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Abstract: This work deals with an observer design for a nonlinear minimal dynamic model of glucose disappearance
and insulin kinetics (GD-IK). At first, the model is transformed into a nonlinear observer normal form. Then,
using the knowledge of the plasma blood glucose level, we estimate the state variables that are not directly
available from the system, i.e. the remote compartment insulin utilization, the plasma insulin deviation and
the infusion rate. In addition, we estimate the amount of absorbed glucose by means of the inverse dynamics.

1 INTRODUCTION

Diabetes is a serious disease by which the body’s pro-
duction and use of insulin are impaired, causing an
increase of glucose concentration level in the blood-
stream. Regulating blood glucose levels as close to
normal as possible leads to a substantial decrease in
long term complications of diabetes. The most com-
mon treatment of diabetes type 1 (where the insulin
production of the pancreas is disturbed) is the mea-
surement of the glucose level using suitable measure-
ment devices to regulate this level with an injection
of insulin. Advanced solutions are trying to apply au-
tomatic feedback control for this process using glu-
cose level sensors and insulin infusion pumps, see
e.g. (Chee et al., 2003) for a comprehensive overview
of the technological aspects. But all currently avail-
able solutions are far from being optimal. One main
problem is the fact that not all important variables are
known or measurable. Therefore, observers play a
very important role in this control task and will also
be the main issue of this contribution.

First of all the development of suitable observers
as well as control algorithms requires the derivation
of a dynamic mathematical model of the system un-
der control, i.e. the complex dynamics of glucose dis-
appearance and insulin kinetics(GD-IK). During the
last decades, considerable research has been devoted
to the derivation and improvement of such models,
and many of them have already been described in

the literature ranging from simple expressions to very
complex nonlinear mathematical models (Chee et al.,
2003). One model which is commonly used in the
literature is the so called minimal model. It is a sin-
gle input-output nonlinear dynamic system with four
states: the plasma insulin concentration leveli(t), the
plasma blood glucose levelg(t), a variablev(t) which
is proportional to the insulin in the remote compart-
ment andw(t) which represents the infusion rate by
means of a pump. The input variable of this minimal
GD-IK model is the effect of a pump while the plasma
blood glucose level is the output.

Most research which is so far interested in control
or observer synthesis using the minimal GD-IK model
is based on linearization of this model, see (Percival
et al., 2008), (Magni et al., 2007), (Hariri and Wang,
2011), (González and Femat, 2011), (Parker et al.,
1999), (Bergman et al., 1979), (L Kovcs, 2007) and
references therein. More recent work on the same
theme can be found in (Eberle and Ament, 2012) and
(Villafaa-Rojas et al., 2013). In this paper however,
we will design an observer for the nonlinear minimal
GD-IK model without any simplification. Indeed, we
will transform this model into a nonlinear observer
normal form. The considered model also contains an
unknown amountgM of glucose absorption from the
gut which will be estimated by the dynamic inversion
method. Furthermore, we distinguish two situations
in this work: the case wheregM is known and the case
wheregM is considered as an unknown disturbance
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rate. On the one hand, our contribution is based on
the works of (Krener and Isidori, 1983), (Respondek
and Pogromsky, 2004), (Boutat, 2007), (Boutat and
Busawon, 2011), (Boutat et al., 2009) in order to de-
rive a change of coordinates that transforms the mini-
mal GD-IK model into an observer nonlinear normal
from. This enables us to design a robust observer.
On the other hand, it is based on works of (Kudva
et al., 1980), (Yang and Wilde, 1988), (Darouach
et al., 1994), (Hui and Zak, 2005), (Bhattacharyya,
1978) to build an observer based on unknown distur-
bances.

This paper is organized as follows. The next sec-
tion presents the nonlinear minimal GD-IK model and
states the problem to be solved. The third section
deals with the change of coordinates and describes the
observer nonlinear normal form. The fourth section is
devoted to the design of two types of observers, a full
order observer by assuming thatgM is known and a
reduced observer in the case wheregM is unknown.

2 NOTATIONS AND PROBLEM
STATEMENT

In this paper the considered nonlinear minimal GD-
IK model is a combination of models extracted from
papers of (Hariri and Wang, 2011), (Percival et al.,
2008):





ġ=−P1g(t)−g(t)v(t)+P1gb+gM(t)
v̇=−P2v(t)+P3i(t)−P3ib
i̇ =−ni(t)+ γ(g(t)−h)t
y= g(t)

(1)

whereg(t) is the plasma blood glucose level;i(t) is
the plasma insulin concentration level;v(t) is the vari-
able which is proportional to the insulin in the remote
compartment,gb is the basal blood glucose level,gM
is the rate of glucose absorption from meal (glucose
absorption from the gut) andib is the basal insulin
level. ParameterP1 represents glucose effectiveness,
P2 denotes the decreasing level of insulin,P3 is the
rate at which insulin action is increased as the level
of insulin deviates from the corresponding baseline,γ
is the rate at which insulin is produced,n denotes the
fractional insulin clearance andh denotes the pancre-
atic target glycemia level. As in ((Hariri and Wang,
2011)), we add to the above model the pump dynam-
ics:

ẇ=
1
a
(−w(t)+u(t)) (2)

wherew(t) represents the infusion rate,u(t) the con-
trol input and a denotes the time constant of the
pump. From now on, this model is rewritten in a

general state variable format with four state variables
x1(t) = g(t), x2(t) = v(t), x3(t) = i(t), x4(t) =w(t):





ẋ1 =−P1x1− x1x2+P1gb+gM(t)
ẋ2 =−P2x2+P3x3−P3ib
ẋ3 =−nx3+ x4+ γ(x1−h)t
ẋ4 =−

1
ax4+

1
au

y= x1

(3)

This dynamic system can be further expressed in the
following compact form:

{
ẋ= f (x)+B1u+ν(t,y)+gM(t)B2

y= h(x)
(4)

where

• x= (x1,x2,x3,x4)
T is the vector of state variables

andh(x) = x1 is the output,

• f (x) =
(

−x1x2,−P2x2+P3x3,−nx3+x4,−
1
ax4

)T

is the drift vector field

• B1 =
(

0,0,0, 1
a

)T
is the control direction,

• B2 =
(

1,0,0,0
)T

is the unknown direction,

• ν(t,y) =
(

P1gb−P1y,−P3ib,γ(y−h)t,0
)T

is a
direction depending on the outputy and timet.

In this work, we consider the following problem:
How can we find a change of coordinatesz= φ(x) in
order to transform (3) into a nonlinear observer nor-
mal form, i.e.

{
ż= AOz+β(y, t)+B1u+α(y)gM(t)
y=COz= z4

(5)

where AO =




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


 , CO =

(
0 0 0 1

)
, and the new outputy = ϕ(y)

is a diffeomorphism of the outputy. In addition, this
nonlinear observer normal form enables us to deal
with the following problems:(i) Design an observer-
based feedback ifgM(t) is known or if gM(t) = 0
and (ii) Design an observer-based feedback by the
concept of inversion dynamics ifgM(t) is unknown.

3 NONLINEAR OBSERVER
NORMAL FORM OF GD-IK

3.1 Transformation Algorithm

There are several sophisticated geometrical algo-
rithms that enable us to transform the dynamic sys-
tem (4) into a nonlinear observer normal form (5), see
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(Krener and Isidori, 1983), (Respondek and Pogrom-
sky, 2004), (Boutat, 2007), (Boutat and Busawon,
2011). In this paper, thanks to the special form of
the proposed system, we can establish an algorithm
based on matrix calculus. At the same time, we pro-
vide an algorithm to compute change of coordinates.
For this purpose, let us consider a single input-output
dynamic system with the following form:

{
ẋ= Ax+µ(y, t,u,s(t))
y=Cx

(6)

with the vector of state variablesx ∈ R
n, the output

y ∈ R and the functionµ(y, t,u,s(t)) which does not
depend on the unmeasured state. We assume that the
pair (C,A) is observable. Thus, the matrix

O=




C
CA
...

CAn−1




is of full rank n. Let p(s) = sn + an−1sn−1 +
an−2sn−2 + ...+ a1s+ a0 be the characteristic poly-
nomial of the matrixA. We recall that the Cayley-
Hamilton theorem states thatp(A) = 0. Then the fol-
lowing result holds.

Theorem 1. The following linear change of coordi-
nates

zn =Cx
zn−i =CAix+∑i

k=1an−kCAi−kx for i = 1 : n−1
(7)

transforms the dynamic system (6) into the following
observer normal form:

{
ż= AOz+µ(y, t,u,v(t))
y=COz= zn

(8)

where the pair(CO,AO) is in Brunovsky canonical
form andµ is defined by its components as follows

µn =Cµ−an−1y
µn−i =CAiµ+∑i

k=1an−kCAi−kµ−an−i−1y
for i = 1 : n−1

(9)

Proof. We proceed by successive derivation of the
change of coordinates given in (7). Then, we obtain:

żn = CAx+Cµ= zn−1−an−1y+Cµ

żn−i = zn−i−1−an−i−1y+CAiµ+

+
i

∑
k=1

an−kCAi−kµ (10)

for i = 1 : n−2 (11)

ż1 = −a0y+CAn−1µ+
n−1

∑
k=1

an−kCAn−1−kµ

where the last equation is obtained by using the
Cayley-Hamilton theorem.

3.2 Application to the GD-IK

In this subsection, we will apply the results obtained
in the previous section to the GD-IK model. Let us
consider the nonlinear dynamic system (3). We start
by transforming it first into the form (6). For this we
use the concept of diffeomorphism on the output (see
(Respondek and Pogromsky, 2004) ,(Boutat, 2007),
(Boutat and Busawon, 2011), (Boutat et al., 2009)). In
our case we define the new outputy=− ln(y). Hence,
if we consider the new variableξ =− ln(x1), then the
dynamic system (3) is rewritten as follows:





ξ̇ = x2+P1−P1eygb−eygM
ẋ2 =−P2x2+P3x3−P3ib
ẋ3 =−nx3+ x4+ γ(e−y

−h)t
ẋ4 =−

1
ax4+

1
au

y= ξ =− lny

(12)

With the definition of the matrix

A=




0 1 0 0
0 −P2 P3 0
0 0 −n 1
0 0 0 −

1
a




and the vectorC =
(

1 0 0 0
)
, the dynamic

system given in (12) can be written in the desired form
given in (6):

Ẋ = AX+B1u+B2(y)gM +β(y, t)
y = CX = ξ

with X = (ξ,x2,x3,x4)
T and µ = B1u+ B2(y)gM +

β(y, t).
As the pair(C,A) is observable, we can use Theo-
rem 1. The characteristic polynomial ofA is given by
s4 +

(
n+P2+

1
a

)
s3 +

(
1
a (n+P2)+nP2

)
s2 + 1

anP2s,
then the change of coordinates can be given by th fol-
lowing expression:

z1 =
1
aP3x3+

n
ax2+P3x4−

1
anP2 lnx1

z2 = P3x3+
(
n+ 1

a

)
x2−

(
1
a (n+P2)+nP2

)
lnx1

z3 = x2+
(
n+P2+

1
a

)
lnx1

z4 =− lnx1 = ξ

Therefore, we obtain the nonlinear observer normal
form (6) for the nonlinear dynamic system (3) as fol-
lows:

{
ż= AOz+β(y, t)+B1u+α(y)gM(t)
y=COz= z4

(13)

where

• β(y, t) =
(

β1,β2,β3,β4
)T

with
β1 =

(1
a

(
e−y

−h
)
tγP3−

1
anP3ib

)
+

1
anP2P1 + P1

y
1
anP2gb, β2 = 1

anP2 lnx1 +
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P3γ(e−y
− h)t −

(
n+ 1

a

)
P3ib +(1

a (n+P2)+nP2
)

P1 + P1
y (

1
a (n+P2) + nP2)gb,

β3 = −

(
1
a (n+P2)+nP2

)
y − P3ib +(

n+P2+
1
a

)
P1 + P1

y (n + P2 + 1
a)gb,

β4 =−

(
n+P2+

1
a

)
y+P1+

P1
y gb

• B1 =
( P3

a ,0,0,0
)T

• α(y) = 1
y

(
1
anP2,

1
a (n+P2)+nP2,n+P2+

1
a ,1

)T

4 OBSERVER DESIGN

In this section we will present two types of observers.
The first one assumes thatgM is known and the second
one assumes thatgM is unknown. In the last case we
will design an observer to estimate both the state and
gM. First, it should be noted that (13) is controllable.

4.1 Full Order Observer

In the first case, we consider (13) and we define the
following observer-based feedback:

˙̂z= AOẑ+β(y, t)+B1u+α(y)gM +K(ŷ− y). (14)

If we set the observation errore = ẑ− z, we can
obtain that its dynamics is linear and given by ˙e=
(AO +KCO)e.As the pair(CO,AO) is observable we
can find a gainK such thatAO+KCO is asymptoti-
cally stable.
We provide also an observer-based feedback with
u = Kẑ such that the outputg(t), the glucose level,
reaches the glucose basal level (99mg/dl) , see also
Fig. 1. The estimations of the states as well as the
actual values obtained in the simulation are given in
Fig. 2 - Fig. 4, respectively. The parameters and ini-
tial states used in the simulations are:P1 = 0 P2 =
0.81/100,P3 = 4.01/1e6 n= 0.23,a= 2, gb=
99, ib = 8 , γ = 2.4/1000,h = 93 , x1 (0) =
337 ,x2 (0) = 0, x3 (0) = 192 ,x4 (0) = 2. These pa-
rameters and initial states are the same as in (Hariri
and Wang, 2011).

4.2 Observer for Unknown Input

In the second case we assume thatgM is an unknown
input and we will design an observer to estimate both
the state andgM. If we considergM as an unknown
input, we can follow (Kudva et al., 1980), (Yang and
Wilde, 1988), (Darouach et al., 1994), (Hui and Zak,
2005), (Bhattacharyya, 1978) which leads to a de-
composition of the state of the observer normal form
(13) into two parts, namely the unmeasurable and the
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Figure 1: Evolution ofg(t).
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Figure 4: Evolution ofw(t).

measurable part:z = (I − MC)z+ MCz= q+ My,
where

M =
1

COα
α=

(
1
anP2,

1
a (n+P2)+nP2,n+P2+

1
a ,1

)T

is a constant matrix even ifα is not constant. There-
fore we have the following projector:
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Π̃ = I −MC=




1 0 0 −
1
anP2

0 1 0 −

(
1
a (n+P2)+nP2

)

0 0 1 −

(
n+P2+

1
a

)

0 0 0 0


 .

Now, we consider the dynamics of the unknown part
q. Thanks to the fact that̃Πα = 0, we obtain ˙q =
Π̃
(
AOq−My+B1u+β(y, t)

)
. An observer for this

last dynamic system is derived as follows:
˙̂q = Π̃

(
AOq̂−My+B1u+β(y, t)

)
−

−Π̃(LCO (q̂−q)) (15)

ẑ = q̂+My (16)

Therefore, the dynamics of the erroreq = q̂− q is
given by ėq = Π̃(AO−LCO)e. In order to write the
projector Π̃ in the canonical form, we proceed as
in the algorithms described in (Kudva et al., 1980),
(Yang and Wilde, 1988), (Darouach et al., 1994), (Hui
and Zak, 2005), (Bhattacharyya, 1978), and we con-
sider the change of coordinates given by the following
matrix:

Q=




1 0 0 1
anP2

0 1 0 nP2+
1
a (n+P2)

0 0 1 n+P2+
1
a

0 0 0 1




In these new coordinates the projectorΠ̃ = I −MC
becomes:

Π = Q−1Π̃Q=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




and the matrixAO is decomposed into four blocs:

ÃO = Q−1AOQ=

(
Ã1,1 Ã1,2

Ã2,1 Ã2,2

)

where Ã1,1 =




0 0 −
1
anP2

1 0 −
1
a (n+P2)−nP2

0 1 −P2−
1
a −n




Ã2,1 =
(

0 0 0
)

Ã1,2 =


−
1
anP2

(
n+P2+

1
a

)
1
anP2+

1
a

(
n+P2+

1
a

)
(−n−P2−anP2)

nP2+
1
a (n+P2)+

1
a

(
n+P2+

1
a

)
(−an−aP2 −1)




Ã2,2 = 0 , C̃ = CQ =
(
C̃1,C̃2

)
with C̃1 =

(
0 0 0

)
and C̃2 = 1. The following result

is widely established in (Kudva et al., 1980), (Yang
and Wilde, 1988), (Darouach et al., 1994), (Hui and
Zak, 2005), (Bhattacharyya, 1978):

Theorem 2. As rank(COα) = rank(α) and the pair
(Ã1,1,C̃1) is detectable (becausẽA1,1 is asymptoti-
cally stable for all initial condition q(0) = Pz(0)),
(15) is an asymptotic observer.

Remark 3. The observer normal for (14) becomes
under the change of coordinatesz̃= Qz as follows:

˙̃z= ÃOz̃+ β̃(y, t)+B1u+ α̃(y)GM (17)

whereB1 has not changed,̃α = Q−1α = (0,0,0, 1
y)

T ,

and β̃ = Q−1β = β + β4Q−1(0,0,0,1)T
−

(0,0,0,β4)
T .

Now, we are ready to compute the inverse dynam-
ics of the observer normal form (13). For this, let
us denotezr = (z̃1, z̃2, z̃3)

T , β̃r = (β̃1, β̃2, β̃3)
T , and

B1,r = (B1,1,0,0)T , then the inverse dynamics is as
follows:

{
żr = Ã1,1+B1,ru+ β̃r(y, t)
gM = e−y(ẏ−β4)

(18)

Using the same parameters and initial states given in
the previous subsection, an estimation of the unknown
gM is performed. The results of this simulation are
depicted in Fig. 5.
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Figure 5: Estimation by inverse dynamics ofgM .

Remark 4. The existing papers dealing with the ob-
server of the GD-IK model given by the nonlinear
dynamic system (3), only estimated the glucose level
g(t). However, in this work we estimate also i(t) and
ν(t). Moreover, we estimate by inverse dynamics gM
which has not been addressed anywhere yet.

5 CONCLUSIONS

To the best of our knowledge this paper is the first
one which has dealt with observer an design for the
minimal model GD-IK using the nonlinear observer
form concept. Moreover, it has applied the inverse
dynamics of the GD-IK model in the case where the
amount of glucose absorption is unknown or consid-
ered as a meal disturbance input. First simulation re-
sults have underlined the correctness and applicability
of this novel approach. Furthermore, this observer can
be used to design a controller to regulate the glucose
level.
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