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Abstract: Resistance to antiretroviral drugs has been a major obstacle for a long-lasting treatment of HIV infected 
patients. The development of models to predict drug resistance is already recognized as useful for helping 
the decision making process regarding the best therapy for each individual HIV+. The aim of this study was 
to develop classifiers for predicting resistance to HIV protease inhibitor Nelfinavir using probabilistic neural 
network (PNN). The data were provided by the Molecular Virology Laboratory of the Health Sciences 
Center, Federal University of Rio de Janeiro (CCS-UFRJ/Brazil). Using a combination of bootstrap and 
cross-validation to develop the classifiers, four features were selected to be used as input for the network. 
Additionally, this approach was also used to define the spread parameter of the PNN networks. Final 
modelling strategy involved the development of four PNN networks with balanced data and evaluation of 
the models was done using a separate test set. The accuracies on the test set of the classifiers ranged from 
71.2 to 76.0% and the area under the receiver operating characteristic (ROC) curve (AUC) ranged from 0.70 
to 0.73. For the two best classifiers the sensitivity and specificity were 66.7% and 78.9% respectively, and 
the accuracy and AUC were 76.0% and 0.73 for both classifiers. The classifiers showed performances very 
close to two existing expert-based interpretation systems (IS), the Stanford HIV db and the Rega algorithms. 
The analysis also illustrates the use of a computational approach for feature selection and model parameters 
estimation that can be used in other settings. 

1 INTRODUCTION 

The acquired immunodeficiency syndrome (AIDS), 
first documented in 1981, is an infectious disease 
caused by the human immunodeficiency virus 
(HIV). This syndrome is one of the main causes of 
death in the world, been responsible for about 1.8 
million deaths in 2010 (UNAIDS, 2011).  

Despite the efforts of researchers worldwide, the 
design of an effective vaccine and cure of HIV are 
still uncertain (Barouch, 2008). Nevertheless, some 
approved antiretroviral drugs are available for 
treatment of HIV infection and currently, the use of 
multiple drugs, known as highly active antiretroviral 
therapy (HAART), is widely available to HIV-
infected patients. Many people infected with HIV 
gained years of life due to the use of HAART 
(Bushman et al, 1998). Currently several 
governments and different international 
organizations are providing free antiretroviral 

therapy to patients from developing countries 
(Peeters, 2001).  

However, despite all efforts, some HIV-infected 
patients had treatment failure due to various factors 
such as drug toxicity and resistance, sub-optimal 
drug metabolism and poor adherence. Among these 
causes, drug resistance plays a central role in 
HAART failure (Richman, 2006). 

The use of tests that identify HIV drug resistance 
is recommended as an important monitoring tool in 
clinical practice. Phenotyping is considered the gold 
standard test and it provides a direct quantitative 
measure of the susceptibility of certain strains of 
HIV drugs. However, this test is quite expensive, 
demanding a long time to obtain results and it is a 
complex procedure requiring specialized 
laboratories (Wang and Larder, 2003; Vermeiren et 
al, 2007). Alternatively, genotyping is able to 
determine the presence or absence of specific 
genetic mutations in the HIV that were previously 
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associated with drug resistance. This test become a 
routine diagnostic tool for monitoring HIV 
infections since it is a faster and less expensive test, 
and therefore a more available procedure (Wang and 
Larder, 2003). Based on the genotype, a variety of 
methods have been developed for the prediction of 
resistance mutations directly from the sequences.  

Different techniques have being applied to the 
development of predictive models, including those 
based on statistical methods (Prosperi et al, 2009; 
Van der Borght et al, 2013), neural networks (Bonet 
et al, 2007; Pasomsub et al, 2010), support vector 
machine (Beerenwinkel et al, 2003) and decision 
trees (Beerenwinkel et al, 2002). For the 
development of such predictive models one has a 
protein sequence of length n, and since there are 20 
amino acids it results in 20n possible features to 
represent one sequence. Therefore, one of the major 
issues is to reduce the dimension of the features that 
represent the protein sequence. This can be achieved 
by using some feature selection method to find the 
best features subset with major influence in the 
resistance. 

The objectives of this paper are: (i) to evaluate a 
new feature selection strategy combining bootstrap 
and cross-validation, (ii) to investigate the 
performance of the probabilistic neural network 
(PNN) as a tool to predict resistance to Nelfinavir, a 
protease inhibitor used to promote viral suppression 
and improve immunity in HIV-infected patients, and 
(iii) to compare the predictive value of the PNN with 
two well-know interpretation systems (IS).   

2 MATERIALS AND METHODS 

The data were provided by the Laboratory of 
Molecular Virology of the Center of Health 
Sciences, Federal University of Rio de Janeiro 
(CCS-UFRJ/Brazil), a member of the network of 
genotyping laboratories of the Ministry of Health 
(RENAGENO). 

For this study a total of 625 amino acid 
sequences of the protease enzyme of the pol gene of 
HIV-1, subtypes B, from 625 patients infected by 
this virus were analyzed. Additional available 
variables were CD4 T cell count and viral load in the 
last period of treatment.  

Basic demographic and clinical information of 
the patients under study are described in Table 1, 
where non-resistants refer only to Nelfinavir. 

The dependent variable was the indication of 
whether or not the patient had resistance to 
the  inhibitor  Nelfinavir.  Patients  that  for  the   last 

Table 1: Summary of clinical characteristics of patients 
(n=625). 

Parameters All Resistants Non 
resistants 

Average age, 
years (±sd) 

38.15 
(12.00) 

36.13 
(11.47) 

38.68 
(13.72) 

Male, (%) 421 (67.4) 81 (12.96) 340 (54.4) 
Average viral 

load, log 
copies/ml 

(IQR) 

4.58 (4.09 
- 5.00) 

4.50 (4.00 
- 4.91) 

4.60 (4.11 
- 5.02) 

Average CD4 
T cell count, 

cells/mm³ 
(IQR)

300.5 
(127.0 - 
420.0) 

304.7 
(164.5 - 
443.2) 

299.4 
(124.5 - 
407.0) 

sd: standard deviation 
IQR: interquartile range 

regimen of the therapy had no indication of being 
using Nelfinavir were considered as susceptible and 
the outcome variable was coded as 0, while those 
who shown failure were coded as 1 and classified as 
resistant to the drug. The explanatory variables 
where a set of selected amino acid mutation 
positions for the HIV-1 protease gene (PR) known to 
influence drug resistance, the CD4 T cell count and 
the viral load. The positions included for analysis 
were those reported by Johnson et al (2011), an 
update list of the International Antiviral Society 
(IAS-USA), which lists the mutations associated 
with resistance to antiretroviral drugs. The selected 
amino acid positions were: L10, D30, M36, M46, 
A71, V77, V82, I84, N88 and L90. To implement 
the neural network model, the amino acids were 
coded using the Eisenberg consensus hydrophobicity 
scale (Eisenberg et al, 1984), shown in Table 2.  

The 625 available samples were divided into two 
different subsets using stratified sampling: a training 
set with 500 patients and an external test set 
composed with 125 patients. In the training group, 
400 patients had no resistance to Nelfinavir, while 
100 were resistant. In the test group, 30 patients 
were resistant to the antiretroviral therapy and 95 
had no resistance. The training set was used for the 
selection of input variables and the spread parameter 
of the PNN model, and the test set was used to 
evaluate the final performance of the models.  

It is important to select the best set of input 
variables to enhance the classification process as 
well as to reduce the training and test time of the 
models. This feature selection was carried out using 
a combination of bootstrap, a technique proposed by 
Efron (1979) which yields a new set of data by 
resampling with replacement the original data set, 
and cross-validation. We obtain 100 bootstrap 
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samples with the same size of the resistant samples 
in the training set (100), and each of these bootstrap 
samples was combined with a random sample of size 
100 obtained from sampling with replacement from 
the 400 non-resistant samples, resulting in a 
balanced set of paired data (100 resistant and 100 
non-resistant). For each of these balanced subsets, a 
PNN model was implemented and the spread is 
varied from 0.1 to 1 in steps of 0.1. 

Table 2: Eisenberg hydrophobicity scale. 

Amino Acid Symbol Value 
Arginine R - 2.53 
Lysine K - 1.50 

Aspartic acid D -0.30 
Glutamine Q -0.85 
Asparagine N -0.78 

Glutamic acid E -0.74 
Histidine H - 0.40 

Serine S -0.18 
Threonine T -0.05 

Proline P 0.12 
Tyrosine Y 0.26 
Cysteine C 0.29 
Glycine G 0.48 
Alanine A 0.62 

Methionine M 0.64 
Tryptophan W 0.81 

Leucine L 1.06 
Valine V 1.08 

Phenylalanine F 1.19 
Isoleucine I 1.38 

For each spread, the best set of variables was 
obtained using sequential forward selection (SFS) 
method. The criterion to choose the variables was 
based on the area under the receiver operating 
characteristic (ROC) curve (AUC). First, for each 
bootstrap sample the average AUC associated to the 
10-fold cross-validation set is computed for each of 
the variables. In 10-fold cross-validation, the 
balanced set of paired data is randomly partitioned 
into 10 equal subsamples. The PNN is trained with 
nine-tenths of the data, and the remaining single 
subsample is used for testing the model, computing 
the AUC. The cross-validation process is 
repeated 10 times, with each of the 10 subsamples 
used exactly once to compute an estimated AUC. 
The ten AUC's from the folds were averaged to 
produce a single estimation. The input variable with 
the best average AUC is selected.  

In the next step, all possible two-dimensional 
vectors containing the variable selected in the 
previous step are formed. A new PNN in each case 
is trained and its AUC is calculated. As before, the 

variable that yields the largest average AUC is 
selected. The procedure continues by evaluating 
each additional variable at a time, and the algorithm 
finishes when the nth dimensional vector computed 
from the nth step does not improve the AUC. This 
process is repeated for each spread value and the 
model with largest AUC is selected, storing the 
variables that were selected and the corresponding 
spread value. This procedure is repeated for each 
one of the 100 bootstrap samples and the number of 
times each input variable is selected is computed. 
The final input variables are those that were selected 
at least in 60% of the bootstrap samples. Figure 1 
summarizes the methodology of this study. 

 

Figure 1: Scheme of variable selection and spread of PNN. 

In this study, we used the Probabilistic Neural 
Network, a type of artificial neural network 
appropriate for classification problems developed by 
Specht (1990). This particular neural network has a 
faster training than the multilayer perceptron 
network. It generates accurate predicted target 
probability scores, approaches Bayes optimal 
classification and it is relatively insensitive to 
outliers.  

PNN is an implementation of the kernel 
discriminant analysis statistical algorithm and it is 
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based on Bayesian decision to classify the input 
vectors. The optimal decision rule, which minimizes 
the average cost of misclassification, is called the 
optimal decision rule of Bayes (Berrar et al, 2003). 
The architecture of a typical PNN is as shown in 
Figure 2. 

 

Figure 2: Basic architecture of a probabilistic neural 
network.  

The input layer has as many neurons as the number 
of the explanatory variables, which here, initially are 
the most frequent mutations found in the protease 
gene associated with resistance to Nelfinavir 
(positions: L10, D30, M36, M46, A71, V77, V82, 
I84, N88 and L90), CD4 T cell count and viral load. 
This input layer does not perform any operation on 
the input vectors, and they only are used to feed the 
input values to each of the neurons in the pattern 
layer. The pattern layer contains one neuron for each 
case in the training data set. The weights of the 
neurons are the feature values describing the case 
plus the class to which it belongs. Each pattern 
neuron forms a dot product of the input pattern 
vector with a weight vector, and then performs a 
non-linear operation on the result. Each neuron 
receives the input vector and estimates its 
probability density function (PDF), using the Parzen 
window method (Parzen, 1962). In this study, the 
Gaussian function was used as THE Parzen window. 
The ith kernel node in the jth group is defined as a 
Gaussian basis function: 
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where xi,j is the vector of the sample that is stored in 
the standard unit of class i or j, d is the number of 
input variables and σ is a smoothing factor that 
affects the shape of the surface of the decision 
network, and is known as the spread of the PNN. 

The summation layer has as many processing 

elements as there are classes to be recognized. This 
layer sums the results separated by class that come 
from the pattern layer. The output layer, which 
provides the classification of the input data, makes 
the decision based on the maximum probability of 
the Bayes’ rule. A competitive transfer function on 
the output neurons selects the node with the highest 
output, and output a 1 (positive identification) for 
that class and a 0 (negative identification) for non-
targeted classes.  

The ROC curve analysis was used to evaluate the 
classifiers and to select the optimal probability 
threshold. This curve is obtained by plotting pairs of 
sensitivity and false positive rate (1-specificity) at 
each point (Zweig and Campbell, 1993). A model 
totally incapable of discriminating values belonging 
to one class or another has an AUC equal to 0.5. The 
higher the model's ability to discriminate the values 
to the classes, the more the curve approaches the 
upper left corner of the graph and the AUC 
approaches 1. Additionally we computed the 
accuracy, sensitivity, specificity and positive and 
negative predictive values for the final models.  

The accuracy (Acc) is defined as the proportion 
of correct classification by the model over the total 
sample. This metric is given by the following 
formula: 

Acc = (TP + TN) / (TP + FP + TN + FN) (2)

where TP, FP, TN and FN are true positives, false 
positives, true negatives and false negatives, 
respectively. 

The sensitivity (Se) is defined as the proportion 
of true positives as compared to the total positive 
class, whereas specificity (Sp) comprises the 
proportion of true negatives in relation to the total 
negative class. 

Se = TP / (TP + FN) (3)

Sp = TN / (TN + FP) (4)

The classifiers were compared to two expert-based 
interpretation systems, the Stanford HIV db (version 
6.2.0) (Liu and Shafer, 2006) and Rega (version 
8.0.2) (Van Laethem et al, 2009). The performance 
of both algorithms was analysed using the same test 
set used with the PNN classifiers. Stanford HIV db 
classifies the results in five levels of resistance: 
susceptible, potential-low, low, medium and high 
resistance. The algorithm Rega, on the other hand, 
ranks according to a defined cut-off, where values 
below 1.25 are considered susceptible; values 
greater than or equal to 1.25 represent an 
intermediate resistance while values greater than 2.0 
indicate high level of resistance. 
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The proposed PNN classifiers were implemented 
using the MATLAB software package (MATLAB 
version 7.0 with neural networks toolbox), and some 
of the statistical analysis was done using the open 
source R software. 

3 RESULTS 

The proposed combined approach of bootstrap and 
10-fold cross validation was used to select the best 
feature subset to predict Nelfinavir resistant cases. 
The selected features for the input vector for the 
PNN classifier had only 4 mutation positions: D30, 
I84, N88 and L90. The percentages that each one of 
the available input variables was selected in the 100 
bootstrap samples are shown in Figure 3. 

 
Figure 3: Frequency of variables selected in the 100 
bootstrap samples. 

The final set of features was selected considering 
from all simulations the set that was present in more 
than 60% of the simulations. The spread of the PNN 
was set to 0.73, the average of the 100 spreads 
derived at each iteration for selecting the features.  

The test set, which was not used at any stage of 
the procedure for feature selection and parameter 
estimation, was used to evaluate four PNN 
classifiers. These classifiers were obtained by using 
the same 100 resistant samples combined with a 
random sample of size 100 without replacement 
from the 400 non-resistant patients. Tables 3 and 4 
show the performance of these classifiers. The 
classifiers 3 and 4 showed the best results. Values of 
sensitivity and specificity were 66.7% and 78.9% 
respectively. The accuracy was 76.0% and the AUC 
was 0.73. The ROC curves for the four classifiers 
are shown in Figure 4. 

Stanford HIV db and Rega showed three levels 
of resistance for the test set: susceptible, 
intermediate resistance and high level of resistance. 
To compare the performance of these algorithms 
with our results, the results were classified according 
to two criteria: (1) samples classified as susceptible 

were assigned to the class of non-resistant and 
intermediate and high resistance formed the resistant 
class, and (2) samples classified as susceptible or 
intermediate resistance composed the class of non-
resistant and samples classified as high resistance 
composed resistant class. Table 5 summarizes the 
performance of these two algorithms. 

 

 
Figure 4: ROC curve for the four PNN classifiers. 
Classifiers 1, 3 and 4 had similar behavior. 

Table 3: Distribution of patients in the test set according to 
the classifiers output versus observed class (n = 125). R: 
resistants; NR: non resistants. 

A) Classifier 1 

 Observed Classes (Targets) 
Outputs R (%) NR (%) Total 

R 20 (16) 26 (20.8) 46 
NR 10 (8) 69 (55.2) 79 

Total 30 95 125 

B) Classifier 2 

 Observed Classes (Targets) 
Outputs R (%) NR (%) Total 

R 15 (12) 18 (14.4) 33 
NR 15 (12) 77 (61.6) 92 

Total 30 95 125 

C) Classifier 3 

 Observed Classes (Targets) 
Outputs R (%) NR (%) Total 

R 20 (16) 20 (16) 40 
NR 10 (8) 75 (60) 85 

Total 30 95 125 

D) Classifier 4 

 Observed Classes (Targets) 
Outputs R (%) NR (%) Total 

R 20 (16) 20 (16) 40 
NR 10 (8) 75 (60) 85 

Total 30 95 125 
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Table 4: Performance of PNN classifiers. 

 AUC Se (%) Sp (%) Acc (%) 
Classifier 1 0.73 66.7 72.6 71.2 
Classifier 2 0.70 50.0 81.1 73.6 
Classifier 3 0.73 66.7 78.9 76.0 
Classifier 4 0.73 66.7 78.9 76.0 

Mean 0.72 62.5 77.9 74.2 

Se: sensitivity; Sp: specificity and Acc: accuracy. 

Table 5: Performance of Stanford HIVdb and Rega 
algorithms. 

 Se (%) Sp (%) Acc (%) 
Stanford HIVdb    

Criterion 1 70.0 60.0 62.4 
Criterion 2 66.7 70.5 69.6 

Rega    
Criterion 1 53.3 63.2 60.8 
Criterion 2 23.3 74.7 62.4 

Se: sensitivity; Sp: specificity and Acc: accuracy. 

4 DISCUSSION 

In the present study, we developed PNN classifiers 
to predict the resistance to the antiretroviral 
Nelfinavir. This analysis was done for the first time 
using data from the National Genotyping Network 
(RENAGENO) with a focus in the development of 
predictive modeling. 

Here, it was demonstrated that the Eisenberg 
hydrophobicity scale is a suitable approach to 
represent the HIV genotype. Additionally, with the 
use of the combined proposed approach for feature 
selection, we derived a reduced set of input features 
that resulted, for the available data, in a classifier 
with prediction performance that was greater or at 
least comparable to two well-known interpretation 
systems. 

The available data set had fewer instances of the 
resistance class compared to the susceptible or non-
resistance class. This condition is a well-known 
problem for most classification algorithms (He and 
Garcia, 2009). Here, we addressed this problem by 
using random undersampling of the majority class. 
This procedure was important to avoid the great 
tendency of the model to be biased towards the 
majority class. For example, if the data have a large 
number of negative cases, it is likely that the 
classifier will show a higher specificity than 
sensitivity, which may result in a greater accuracy. 
So it is important that, beyond global performance 
metrics, such as AUC or Acc, other parameters 
should be evaluated in a study, such as sensitivity 

and specificity. The absence of these parameters 
may lead to misinterpretations. Many studies do not 
present these parameters, reporting only accuracy, 
making it difficult to proper evaluated their results. 
For instance, in a recent study, Pasomsub et al 
(2010), with a feedforward artificial neural network 
showed that the developed classifier had an AUC 
equal to 0.94 (IC: 0.92 - 0.97) for the antiretroviral 
Nelfinavir. However, they did not mention other 
performance indices, such as sensitivity and 
specificity, and additionally there is no mention if 
their dataset is balanced or not. 

In our study, the performance of the classifiers 
showed accuracies ranging from 71.2 to 76.0% and 
AUC ranging from 0.70 to 0.73. The four classifiers 
showed very similar performances, and in all cases 
they were at least comparable to the Stanford HIVdb 
and Rega algorithms. In a previous work, Raposo et 
al (2013) evaluated the use of a logistic regression 
model with the same data of the present study. Four 
models were also obtained and the performance was 
inferior to the PNN model. Average performance for 
the logistic was: AUC equal to 0.67, 72.4% of 
accuracy, 56.7% of sensitivity and 77.4% of 
specificity.  

An addition issue that merits some discussion is 
related with the use of balanced data set. Here, our 
main interest is in a system capable to identify 
resistance to a particular antiretroviral, therefore 
models with higher sensitivity should be preferred. 
When using unbalanced data, the PNN model 
showed sensitivity and specificity equal to 50% and 
93.7%, respectively. This is an expected result 
considering the large number of non-resistant 
individuals compared to resistants. The AUC was 
0.71, similar to the balanced dataset case, but the 
accuracy of 83.2% is higher, which is a result of the 
unbalanced dataset. Using a global metric to 
compare performance, such as AUC, there was no 
major difference between using balanced or 
unbalanced data. However, if we stick with the 
model obtained using the unbalanced data, the 
sensitivity of 50% would be equivalent to a random 
chance to indicate that an individual is resistant to 
the drug, in contrast with the model obtained with 
balanced which has a sensitivity of 62.5%. 

5 CONCLUSIONS 

This paper presented four models to predicting HIV 
drug resistance. The classifiers 3 and 4 showed the 
best results and achieved a sensitivity of 66.7% and 
a specificity of 78.9%. The accuracy was 76.0% and 
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the AUC was 0.73. 
These results show that the classifiers proposed 

in this study presents similar results to the Stanford 
HIV db and Rega algorithms that are used for many 
clinicians to determine resistance to specific 
antiretrovirals. This suggests that our models can be 
used for the classification of new individuals in 
relation to the development of resistance to 
Nelfinavir and is a simple cost-effective tool that can 
help clinicians in the management of each HIV+ 
individual. 
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