hand side of the inequality. If this value is
strictly positive, we obtain a violated valid inequal-
ity. In case this value is less than or equal to 0, it
means that all valid inequalities for period t are satis-
fied by the fractional solution (y;w). Constraints (11)
state that for a given product p, we cannot simulta-
neously include it in SP and choose a period qp such

that qp � t. Constraints (12) guarantee that for each
product p, exactly one value of qp is chosen .

Problem QBPt is a binary program with a
quadratic objective function and a series of linear con-
straints. It can be solved to optimality by a quadratic
binary programming solver such as the one embedded
in CPLEX 12.5.

4.2 Heuristic Separation Algorithm

As can be seen from the computational experiments
to be presented in Section 5, solving to optimality a
sequence of quadratic binary programs QBPt leads to
prohibitively long computation times for the cutting-
plane generation algorithm, even for small-size in-
stances. We are thus currently investigating the devel-
opment of a heuristic separation algorithm capable of
identifying violated valid inequalities more quickly.

We discuss here a first version of this separation
algorithm which focuses on a special case of the pro-
posed multi-product valid inequalities. This special
case consists in choosing a period q such that q � t,
in restricting the possible values for periods q1,...,
qp,...,qP to the set f0;qg and in imposing qp = 0 if
p 2 SP.

In this case, for a given pair of periods (t;q),
the separation problem amounts to finding a tripar-
tition of the set of products f0:::Pg into 3 subsets:
SP, SDemq = fq = 1::Pjqq = qg and SDem0 = fq =
1::Pjqq = 0g such that the quadratic expression (10) is
maximized. This problem shares some common fea-
tures with graph partitioning problems. We therefore
propose to solve it using the following Kernighan-Lin
type heuristic as this type of algorithm is known to be
rather efficient at solving graph partitioning problems.

Choose a tripartition of f0:::Pg, Pre f , and
compute its violation Vre f .
While (test =0):

Let test = 1, PossMove = P + 1 and
Pcur = Pre f .
Allow all possible moves to explore the
neighbourhood of Pcur.
While (PossMove > 0):

Evaluate all partitions obtained by car-
rying out each of the allowed moves in
the neighbourhood of Pcur.
Select the best partition obtained in this
neighbourhood of Pcur, Pbest , forbid the
move used to obtain Pbest from Pcur, de-
crease PossMove by 1 and set Pcur =
Pbest .
If Vbest >Vre f , test = 0 and Pre f =Pbest .

The neighbourhood of a tripartition P of f0:::Pg is
defined as the set of tripartitions obtained by moving
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a single product from its current subset in P to one
of the two other subsets. Moreover, in the computa-
tional experiments to be presented in Section 5, five
different types of partitions are used to initialize the
heuristic.

4.3 Cutting-plane Generation
Algorithm

We now briefly describe the cutting-plane generation
used to strengthen formulation DLSPSD1 by adding
to it some multi-product valid inequalities (9).

Compute the initial LP relaxation of the
DLSPSD using formulation DLSPSD1.
While (test = 0):

Denote (y;w) the solution of the current
linear relaxation.
For t=1...T such that 9p such that
0:0001 < ypt < 0:9999;

Let q = t and f ound =0.
While (q� T ) and ( f ound == 0),

Solve the separation problem for
periods (t;q) using either the exact
or the heuristic algorithm.
If a violated valid inequality has
been found, let f ound = 1.
q = q+1.

If at least one violated valid inequality is
found, add all the found violated valid in-
equalities to the current formulation and
compute its LP relaxation.
Else set test = 1 to stop the cutting-plane
generation.

5 COMPUTATIONAL RESULTS

We now discuss the results of some preliminary com-
putational experiments carried out to evaluate the ef-
fectiveness of the proposed multi-product valid in-
equalities at strengthening the formulation of the
multi-product DLSPSD and to assess their impact on
the total computation time.

We randomly generated instances of the problem
using a procedure similar to the one described in (Sa-
lomon et al., 1997) for the DLSP with sequence-
dependent change-over costs and times. More pre-
cisely, the various instances tested have the following
characteristics:
- Problem dimension. The problem dimension is rep-
resented by the number of products P and the num-
ber of periods T: we solved medium-size instances
involving 4 to 10 products and 15 to 75 periods.
- Inventory holding costs. For each product, inventory

holding costs have been randomly generated from a
discrete uniform DU(5;10) distribution.
- Changeover costs. We used two different types
of structure for the changeover cost matrix S. In-
stances of sets A1-A7 have a general cost structure:
the cost of a changeover from product p to prod-
uct q, Spq, was randomly generated from a discrete
uniform DU(100;200) distribution. Instances of sets
B1-B7 correspond to the frequently encountered case
where products can be grouped into product families:
there is a high changeover cost between products of
different families and a smaller changeover cost be-
tween products belonging to the same family. In this
case, for products p and q belonging to different prod-
uct families, Spq was randomly generated from a dis-
crete uniform DU(100;200) distribution; for prod-
ucts p and q belonging to the same product family,
Spq was randomly generated from a discrete uniform
DU(0;100) distribution.
- Production capacity utilization. Production capacity
utilization r is defined as the ratio between the total
cumulated demand (åP

p=1 å
T
t=1 dpt ) and the total cu-

mulated available capacity (T ). We set r = 0:95 for
all instances.
- Demand pattern. Binary demands dpt 2 f0;1g for
each product have been randomly generated accord-
ing to the a procedure similare to the used by (Sa-
lomon et al., 1997).

For each considered problem dimension, we gen-
erated 10 instances, leading to a total of 140 instances.

All tests were run on an Intel Core i5 (2.7 GHz)
with 4 GB of RAM, running under Windows 7. We
used a standard MILP software (CPLEX 12.5) with
the solver default settings to solve the problems with
one of the following formulations:
- DLPSD1: initial MILP formulation DLSPSD0, i.e.
formulation (1)-(7), strengthened by single-product
valid inequalities (8). We used a standard cutting-
plane generation strategy based on a complete enu-
meration of all possible valid inequalities to add them
into the formulation.
- DLSPSD2e: formulation DLSPSD1 strengthened
by multi-product valid inequalities (9). We used the
cutting-plane generation algorithm presented in Sec-
tion 4.3 to add only the most violated valid inequali-
ties and relied on the exact separation algorithm dis-
cussed in Section 4.1.
- DLSPSD2h: formulation DLSPSD1 strengthened
by multi-product valid inequalities (9). We used the
cutting-plane generation algorithm presented in Sec-
tion 4.3 to add only the most violated valid inequal-
ities and relied on the heuristic separation algorithm
discussed in Section 4.2.

Tables 1 and 2 display the computational results.
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Table 1: Preliminary computational results: exact separation algorithm.

DLSPSD1 DLSPSD2e
P T V Cst SP GapLP1 NIP1 TIP1 MPe GapLP2e NIP2e TIP2e

A1 4 15 425 250 106 2.6% 2 0.3s 9 0.0% 0 38.5s
A2 6 15 840 315 108 0.9% 0 0.3s 3 0.1% 0 50.2s
A3 4 20 600 300 193 2.6% 5 0.4s 13 0.1% 0 2386.0s
B1 4 15 425 250 105 11.5% 6 0.3s 12 0.02% 0 51.2s
B2 6 15 840 315 107 5.3% 1 0.3s 17 1.3% 0 273.0s
B3 4 20 600 300 192 8.3% 9 0.5s 20 0.3% 2 3609.9s

Table 2: Preliminary computational results: heuristic separation algorithm.

DLSPSD1 DLSPSD2h
P T V Cst SP GapLP1 NIP1 TIP1 MPh GapLP2h NIP2h TIP2h

A1 4 15 425 250 106 2.6% 2 0.3s 9 0.0% 0 0.1s
A2 6 15 840 315 108 0.9% 0 0.3s 3 0.2% 0 0.2s
A3 4 20 600 300 193 2.6% 5 0.4s 15 0.2% 0 0.3s
A4 6 25 1400 625 315 4.3% 9 1.0s 27 0.7% 4 1.0s
A5 6 50 2800 1050 1153 1.6% 32 6.7s 20 0.9% 11 4.7s
A6 10 50 6600 1650 1949 2.1% 99 21.0s 51 1.1% 30 22.7s
A7 8 75 6750 2025 2776 2.7% 856 151.9s 23 2.5% 660 147.5s
B1 4 15 425 250 105 11.5% 6 0.3s 16 0.1% 0 0.1s
B2 6 15 840 315 107 5.3% 1 0.3s 10 2.1% 1 0.3s
B3 4 20 600 300 192 8.3% 9 0.5s 21 0.4% 0 0.4s
B4 6 25 1400 625 307 9.2% 13 1.2s 30 0.8% 1 0.7s
B5 6 50 2800 1050 1248 12.2% 1753 47.7s 48 9.5% 983 37.6s
B6 10 50 6600 1650 1274 15.7% 25937 901.0s 97 11.9% 11284 496.0s
B7 8 75 6750 2015 2681 15.3% 25015 1961.9s 53 10.7% 22323 1904.7.0s

We provide for each set of 10 instances:
- P and T : the number of products and planning peri-
ods involved in the production planning problem.
- V and Cst : the number of variables and constraints
in the initial formulation DLSPSD0.
- SP: the number of single-product violated valid in-
equalities (8) added in the three formulations.
- MPe and MPh: the number of multi-product violated
valid inequalities added in formulation DLSPSD2e by
the exact separation algorithm and in formulation DL-
SPSD2h by the heuristic separation algorithm.
- GapLP1 (resp. GapLP2e, GapLP2h): the average per-
centage gap between the linear relaxation of formula-
tion DLSPSD1 (resp. DLSPSD2e, DLSPSD2h) and
the value of an optimal integer solution.
- NIP1 (resp. NIP2e, NIP2h): the average number of
nodes explored by the Branch & Bound procedure be-
fore a guaranteed optimal integer solution is found or
the computation time limit of 2700s is reached.
- TIP1 (resp. TIP2e, TIP2h): the total computation
time (cutting-plane generation and Branch & Bound
search) needed to find a guaranteed optimal integer
solution (we used the value of 2700s in case a guar-
anteed optimal integer solution could not be found
within the computation time limit).

Results from Table 1 show that the proposed valid
inequalities (9) are efficient at strengthening formu-
lation DLSPSD1. Namely, the integrality gap is re-
duced from an average of 5.3% with formulation DL-
SPSD1 (see GapLP1) to an average of 0.3% with for-
mulation DLSPSD2e (see GapLP2e). We note that this
reduction is particularly significant for instances B1-
B3 featuring a product family changeover cost struc-
ture. Moreover this formulation strengthening is ob-
tained thanks to a relatively small number of multi-
product inequalities as can be seen from the aver-
age value of MPe (12). However, even if the num-
ber of nodes needed by the Branch & Bound proce-
dure to find a guaranteed optimal solution is slightly
reduced when using formulation DLSPSD2e, it does
not lead to an overall reduction of the computation
time. This is mainly explained by the fact that the
cutting-plane generation algorithm based on an exact
separation algorithm requires prohibitively long com-
putation times to identify the violated multi-product
valid inequalities to be added to the formulation. It is
thus necessary to resort to a heuristic separation algo-
rithm such as the one proposed in Section 4.2.

Comparison of the results obtained with the ex-
act and the heuristic separation algorithm for the in-
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stances A1-A3 and B1-B3 (Tables 1 and 2) shows that
the proposed heuristic is efficient at finding violated
valid inequalities for small size instances. Namely,
the average integrality gap for these 60 instances
when using the heuristic algorithm is the GapLP2h =
0:5% which is close to the one obtained when us-
ing the exact algorithm (GapLP2e = 0:3%). Moreover,
the number of violated valid inequalities found by the
heuristic algorithm is nearly the same as the number
of violated valid inequalities found by the exact algo-
rithm.

Results from Table 2 also confirm that the pro-
posed heuristic is rather efficient at finding violated
valid inequalities for larger instances. This can be
seen by looking at the results for instances A4-A7 and
B4-B7. We first note that, for these instances, the inte-
grality gap is reduced from an average of 7.9% while
using formulation DLSPSD1 to an average of 4.7%
while using formulation DLSPSD2h. Moreover a sig-
nificant decrease in the overall computation time is
obtained for instances B4-B7 when using formulation
DLSPSD2h.

6 CONCLUSIONS

We considered the multi-product discrete lot-sizing
and scheduling problem with sequence-dependent
changeover costs and proposed a new family of multi-
product valid inequalities for this problem. This en-
abled us to better take into account in the MILP for-
mulation the conflicts between different products si-
multaneously requiring production on the resource.
We then presented both an exact and a heuristic sepa-
ration algorithm in order to identify the most violated
valid inequalities to be added in the initial MILP for-
mulation within a cutting-plane generation algorithm.
Our preliminary results show that the proposed valid
inequalities are efficient at strengthening the MILP
formulation and that their use leads to a significant re-
duction of the overall computation time for instances
featuring a product family changeover cost structure.
Research work is currently ongoing in order to ex-
tend the proposed heuristic separation algorithm so as
to identify violated valid inequalities from the whole
family.
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