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Abstract: This paper describes an exploratory analysis on the usefulness of the information made available from 
Ultrasonic Doppler signal data collected from a single speaker, to detect velum movement associated to 
European Portuguese nasal vowels. This is directly related to the unsolved problem of detecting nasality in 
silent speech interfaces. The applied procedure uses Real-Time Magnetic Resonance Imaging (RT-MRI), 
collected from the same speaker providing a method to interpret the reflected ultrasonic data. By ensuring 
compatible scenario conditions and proper time alignment between the Ultrasonic Doppler signal data and 
the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of 
movement under a nasal vowel occurrence. The combination of these two sources revealed a moderate 
relation between the average energy of frequency bands around the carrier, indicating a probable presence 
of velum information in the Ultrasonic Doppler signal. 

1 INTRODUCTION 

A known challenge in Silent Speech Interfaces 
(SSI), including those based on Ultrasonic Doppler 
Sensing (UDS) (Freitas et al., 2012a), is the 
detection of the nasality phenomena in speech 
production, being unclear if information on nasality 
is present in the UDS signal. Nasality is an 
important characteristic of several languages, such 
as French and European Portuguese (EP) (Teixeira, 
2000), being the latter the selected language for the 
experiments here reported. Additionally, it has been 
shown before, that nasality can cause severe word 
recognition degradation in UDS (Freitas et al., 
2012a) and Surface Electromyography (Freitas et 
al., 2012b) based interfaces for this language.  

An SSI can be seen as a possible alternative to 
conventional speech interfaces since they allow for 
communication to occur in the absence of an 
acoustic signal. It brings advantages when used in 
situations where privacy or confidentiality is 
required, in the presence of environmental noise, 

such as in office settings, or when used by speech-
impaired persons such as those who were subjected 
to a laryngectomy, making it a suitable candidate for 
an interface to be used in Ambient Assisted Living 
scenarios. An UDS-based SSI could eventually be 
included in a multimodal interface as one of the core 
input modalities (Zhu et al., 2007, Freitas et al., 
2013). 

The UDS approach main advantages are: its non-
invasive nature, since the device is completely non-
obtrusive and it has been proven to work without 
requiring any attachments; not being affect by 
environment noise in the audible frequency range; 
the required hardware is commercially available; 
and is very inexpensive. These advantages make 
UDS an interesting approach and an attractive 
research topic in the area of Human-Computer 
Interaction (HCI) (Raj et al., 2012). The sensing 
method is based on the emission of a pure tone in the 
ultrasonic range towards the moving target and the 
reflected signal is captured by an ultrasound receiver 
tuned to the transmitted frequency. The movement 

232
Freitas J., Teixeira A. and Sales Dias M..
Can Ultrasonic Doppler Help Detecting Nasality for Silent Speech Interfaces? - An Exploratory Analysis based on Alignement of the Doppler Signal with
Velum Aperture Information from Real-Time MRI.
DOI: 10.5220/0004725902320239
In Proceedings of the International Conference on Physiological Computing Systems (PhyCS-2014), pages 232-239
ISBN: 978-989-758-006-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



of the target will cause Doppler shifts in the 
reflected signal, creating components at different 
frequencies, proportional to their velocity relative to 
the sensor. This technique has been applied to many 
areas of speech technology (Kalgaonkar and Raj, 
2008; Toth et al., 2010), including speech and silent 
speech recognition (Srinivasan et al., 2010; Freitas 
et al., 2012a).  

This paper describes an exploratory analysis on 
the existence of velum movement information 
detected in the Ultrasonic Doppler signal. The 
reflected signal contains information about the 
articulators and the moving parts of the face of the 
speaker, however, it is yet unclear how to 
distinguish between articulators and if velum 
movement information is actually being captured. 
Therefore, considering our aim of detecting velum 
movement and to provide a ground truth for our 
research, we used images collected from Real-Time 
Magnetic Resonance Imaging (RT-MRI) and 
extracted the velum aperture information during the 
nasal vowels of European Portuguese. Then, by 
combining and registering these two sources, 
ensuring compatible scenario conditions and proper 
time alignment, we are able to accurately estimate 
the time when the velum moves and the type of 
movement (i.e. ascending or descending) under a 
nasal vowel production phenomenon. Using this 
method we are able to correlate the features 
extracted from the UDS signal with the signal that 
represents the velum movement and analyse if 
velum information is being captured in our UDS 
signal analysis, for all nasal vowels. 

The remainder of this paper is structured as 
follows: section 2 presents background notions of 
the nasality phenomenon and its impact on European 
Portuguese, as well as a description of how the 
Doppler Effect works; section 3 presents UDS 
related work in the area of HCI; section 4 describes 
the methodology used for extracting information 
from the RT-MRI images, the UDS device, how 
both signals were synchronized and the features 
extracted from the Ultrasonic signal; in section 5 the 
results of our exploratory analysis are presented; in 
section 6 we discuss these results and finally, in 
section 7, we present the conclusions of this study.  

2 BACKGROUND 

2.1 Nasality in European Portuguese 

The production of a nasal sound involves air flow 
through the oral and nasal cavities. This air passage 

for the nasal cavity is essentially controlled by the 
velum that when lowered allows for the 
velopharyngeal port to be open, enabling resonance 
in the nasal cavity and the sound to be perceived as 
nasal. The production of oral sounds occurs when 
the velum is raised and the access to the nasal cavity 
is closed (Teixeira, 2000). 

Nasality is a common characteristic of 
several languages around the world, however, only 
20% of these languages have nasal vowels (Rossato 
et al. 2006). In EP there are five nasal vowels ([ɐ̃, ẽ, 
ĩ, õ, ũ])); three nasal consonants ([m], [n], and [ɲ]); 
and several nasal diphthongs [wɐ̃] (e.g. quando), 
[wẽ] (e.g. aguentar), [jɐ̃] (e.g. fiando), [wĩ] (e.g. 
ruim) and triphthongs [wɐ̃w] (e.g. enxaguam). Nasal 
vowels also diverge among languages, for example, 
nasal vowels in EP differ from French in its wider 
variation in the initial segment and stronger nasality 
at the end (Trigo, 1993; Lacerda and Head, 1966). 
Differences at the pharyngeal cavity level and velum 
port opening quotient were also detected by Martins 
et al. (2008) when comparing the articulation of EP 
and French nasal vowels. 

2.2 The Doppler Effect 

The Doppler Effect is the modification of the 
frequency of a wave when the observer and the wave 
source are in relative motion. If ݒୱ and ݒ୭	are the 
speed of the source and the observer measured on 
the direction observer-source, if c is the propagation 
velocity of the wave on the medium and if ଴݂	is the 
source frequency, the observed frequency will be: 

݂ ൌ
ܿ ൅ ௢ݒ
ܿ ൅ ௦ݒ

଴݂ (1)

Considering a standstill observer ݒ௢ ൌ 0 and ݒ௦ ≪ c  
the following approximation is valid: 

݂ ൌ ቀ1 െ
௩ೞ
௖
ቁ ଴݂ or  ∆݂ ൌ െ

௩ೞ		
௖ ଴݂ (2)

We are interested in echo ultrasound to characterize 
the moving articulators of a human speaker. In this 
case a moving body with a speed ݒ		(positive when 
the object is moving towards the emitter/receiver) 
reflects an ultrasound wave, whose frequency is 
measured by a receiver placed closely to the emitter. 
The observed Doppler shift will then be the double: 

∆݂ ൌ
ݒ2
ܿ ଴݂ (3)
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3 RELATED WORK 

In this section we present the work related with 
Ultrasonic sensors applied to HCI, in particular to 
speech recognition. Ultrasonic sensors have been 
applied to diverse and multiple areas that go from 
industrial automation to medical solutions, however, 
only in 1995 this technology was applied to speech 
recognition by Jennings and Ruck (1995), presenting 
the first “Ultrasonic Mike” with the goal of 
improving automatic speech recognition in noisy 
environments. In their work, Jennings and Ruck 
used an emitter and a receiver based on piezoelectric 
material and a 40 kHz oscillator to create a 
continuous wave ultrasonic signal.  

More than a decade later, in 2007, Ultrasonic 
Doppler research saw new developments being 
applied to distinct areas of HCI, including speech 
recognition (Zhu et al., 2007). Since then, Ultrasonic 
Doppler has been applied to characterization and 
analysis of human gait (Kalgaonkar and Raj, 2007), 
gesture recognition (Kalgaonkar and Raj, 2009), 
speaker recognition (Kalgaonkar and Raj, 2008), 
speech synthesis (Toth et al., 2010), voice activity 
detection (Kalgaonkar et al., 2007), silent speech 
(Freitas et al. 2013) and speech recognition 
(Srinivasan et al., 2010; Freitas et al., 2012).  

Still, several issues that can be found in the state-
of-the-art remain unsolved: speaker dependence, 
sensor distance sensitivity, spurious movements 
made by the speaker, silent articulation, amongst 
others. Since Doppler shifts capture the articulators’ 
movement, we believe that some of these problems 
can be attenuated or even solved if information 
about each articulator can be extracted.  

In terms of UDS signal analysis Livescu et al. 
(2009) studied the phonetic discrimination in the 
UDS signal. In this study the authors tried to 
determine a set of natural sub-word units, 
concluding that the most prominent groupings of 
consonants include both place and manner of 
articulation classes and, for vowels, the most salient 
groups include close, open and round vowels. 

In this paper we focus on determining if a 
particular articulator – the velum – is actually 
captured by the sensor and determine in which cases 
it is more evident by looking at the occurrence of 
nasal vowels in EP, a language with strong and 
particular nasal characteristics. 

 
 

4 DATA COLLECTION, 
SYNCHRONIZATION 
AND FEATURE EXTRACTION 

In order to understand if velum movement 
information can be found in the Doppler shifts of the 
echo signal, a signal that describes the velum 
movement is used as a reference. This signal was 
extracted from RT-MRI images, as described in 
section 4.2. This section also describes the hardware 
and setup of the Ultrasonic device and how 
synchronization of both signals is achieved. 

4.1 Ultrasonic Doppler Setup 

A custom build device, depicted on Figure 1, with a 
dedicated circuit board was developed based on the 
work of Zhu (2008). It includes 1) the ultrasound 
transducers (400ST and 400SR working at 40 kHz) 
and a microphone to receive the speech signal; 2) a 
crystal oscillator at 7.2 MHz and frequency dividers 
to obtain 40 and 36 kHz; 3) all the amplifiers and 
linear filters needed to process the echo signal and 
the speech signal. Since the board is placed in front 
of the speaker, the echo signal will be the sum of the 
contributions of all the articulators. If the ultrasound 
generated is a sine wave ߨ2݊݅ݏ ଴݂	ݐ, an articulator 
with a velocity ݒ௜ will generate an echo wave that 
can be characterized by: 

୧ݔ ൌ ܽ୧sin2π ଴݂ ቆݐ ൅
2
ܿ
න ୧ݒ
௧

଴
d߬ ൅ ߮୧ቇ (4)

ܽ୧, ߮୧ are parameters defining the reflection and are 
function of the distance. Although they are also 
function of time they are slow varying and are going 
to be considered constants. The total signals will be 
the sum for all articulators and the moving parts of 
the face of the speaker 

ݔ ൌ෍ ܽ୧sin2π ଴݂ ቆt ൅
2
c
න ୧ݒ
୲

଴
d߬ ൅ ߮୧ቇ

୧
 (5)

The signal is a sum of frequency modulated signals. 
It was decided to make a frequency translation by 
multiplying the echo signal  by a sine wave of a 
frequency ௔݂ ൌ  and low passing the result it	ݖܪ݇	36
is obtained a similar frequency modulated signal 
centered at ଵ݂	 ൌ ଴݂	– ௔݂ , i.e., ଵ݂ ൌ  .ݖܪ݇	4

݀ ൌ෍ ܽ୧sin2πfଵ ቆݐ ൅
2
ܿ
න ୧ݒ
୲

଴
d߬ ൅ ߮୧ቇ

୧
 (6)

This analogue operation is performed on the board 
and it was used an analogue multiplier AD633. The 
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Doppler echo signal and speech are then digitized at 
44.1 kHz and the following process is digital and 
implemented in Matlab. 

 
 
 
 
 
 
 

Figure 1: Custom built UDS device with two ultrasound 
transducers and a microphone. 

4.2 RT-MRI Data Collection 

The RT-MRI data collection was previously 
conducted at IBILI/Coimbra for nasal production 
studies. Images were acquired at the mid-sagittal and 
coronal oblique planes of the vocal tract (see Figure 
2) using an Ultra-Fast RF-spoiled Gradient Echo 
(GE) pulse sequence and yielding a frame rate of 14 
frames/second. Each recorded sequence contained 
75 images. Additional information concerning the 
image acquisition protocol can be found in Silva et 
al. (2012). 
 

 

Figure 2: From left to right: mid-sagittal plane depicting 
orientation of the oblique plane used during acquisition, 
sample oblique plane showing the oral and nasal cavities 
and image sequence details (Teixeira et al., 2012). 

Audio was recorded simultaneously with the real-
time images, inside the scanner, at a sampling rate of 
16 kHz, using a fiber optic microphone. For 
synchronization purposes a TTL pulse was 
generated from the RT-MRI scanner (Teixeira et al. 
2012). 

4.3 Extraction of Information on Nasal 
Port from RT-MRI Data 

For the mid-sagittal RT-MRI sequences of the vocal 
tract, since the main interest was to interpret velum 
position/movement from the sagittal RT-MRI 
sequences, instead of measuring distances (e.g., 
from velum tip to the posterior pharyngeal wall), we 

opted for a method based on the area variation 
between the velum and pharynx, closely related to 
velum position. 

An image with the velum fully lowered was used 
to define a region of interest (ROI). Then, a region 
growing algorithm was applied with a seed defined 
in a hypo intense pixel inside the ROI. This ROI is 
roughly positioned between the open velum and the 
back of the vocal tract and the main purpose is that 
the velum will move over that region when closing. 
Since this first ROI could be defined enclosing also 
a larger region, even including a part of the velum 
(which will not influence the process), it is only 
important that the seed is placed in a dark (hypo 
intense) pixel inside it, in order to exclude the most 
of the velum from the region growing when it is 
positioned inside the ROI. Figure 3 presents the 
contours of the segmented region over different 
image frames encompassing velum lowering and 
rising. For representation purposes, in order not to 
occlude the image beneath, only the contour of the 
segmented region is presented. Processing is always 
performed over the pixels enclosed in the depicted 
region. Notice that the white boundaries presented in 
the images depict the result of the region growing 
inside the defined ROI (which just limits the growth) 
and not the ROI itself. The number of hypo intense 
pixels (corresponding to an area) inside the ROI 
decreases when the velum closes and increases when 
the velum opens. Therefore, a closed velum 
corresponds to area minima while an open velum 
corresponds to local area maxima, which allows 
detecting the frames where the velum is open. Since 
for all image sequences there was no informant 
movement, the ROI has only to be set once, for each 
informant, and can then be reused throughout all the 
processed sagittal real-time sequences. After ROI 
definition (around one minute and reusable 
throughout   all   image   sequences   from  the  same  

 

Figure 3: Mid-sagittal RT-MRI images of the vocal tract 
for several velum positions, over time, showing evolution 
from a raised velum, to a lowered velum and back to 
initial conditions. The presented curve, used for analysis, 
was derived from the images. 
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speaker), setting a seed, revising the results and 
storing the data took one minute per image 
sequence. 

These images allowed deriving a signal over 
time that describes the velum movement (also shown 
in Figure 3 and depicted as dashed line in Figure 4). 
As can be observed, minima correspond to a closed 
velopharingeal port (oral sound) and maxima to an 
open port (nasal sound). 

4.4 Corpora 

The corpora used in this study, both RT-MRI and 
UDS, share a set of prompts composed by several 
non-sense words that contain five EP nasal vowels 
([ɐ̃, ẽ, ĩ, õ, ũ]) isolated and in word-initial, word-
internal and word-final context (e.g. ampa [ɐ̃pɐ], 
pampa [pɐ̃pɐ], pam [pɐ̃]). The nasal vowels are 
flanked by the bilabial stop or the labiodental 
fricative. This set contains 3 utterances per nasal 
vowels and data from a single speaker. The UDS 
data was recorded at a distance of 12 cm from the 
speaker. 

4.5 Signals Synchronization 

In order to be able to take advantage of the RT-MRI 
velum information we need to synchronize the UDS 
and RT-MRI signals. We start by aligning both UDS 
and the information extracted from the RT-MRI with 
the corresponding audio recordings. We resample 
the audio recordings to 12 kHz and apply Dynamic 
Time Warping (DTW) to the signals, finding the 
optimal match between the two sequences. Based on 
the DTW result we map the information extracted 
from RT-MRI from the original production to the 
UDS time axis, establishing the needed 
correspondence between the UDS and the RT-MRI 
information, as depicted on Figure 4. 
 

 

Figure 4: Exemplification of the warped signal 
representing the nasal information extracted from RT-MRI 
(dashed line) superimposed on the speech recorded during 
the corresponding RT-MRI and UDS acquisition, for the 
sentence [ɐ̃pɐ, pɐ̃pɐ, pɐ̃]. 

4.6 UDS Feature Extraction 

For this experiment we have selected two types of 
features - frequency-band energy averages and 
energy-band frequency averages (Livescu et al., 
2009; Zhu, 2008). To obtain the frequency-band 
energy averages, we split the signal spectrum into 
several non-linearly divided bands centered around 
the carrier. Then, the mean energy is computed for 
each band. The frequency interval for each band ݊ is 
given by: 

௡݈ܽݒݎ݁ݐ݊ܫ ൌ ሾ݂݉݅݊௡, ,௡ሿݔ݂ܽ݉ െ5 ൑ ݊ ൑ 4 (7)

where ݂݉݅݊଴ ൌ  ,(carrier frequency) ݖܪ	4000
݂݉݅݊௡ ൌ ௡ݔ݂ܽ݉ ,௡ିଵݔ݂ܽ݉	 ൌ 	݂݉݅݊௡ ൅ |݊|ሺ	ߙ ൅
1ሻ, and ߙ ൌ  As such, the bandwidths slowly .ݖܪ	40
increase from 40 Hz to 280 Hz, capturing higher 
resolution information near the carrier. 

In order to compute the energy-band frequency 
averages we split the spectrum into several energy 
bands and compute frequency centroid for each 
band. We extract values from 14 bands (7 below and 
7 above the carrier frequency) using 10 dB energy 
thresholds that range from 0 dB to -70 dB. 

5 EXPLORATORY ANALYSIS 

In order to achieve our aim of finding if velum 
movement information is present in the ultrasonic 
signal, we decided to measure the strength of 
association between the obtained features, which 
describes the ultrasonic signal and RT-MRI 
information and is an accurate representation of the 
ground truth. Below, we present several results 
based on Pearson’s product-moment correlation 
coefficient, which measures how well the two 
signals are related and also the results of 
Independent Component Analysis application to the 
extracted features. The correlation values range 
between -1 and 1, thus the greater the absolute value 
of a correlation coefficient, the stronger the linear 
relationship is. The weakest relationship is indicated 
by a correlation coefficient equal to 0. 

5.1 Results 

When comparing the RT-MRI velum information 
with the obtained features along each frequency 
band, based on correlation magnitude presented in 
Figure 5, it is not clear which band presents the 
higher correlation, although the values near the 
carrier are slightly higher. However, if we split our 
analysis by vowel, more interesting results are 
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visible. Figure 6 shows the correlation results for 
utterances where only the nasal vowel [ɐ̃] occurs 
(e.g. ampa [ɐ̃pɐ], pampa [pɐ̃pɐ], pan [pɐ̃]) and it is 
visible a more distinct group of correlation values at 
the frequency interval [4040..4120] Hz. When 
looking at the nasal vowel [ẽ] a stronger correlation 
is also noticed in that interval. However, in the case 
of the nasal vowel [õ] and [ũ] higher correlation 
values are found in the [3880..4040] Hz range, with 
an average correlation magnitude of 0.42 for [õ] and 
0.44 for [ũ] (depicted in Figure 7).  For the nasal 
vowel [ĩ], we find much lower correlation values 
when compared with  the remaining  vowels  such as 
 

 

Figure 5: Boxplot for all utterances. The x axis lists the 
frequency-band features and the y axis corresponds to the 
absolute Pearson’s correlation value. The central mark is 
the median and the edges of the box are the 25th and 75th 
percentiles. 

 

Figure 6: Boxplot for utterances with [ɐ̃]. The x axis lists 
the frequency-band features and the y axis corresponds to 
the absolute Pearson’s correlation value. 

 

Figure 7: Boxplot for utterances with [ũ]. The x axis lists 
the frequency-band features and the y axis corresponds to 
the absolute Pearson’s correlation value. 

[ɐ̃], [õ] or [ũ] and the best interval can be found in 
the [4240..4400] Hz range with an average 
correlation magnitude of 0.25. 

When looking at the energy-band features for all 
vowels we find similar values for the energy bands 
below -30dB, where the highest average correlation 
value is achieved by the [-30..-40] dB range above 
and below the carrier with 0.23. If we split out 
analysis by vowel, the highest value is achieved by 
the nasal vowel [õ] with an average correlation of 
0.43 for the [-40..-50] dB interval above the carrier. 
The second best result using energy-band features is 
obtained by the nasal vowel [ũ] in the [-30..-40] dB 
range with values of 0.40 above the carrier and 0.39 
below the carrier.  

5.1.1 Applying Independent Component 
Analysis 

As mentioned earlier the Ultrasonic Doppler signal 
can be seen as the sum for all articulators and the 
moving parts of the face of the speaker. Thus, the 
signal can be interpreted as a mix of multiple 
signals. Considering our goal, an ideal solution 
would be to find a process to isolate the signal 
created by the velum. Independent Component 
Analysis (ICA) is a method used for separating a 
multivariate signal with independent sources linearly 
mixed, thus the underlying idea is to understand if 
by applying blind source separation we can obtain 
independent components that relate with each 
articulator movement, including the velum. 

For that purpose we applied the FastICA 
algorithm (Hyvarinen, 1999) using the RT-MRI 
information as a priori to build the separating 
matrix. This allowed to obtain independent 
components with a higher correlation value than 
when compared to the extracted features without any 
transformation, as shown in Table 1. Also, due to the  

Table 1: Average correlation magnitude values with 95% 
confidence interval using frequency-band and energy band 
features for the best independent components of each 
utterance. 

Average correlation magnitude 
 Frequency Energy 

All vowels 0.42 ± 0.05 0.41 ± 0.04 

[ɐ̃] 0.44 ± 0.04 0.33 ± 0.05 

[ẽ] 0.41 ± 0.09 0.41 ± 0.10 

[ĩ] 0.30 ± 0.05 0.42 ± 0.03 

[õ] 0.47 ± 0.08 0.41 ± 0.05 

[ũ] 0.48 ± 0.14 0.50 ± 0.07 
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singularity of the covariance matrix we observe a 
dimensionality reduction of 4 to 8 components 
depending on the utterance when using frequency-
band features. When using energy-band features we 
observe a dimensionality reduction of 6 to 12 
components. 

6 DISCUSSION 

The applied methodology uses the audio signal to 
synchronize two distinct signals that otherwise were 
very hard to align. Although the two sources of 
information were recorded at different times, it is 
our belief that by reproducing the articulation 
movements we are able to obtain a very good 
indication of how the velum behaves upon the same 
stimulus for most cases. The utterances containing 
the [ũ] nasal vowels presented some alignment 
inaccuracies mainly at the end of the first phoneme 
and further improvements need to be considered for 
this particular case. 

Knowing that the velum is a slow articulator, as 
shown by the RT-MRI velum movement 
information in Figure 4, and considering equation 2, 
it is expected that velum movement, if detected by 
UDS, is found in the regions near the carrier, which 
is where the results for [ɐ̃, ẽ, õ and ũ] present higher 
correlation. However, the velum is not the only 
slowly moving articulator and a different corpora 
which allows, for example, to discard jaw 
movements should be considered for future studies. 

Another point of discussion is the differences 
found between nasal vowels. When looking at the 
correlation results of frequency-band features, a 
difference is noticed from [ĩ] to the remaining 
vowels. One possible explanation for this difference 
might be the articulation variances of each nasal 
vowel previously reported in literature (Schwartz, 
1968). Since our technique is based on the reflection 
of the signal it is plausible that the tongue position 
influences the detection of the velum, particularly 
for the case of [ĩ] in which the tongue posture may 
block the UDS signal. 

It would also be expected to find a clear 
difference between close and open vowels (Livescu 
et al., 2009). Although this is true for the nasal 
vowel [ĩ], it was not verified in the [ũ] case, which 
presented the highest correlation values along with 
[õ]. Further investigation is required to understand if 
for example the rounding of the lips during the 
articulation of these two vowels is influencing the 
signal reflection and in which way. 

In this study we have also applied blind source 

separation as an attempt to split the signal into 
independent components. This technique has given 
slightly better results for both sets of features, 
showing that isolating the velum movement in the 
Doppler shifts might be possible. It is also 
noteworthy the fact that this process has led to a 
dimensionality reduction of 4 to 8 components 
depending on the utterance, which may have a 
relation with the number of mobile articulators that 
can cause Doppler shifts in the signal (i.e. tongue, 
lower jaw, velum, lips, cheeks, oral cavity). 

7 CONCLUSIONS 

This paper analysis the presence of information 
about the velum movement for European Portuguese 
nasal vowels in the Ultrasonic Doppler signal. As 
ground truth for our study, we use previously 
collected RT-MRI information from the same 
speaker and, after extracting a signal that describes 
the movement of the velum, we apply a 
synchronization technique based on the audio signal 
collected from both corpora. With this approach we 
are able to estimate the velum behaviour and 
measure the strength of association between the 
features that describe the ultrasonic signal data and 
RT-MRI data, via computing the Pearson’s product-
moment correlation coefficient.  

The obtained results show that for features based 
on the energy of pre-determined frequency bands, 
we are able find moderate correlation values, for the 
case of the vowels [ɐ̃], [õ] and [ũ] and weaker 
correlation values in the [ĩ] case. Moderate 
correlation values were also found using energy 
based features for bands below -30dB. We have also 
applied a blind source separation technique 
obtaining components with a better description of 
the velum movement. 

For future work and based on this methodology, 
we plan to apply the same process to other 
articulators such as the tongue or lips, which will 
help to determine important aspects and more details 
about the captured information. We also intend to 
expand the current corpora with more speakers and 
adequate prompts for these scenarios. It would also 
be important to analyse the impact of distance from 
UDS emitter to the speaker face in the captured 
information. 
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