
Methodology to Determine Relationships between Performance 
Factors in Hadoop Cloud Computing Applications 

Luis Eduardo Bautista Villalpando1,2, Alain April1 and Alain Abran1 
1Department of Software Engineering and Information Technology - ETS, University of Quebec, Montreal, Canada 

2Department of Electronic Systems, Autonomous University of Aguascalientes, Aguascalientes, Mexico 

Keywords: Cloud Computing, Measurement, Performance, Taguchi Method, ISO 25010, Maintenance, Hadoop 
Mapreduce. 

Abstract: Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared 
pool of configurable computing resources. Cloud Computing users prefer not to own physical infrastructure, 
but instead rent Cloud infrastructure, a Cloud platform or software, from a third-party provider. Sometimes, 
anomalies and defects affect a part of the Cloud platform, resulting in degradation of the Cloud 
performance. One of the challenges in identifying the source of such degradation is how to determine the 
type of relationship that exists between the various performance metrics which affect the quality of the 
Cloud and more specifically Cloud applications. This work uses the Taguchi method for the design of 
experiments to propose a methodology for identifying the relationships between the various configuration 
parameters that affect the quality of Cloud Computing performance in Hadoop environments. This paper is 
based on a proposed performance measurement framework for Cloud Computing systems, which integrates 
software quality concepts from ISO 25010 and other international standards. 

1 INTRODUCTION 

Cloud Computing (CC) is a model for enabling 
ubiquitous, convenient, on-demand network access 
to a shared pool of configurable computing 
resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly 
provisioned and released with minimal management 
effort or service provider interaction (Mell and 
Grance 2011). Some CC users prefer not to own 
physical infrastructure, but instead rent Cloud 
infrastructure, or a Cloud platform or software, from 
a third-party provider. These infrastructure 
application options delivered as a service are known 
as Cloud Services. 

Service models for CC are categorized as: 
Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS), and Software as a Service (SaaS) 
(ISO/IEC 2011). The model that relates the most to 
the software engineering community is the SaaS 
model. Software engineers focus on software 
components, and customers use an IT provider’s 
applications running on a Cloud infrastructure to 
process information according to their processing 
and storage requirements. One of the main 

characteristics of this type of service is that 
customers do not manage or control the underlying 
Cloud infrastructure (including network, servers, 
operating systems, and storage), except for limited 
user-specific application configuration settings.  

Performance measurement models (PMMo) for 
CC, and more specifically for Cloud Computing 
Applications (CCA), should propose a means to 
identify and quantify "normal application 
behaviour," which can serve as a baseline for 
detecting and predicting possible anomalies in the 
software (i.e. applications in a Cloud environment) 
that may impact in a Cloud application. To be able 
to design such PMMo for CCA, methods are needed 
to collect the necessary base measures specific to 
performance, and analysis models must be designed 
to analyze and evaluate the relationships that exist 
among these measures.  

One of the challenges in designing PMMo for 
CCA is how to determine what type of relationship 
exists between the various base measures. For 
example, what is the extent of the relationship 
between the amount of physical memory used and 
the amount of information to process by an 
application? Thus, this work proposes the use of a 
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methodology based on the Taguchi method to 
determine how closely the performance parameters 
(base measures) involved in the performance 
analysis process are related. The Taguchi method 
combines industrial and statistical experience, and 
offers a means for improving the quality of 
manufactured products. It is based on the “robust 
design” concept, popularized by Taguchi, according 
to which a well designed product should cause no 
problems when used under specified conditions 
(Taguchi, Chowdhury et al. 2005). Although the 
experiment presented in this paper was not 
developed in a CC production system, the main 
contribution of this work is to propose the Taguchi 
method as a way to determine relationships between 
performance parameters of CCA. 

This paper is structured as follows. Section 2 
presents background of concepts related to the 
performance measurement of CCA and introduces 
the MapReduce programming model, which is used 
to develop CCA. In addition, section 2 presents the 
PMFCC, which describes the key performance 
concepts and sub concepts identified from 
international standards. Section 3 presents the 
method for examining the relationships among the 
performance concepts identified in the PMFCC. In 
this section, an experimental methodology based on 
the Taguchi method of experimental design, is used 
and offers a means for improving the quality of 
product performance. Section 4 presents the results 
of the experiment and analyzes the relationship 
between the performance factors of CCA. Finally, 
section 5 presents a synthesis of the results of this 
research and suggests future work. 

2 BACKGROUND 

2.1 Performance Analysis in Cloud 
Computing Applications  

Researchers have studied the performance of CCA 
from various viewpoints. For example, Jackson 
(Jackson et al., 2010) analyzes high performance 
computing applications on the Amazon Web 
Services cloud, with the objective of examining the 
performance of existing CC infrastructures and 
creating a mechanism to quantitatively evaluate 
them. His work is focused on the performance of 
Amazon EC2 as a representative example of the 
current mainstream of commercial CC services, and 
its potential applicability to Cloud-based 
environments in scientific computing environments. 
He quantitatively examines the performance of a set 

of benchmarks designed to represent a typical High 
Performance Computing (HPC) workload running 
on the Amazon EC2 platform. Timing results from 
different application benchmarks are used to 
compute a Sustained System Performance (SSP) 
metric, which is a derived measure for measuring the 
performance delivered by the workload of a 
computing system. According to the National 
Energy Research Scientific Computing Center 
(NERSC) (Kramer et al., 2005), SSP is useful for 
evaluating system performance across any time 
frame, and can be applied to any set of systems, any 
workload, and/or benchmark suite, and for any time 
period. In addition, SSP measures time to solution 
across different application areas, and can be used to 
evaluate absolute performance and performance 
relative to cost (in dollars, energy, or other value 
propositions). In his work, Jackson shows that the 
SSP metric has a strong correlation between the 
percentage of time an application spends 
communicating and its overall performance on EC2. 
Also highlighted, the more communication there is, 
the worse the performance became. Jackson 
concludes that the communication pattern of an 
application can have a significant impact on 
performance. 

Other researchers focus on applications in 
virtualized Cloud environments. For instance, Mei 
(Mei et al., 2010) studies the measurement and 
analysis of the performance of network I/O 
applications (network-intensive applications) in 
these environments. The aim of his research is to 
understand the performance impact of co-locating 
applications in a virtualized Cloud, in terms of 
throughput performance and resource sharing 
effectiveness. Mei addresses issues related to 
managing idle instances, which are processes 
running in an operating system (OS) that are 
executing idle loops. Results show that when two 
identical I/O applications are running together, 
schedulers can approximately guarantee that each 
has its fair share of CPU slicing, network bandwidth 
consumption, and resulting throughput. It also shows 
that the duration of performance degradation 
experienced is related to machine capacity, workload 
level in the running domain, and the number of new 
virtual machine (VM) instances to start up. 

Although these publications present interesting 
methods for performance measurement of CCA, the 
approaches used were from an infrastructure 
perspective and did not consider CCA performance 
factors from a software engineering perspective. 
This work bases the performance evaluation of CCA 
on frameworks developed for data intensive 
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processing i.e. like Hadoop and MapReduce, and by 
integrating software quality concepts from ISO 
25010, as well as frameworks for Cloud Computing 
Systems (CCS) performance measurement. This 
approach was taken as a novel way to apply 
concepts of software engineering to the new 
paradigm of cloud computing. 

2.2 The ISO 5939 Measurement 
Process Model 

The purpose of a measurement process, as described 
in ISO 15939 (ISO/IEC 2008), is to collect, analyze, 
and report data relating to the products developed 
and processes implemented in an organizational unit, 
both to support effective management of the process 
and to objectively demonstrate the quality of the 
products.  

ISO 15939 defines four sequential activities in a 
measurement process: establish and sustain 
measurement commitment, plan the measurement 
process, perform the measurement process, and 
evaluate the measurement. These activities are 
performed in an iterative cycle that allows for 
continuous feedback and improvement of the 
measurement process, as shown in Figure 1. 

The first two activities recommended by the ISO 
15939 measurement process, which are: 1) establish 
measurement commitment; and 2) plan the 
measurement process, were addressed in the work, 
"Design of a Performance Measurement Framework 
for Cloud Computing” (PMFCC) (Bautista et al., 
2012). In this paper, the bases for the measurement 
of Cloud Computing concepts that are directly 
related to performance are defined. The PMFCC 
identifies terms associated with the quality concept 
of performance, which have been identified from 

international standards such as ISO 25010 and those 
of the European Cooperation on Space 
Standardization. The PMFCC proposes a 
combination of base measures to determine the 
derived measures of a specific concept that 
contributes to performance analysis. 

2.3 Performance Measurement 
Framework for Cloud Computing 

2.3.1 Jain’s System Performance Concepts 
and Sub Concepts 

A well known perspective for system performance 
measurement was proposed by Jain (Jain, 1991), 
who suggests that a performance study must first 
define a set of performance criteria (or 
characteristics) to help carrying out the system 
measurement process. He notes that system 
performance is typically measured using three sub 
concepts, if it is performing a service correctly: 1) 
responsiveness, 2) productivity, and 3) utilization, 
and proposes a measurement process for each. In 
addition, Jain notes that there are several possible 
outcomes for each service request made to a system, 
which can be classified in three categories. The 
system may: 1) perform the service correctly, 2) 
perform the service incorrectly, or 3) refuse to 
perform the service altogether. Moreover, he defines 
three sub concepts associated with each of these 
possible outcomes which affect system performance: 
1) speed, 2) reliability, and 3) availability. Figure 2 
presents the possible outcomes of a service request 
to a system and the sub concepts associated with 
them. 

 

Figure 1: Sequence of activities in a measurement process (adapted from the ISO 5939 measurement process model 
(ISO/IEC 2008)). 
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Figure 2: Possible outcomes of a service request to a 
system, according to Jain. 

2.3.2 Definition of Cloud Computing 
Application Performance 

The ISO 25010 (ISO/IEC 2011) standard defines 
software product and computer system quality from 
two distinct perspectives: 1) a quality in use model, 
and 2) a product quality model. The product quality 
model is applicable to both systems and software. 
According to ISO 25010, the properties of both 
determine the quality of the product in a particular 
context, based on user requirements. 

Based on Jain’s performance perspectives and 
the main ISO 25010 product quality characteristics, 
we propose the following definition of CCA 
performance measurement: 
 

“The performance of a Cloud Computing 
application is determined by analysis of the 
characteristics involved in performing an 
efficient and reliable service that meets 
requirements under stated conditions and within 
the maximum limits of the system parameters.” 

 

Although at first sight this definition may seem 
complex, it only includes the sub concepts necessary 
to carry out CCA performance analysis. 

2.3.3 Definition of the Performance 
Measurement Framework for Cloud 
Computing 

Performance measurement concepts and sub 
concepts have previously been related using a 
proposed relationship model which was described in 
detail in the PMFCC (Bautista et al., 2012) (see in 
Figure 3). This model presents the logical sequence, 
from top to bottom, in which the concepts and sub 
concepts appear when a performance issue arises in 
a Cloud Computing System (CCS). 

In Figure 3, system performance is determined 

by two main sub concepts: 1) performance 
efficiency, and 2) reliability. We have observed that 
when a CCS receives a service request, there are 
three possible outcomes (the service is performed 
correctly, the service is performed incorrectly, or the 
service cannot be performed). The outcome will 
determine the sub concepts that will be used for 
performance measurement. For example, suppose 
that the CCS performs a service correctly, but, 
during execution, the service failed and was later 
reinstated. Although the service was ultimately 
performed successfully, it is clear that the system 
availability (part of the reliability sub concept) was 
compromised, and this affected CCS performance. 
 

 

Figure 3: Model of the relationships between performance 
concepts and sub concepts. 

Thus, PMFCC defines the base measures related 
to the performance concepts that represent the 
system attributes, and which can be measured to 
assess whether or not the CCA satisfies the stated 
requirements. These base measures are grouped into 
collection functions, which are responsible for 
conducting the measurement process using a 
combination of base measures through a data 
collector. They are associated with the 
corresponding ISO 25010 quality derived measures, 
as presented in Table 1. 

An example of using the framework is: how can 
be measured the CC availability concept (presented 
in Table 1) using the PMFCC? As a first step, it 
needs three collection functions: 1) the time 
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function, 2) the task function, and 3) the 
transmission function. The time function can use 
several different measurements, such as CPU 
utilization by the user, job duration, and response 
time. These base measures can be obtained using a 
data collector, and then send the measures to a time 
function that calculates a derived measure of the 
time concept. An intermediate service will be 
designed to combine the results of each function in 
order to calculate a derived measure of the 
availability that contributes to CC performance, as 
defined in the framework. 

Table 1: Functions associated with Cloud Computing 
performance concepts. 

Base Measures Collection 
Functions for 

Measures 

ISO 25010 
Derived Measures 

Failures avoided 
Failures detected 
Failures predicted 
Failures resolved 

Failure function Maturity 
Resource 
utilization 
Fault tolerance 

Breakdowns 
Faults corrected 
Faults detected 
Faults predicted 

Fault function Maturity 
Fault tolerance 

Tasks entered into 
recovery 
Tasks executed 
Tasks passed 
Tasks restarted 
Tasks restored 
Tasks successfully 
restored 

Task function Availability 
Capacity 
Maturity 
Fault tolerance 
Resource 
utilization 
Time behaviour 

Continuous resource 
utilization time 
Down time 
Maximum response 
time 
Observation time 
Operation time 
Recovery time 
Repair time 
Response time 
Task time 
Time I/O devices 
occupied 
Transmission 
response time 
Turnaround time 

Time function Availability 
Capacity 
Maturity 
Recoverability 
Resource 
utilization 
Time behaviour 

Transmission errors 
Transmission 
capacity 
Transmission ratio 

Transmission 
function 

Availability 
Capacity 
Maturity 
Recoverability 
Resource 
utilization 
Time behaviour 

2.3.4 Hadoop Mapreduce 

Hadoop is an Apache Software Foundation’s project, 
and encompasses various Hadoop subprojects. The 

Hadoop project develops and supports the open 
source software that supplies a framework for the 
development of highly scalable distributed 
computing applications designed to handle 
processing details, leaving developers free to focus 
on application logic (Hadoop, 2012). MapReduce is 
a Hadoop subproject which is a programming model 
with an associated implementation for processing 
and generating large datasets. 

According to Dean (Dean and Ghemawat, 2008), 
programs written in this functional style are 
automatically parallelized and executed on a large 
cluster of commodity machines. Authors like Lin 
(Lin and Dyer, 2010) point out that today’s issue, 
which is the need to tackle large amounts of data, is 
addressed by a divide-and-conquer approach, where 
the basic idea is to partition a large problem into 
smaller sub problems. Those sub problems can be 
processed in parallel by different workers; for 
example, threads in a processor core, cores in a 
multi-core processor, multiple processors in a 
machine, or many machines in a cluster. The 
intermediate results of each individual worker are 
combined to yield the final output. 

3 METHODOLOGY 

3.1 Definition of the Problem 

To design the proposed collection functions 
proposed in the PMFCC (see in Table 1), it is 
needed to determine how the various base measures 
are related and to what degree. Studying these 
relationships enables assess the influence each of 
them has on the resulting derived measures. The 
PMFCC shows many of the relationships that exist 
between the base measures that have a major 
influence on the collection functions. In CCA, and 
more specifically in the MapReduce applications, 
there are over a hundred base measures (including 
system measures) which could potentially contribute 
to the analysis of CCA performance. A selection of 
these measures has to be included in the collection 
functions so that the respective measures can be 
derived, and from there an indication of the 
performance of the applications can be obtained. 

There are two key design problems to be solved 
here: 1) establish which base measures are 
interrelated, and 2) determine how much the 
interrelated measures contribute to each of the 
collection functions. 

In traditional statistical methods, thirty or more 
observations (or data points) are typically needed for 
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each variable observed, in order to gain meaningful 
insight. In addition, a few independent variables are 
needed for the experiments designed to uncover 
potential relationships among them. These 
experiments must be performed under certain 
predetermined and controlled test conditions.  

However, this approach is not appropriate here, 
owing to the large number of variables involved and 
the time and effort that would be required, which is 
much more than we have allowed for in this step of 
the research. Consequently, we have to resort to an 
analysis method that is better suited to our 
constraints, specific problem and study area. A 
possible candidate approach is Taguchi’s 
experimental design method, which investigates how 
different variables affect the mean and variance of a 
process performance characteristic helping in 
determining how well the process is functioning. 

This method only requires a limited number of 
experiments, but is more efficient than a factorial 
design in its ability to identify relationships and 
dependencies. The next section describes the method 
and the concepts to be used. 

3.2 Taguchi’s Method of Experimental 
Design 

Taguchi's Quality Engineering Handbook (Taguchi 
et al., 2005) describes the Taguchi method of 
experimental design, which was developed by Dr. 
Genichi Taguchi, a researcher at the Electronic 
Control Laboratory in Japan. This method combines 
industrial and statistical experience, and offers a 
means for improving the quality of manufactured 
products. It is based on the “robust design” concept, 
popularized by Taguchi, according to which a well 
designed product should cause no problems when 
used under specified conditions.  

According to Cheikhi (Cheikhi and Abran 2012), 
Taguchi’s two phase quality strategy is the 
following: 

 Phase 1: The online phase, which focuses on the 
techniques and methods used to control quality 
during the production of the product. 

 Phase 2: The offline phase, which focuses on 
taking those techniques and methods into 
account before manufacturing the product, that 
is, during the design phase, the development 
phase, etc. 

One of the most important activities in the offline 
phase of the strategy is parameter design. This is 
where the parameters are determined that make it 
possible to satisfy the set quality objectives (often 

called the objective function) through the use of 
experimental designs under set conditions. If the 
product does not work properly (does not fulfil the 
objective function), then the design constants (also 
called parameters) need to be adjusted so that it will 
perform better. Cheikhi explains that this activity 
includes several steps, which are required to 
determine the parameters that satisfy the quality 
objectives (output).  

According to Taguchi's Quality Engineering 
Handbook, orthogonal arrays (OA) organizes the 
parameters affecting the process and the levels at 
which they should vary. The OA show the various 
experiments that will need to be conducted in order 
to verify the effect of the factors studied on the 
output. Taguchi’s method tests pairs of 
combinations, instead of having to test all possible 
combinations (as in a factorial experimental design). 
With this approach, we can determine which factors 
affect product quality the most in a minimum 
number of experiments.  

Taguchi’s OA arrays can be created manually or 
they can be derived from deterministic algorithms. 
They are selected by the number of parameters 
(variables) and the number of levels (states). An OA 
array is represented by Ln and Pn, where Ln 
corresponds to the number of experiments to be 
conducted, and Pn corresponds to the number of 
parameters to be analyzed. Table 2 presents an 
example of Taguchi’s OA L4, meaning that 4 
experiments are conducted to analyze 3 parameters. 

Table 2: Taguchi´s Orthogonal Array L4. 

No. of 
Experiments (L) 

P1 P2 P3 

1 1 1 1 
2 1 2 2 
3 2 1 2 
4 2 2 1 

 

An OA cell contains the factor levels (1 and 2) 
that determine the types of parameter values for each 
experiment. Once the experimental design has been 
determined and the trials have been carried out, the 
performance characteristic measurements from each 
trial can be used to analyze the relative effect of the 
various parameters.  

Taguchi´s method is based on the use of the 
signal-to-noise ratio (SNR), which is a measurement 
scale that has been used in the communications 
industry for nearly a century for determining the 
extent of the relationship between the quality factors 
in a measurement model. The SNR approach 
involves the analysis of data for variability, in which 
an input-to-output relationship is studied in the 
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measurement system. To determine the effect each 
parameter has on the output, the SNR (or SN 
number) is calculated by the formula 1. In this 
formula yi is the mean value and si is the variance 
(yi is the value of the performance characteristic for 
a given experiment). 
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To minimize the performance characteristic 
(objective function), the following definition of the 
SNR should be calculated: 
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To maximize the performance characteristic 
(objective function), the following definition of the 
SNR should be calculated: 
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Once the SNR values have been calculated for each 
factor and level, they are tabulated as shown in 
Table 3, and then the range R (R = high SN - low 
SN) of the SNR for each parameter also is calculated 
and entered into Table 3. 

Table 3: Rank for SNR values. 

Level P1 P2 P3 
1 SN1,1 SN2,1 SN3,1 
2 SN1,2 SN2,2 SN3,2 
3 SN1,3 SN2,3 SN3,3 

Range RP1 RP2 RP3 
Rank --- --- --- 

 

According to Taguchi’s method, the larger the R 
value for a parameter, the greater its effect on the 
process. 

3.3 Experiment 

3.3.1 Experimental Setup 

All the experiments were conducted on a DELL 
Studio Workstation XPS 9100 with an Intel Core i7 
12-core X980 processor running at 3.3 GHz, 24 GB 
DDR3 RAM, a Seagate 1.5 TB 7200 RPM SATA 
3Gb/s disk, and a 1 Gbps network connection. We 
used a Linux CentOS 5.8 64-bit distribution and Xen 
3.3 as the hypervisor. This physical machine hosts 
five virtual machines (VM), each with a dual-core 
Intel i7 configuration, 4 GB RAM, 10 GB virtual 
storage, and a virtual network interface type. In 
addition, each VM executes the Apache Hadoop 
distribution version 0.22.0, which includes the 
Hadoop Distributed File System (HDFS) and 
MapReduce framework libraries. One of these VM 
is the master node, which executes NameNode 
(HDFS) and JobTracker (MapReduce), and the rest 
of the VM are slave nodes running DataNodes 
(HDFS) and JobTrackers (MapReduce).  

The Apache Hadoop distribution includes a set 
of applications for testing the performance of a 
cluster. According to Hadoop (Hadoop 2012), these 
applications can test various cluster characteristics, 
such as network transfer, storage reliability, cluster 
availability, etc. Four applications were selected to 
obtain performance measures from the Hadoop 
cluster as for example; the amount of physical 
memory used by a Job is a measure that varies 
according to values given to configuration 
parameters, such as the number of files to process, 
the amount of information to process, etc. The 
viewpoint taken for the selection of the above 
applications is that it is possible to use the same 
type’s o parameters to configure each application as 
well as cluster machine. 

Below is a brief description of the applications 
used in the experiments: 
1. TestDFSIO. This is a MapReduce application 

that reads and writes the HDFS test. It executes 
tasks to test the HDFS to discover performance 
bottlenecks in the network, to test the hardware, 
the OS, and the Hadoop setup of the cluster 
machines (particularly the NameNode and the 
DataNodes), and to determine the speed of the 
cluster in terms of I/O. 

2. TeraSort. The goal of this application is to sort 
large amounts of data as fast as possible. It is a 
benchmark application that combines HDFS 
testing, as well as testing of the MapReduce 
layers of a Hadoop cluster.  

3. MapRedReliability. This program tests the 
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reliability of the MapReduce framework by 
injecting faults/failures into the Map and Reduce 
stages. 

4. MapRedTest. This application loops a small job 
a number of times, placing the focus on the 
MapReduce layer and its impact on the HDFS 
layer. 

To develop the set of experiments, three parameters 
were selected, which can be set with different values 
for each type of application. These parameters are: 
1) the number of files to process, 2) the total number 
of bytes to process, and 3) the number of tasks to 
execute in the cluster. Also, a number of different 
MapReduce base measures such as Job Duration, 
Job Status, Amount of Amount of physical memory 
used, etc. were selected as possible quality 
objectives (objective function). These base measures 
are related to one or more of the performance 
derived measures identified in the PMFCC. 

3.3.2 Definition of Factors and Quality 
Objective 

In a virtualized Cloud environment, Cloud providers 
implement clustering by slicing each physical 
machine into multiple virtual machines (VM) 
interconnected through virtual interfaces. So, we 
established a virtual cluster with the features 
mentioned above, in order to obtain representative 
results.  

Fifty experiments were performed to test the 
Hadoop virtual cluster, varying the three parameters 
mentioned previously. In each experiment, four 
different applications were executed, and 
performance results were recorded for their analysis.  

In this way, the set of experiments investigates 
the effect of the following variables (or control 
factors, according to the Taguchi terminology) on 
the output dependent variable: 

 Number of files to be processed by the cluster 

 Total number of bytes to be processed by the 
cluster 

 Number of tasks into which to divide the Job 
application 

According to Taguchi, quality is often referred to as 
conformance to the operating specifications of a 
system. To him, the quality objective (or dependent 
variable) determines the ideal function of the output 
that the system should show. In our experiment, the 
observed dependent variable is the following: 

 Amount of physical memory used by the Job 
(Mbytes) 

3.3.3 Experiment Development 

According to the Hadoop documentation, the 
number of files and the amount of data to be 
processed by a Hadoop cluster will be determined by 
the number of processors (cores) available and their 
storage capacity. Also, the number of tasks to be 
processed by the cluster will be determined by the 
total of number of processing units (cores) in the 
cluster. Based on the above premises and the 
configuration of the experimental cluster, we have 
chosen two levels for each parameter in the 
experiment. We determine the different levels of 
each factor in the following way: 

 Number of files to process:  
o Small set of files: fewer than 10,000 files for 

level 1; 
o Large set of files: 10,000 files or more for 

level 2. 

 Number of bytes to process, as determined by the 
storage capacity of the cluster: 
o fewer than 10,000 Mbytes to process for level 

1 (a small amount of data to process); 
o 10,000 or more Mbytes to process for level 2 

(a large amount of data to process). 

 Number of tasks to create, determined, according 
to the MapReduce framework, by the number of 
processing units (cores) in the cluster and the 
number of input files to process. Since the cluster 
has a total of 10 cores, we decided to perform 
tests with: 
o fewer than 10 tasks for level 1; 
o 10 or more tasks for level 2. 

Table 4 Presents a summary of the factors, levels, 
and values for this experiment. 

Table 4: Factors and Levels. 

Factor 
Number 

Factor Name Level 1 Level 2 

1 
Number of files to 

process 
< 10,000 ≥10,000 

2 
Number of MB to 

process 
< 10,000 ≥10,000 

3 
Number of tasks 

to create 
< 10 ≥10 

 

Using Taguchi’s experimental design method, 
the selection of the appropriate OA is determined by 
the number of factors and levels to be examined. 
The resulting OA array for this case study is L4 
(presented in Table 2). The assignment of the 
various factors and values of this OA array is shown 
in Table 5. 
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Table 5: Matrix of Experiments. 

No. of the 
Experiment (L) 

Number of 
Files 

Number of 
Bytes 
(MB) 

Number 
of Tasks 

1 < 10,000 < 10,000 < 10 
2 < 10,000 ≥ 10,000 ≥ 10 
3 ≥ 10,000 < 10,000 ≥ 10 
4 ≥ 10,000 ≥ 10,000 < 10 

 

Table 5 shows the set of experiments to be 
carried out with different values for each parameter 
selected. For example, experiment 2 involves fewer 
than 10,000 files, the number of bytes to be 
processed is greater than or equal to 10,000 Mbytes, 
and the number of tasks is greater than or equal to 
10.  

A total of 50 experiments were carried out by 
varying the parameter values. However, only 12 
experiments met the requirements presented in Table 
5. This set of 12 experiments was divided into three 
groups of four experiments each (called trials). The 
values and results of each experiment are presented 
in Table 6. 

Taguchi’s method defined the SNR used to 

measure robustness, which is the transformed form 
of the performance quality characteristic (output 
value) used to analyze the results. Since the 
objective of this experiment is to minimize the 
quality characteristic of the output (amount of 
physical memory used per Job), the SNR for the 
quality characteristic “the smaller the better” is 
given by formula 4, that is: 
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The SNR result for each experiment is shown in 
Table 7. 

According to Taguchi’s method, the factor effect 
is equal to the difference between the highest 
average SNR and the lowest average SNR for each 
factor. This means that the larger the factor effect for 
a parameter, the larger the effect the variable has on 
the process, or, in other words, the more significant 
the effect of the factor. Table 8 shows the factor 
effect for each variable studied in the experiment. 

Table 6: Trials, experiments, and resulting values. 

 Trial Experiment Number of Files Mbytes to Process Num. of Tasks Physical Memory (Mbytes)  
 1 1 10 3 1 185.91  
 1 2 10 10,000 10 270.65  
 1 3 10,000 450 10 1589.26  
 1 4 10,000 10,000 2 105.77  

 2 1 100 33 2 761.18  
 2 2 100 10,00 100 605.77  
 2 3 96,000 29 42 3259.75  
 2 4 10,000,000 10,000,000 4 100.95  
 3 1 100 300 1 242.75  
 3 2 1,000 10,000 1,000 900.95  
 3 3 1,000,000 3,300 10 770.65  
 3 4 10,000,000 50,000 2 1112.16  

Table 7: SNR results. 

 Experiment 
Number of 

Files 
Mbytes to 
Process 

Number of 
Tasks 

Physical Memory 
Trial 1 

Physical Memory 
Trial 2 

Physical Memory 
Trial 3 

SNR  

 1 < 10,000 < 10,000 < 10 185.91 761.18 242.75 0.0906  
 2 < 10,000 ≥ 10,000 ≥ 10 270.65 605.77 900.95 0.5046  
 3 ≥10,000 < 10,000 ≥ 10 1589.26 3259.75 770.65 0.2665  
 4 ≥10,000 ≥10,000 < 10 105.77 100.95 1112.16 -0.6263  

Table 8: Factor Effect on the Output Objective 

 
Number of 

Files 
Mbytes to 
Process 

Number of Tasks 

Average SNR at Level 1 0.2976 0.1785 -0.2678 
Average SNR at Level 2 -0.1799 -0.4028 0.3855 
Factor Effect (difference) 0.4775 0.5813 0.6534 

Rank 3 2 1 
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4 RESULTS 

4.1 Analysis and Interpretation of 
Results 

Based on the results presented in Table 8, we can 
observe that: 

 Number of tasks is the factor that has the most 
influence on the quality objective (physical 
memory used) of the output observed, at 0.6534. 

 Number of Mbytes to process is the second most 
influential factor, at 0.5813. 

 Number of files to process is the least influential 
factor in this case study, at 0.4775. 

Figure 4 presents a graphical representation of the 
factor results and their levels. 
 

 

Figure 4: Graphical representation of factors and their 
SNR levels. 

To represent the optimal condition of the levels, 
also called the optimal solution of the levels, an 
analysis of SNR values is necessary in this 
experiment. Whether the aim is to minimize or 
maximize the quality characteristic (physical 
memory used), it is always necessary to maximize 
the SNR parameter values. Consequently, the 
optimum level of a specific factor will be the highest 
value of its SNR. It can be seen that the optimum 

level for each factor is represented by the highest 
point in the graph (as presented in Figure 4); that is, 
L1, L1, and L2 respectively. 

Using the findings presented in Tables 7 and 8 
and in Figure 4, we can conclude that the optimum 
levels for the factors in this experiment based on the 
experimental configuration cluster are: 

 Number of files to process: The optimum level is 
fewer than 10,000 files (level 1). 

 Total number of Mbytes to process: The 
optimum level is fewer than 10,000 Mbytes 
(level 1). 

 Number of tasks to be created to divide the Job: 
The optimum level is greater than or equal to 10 
tasks or more per Job (level 2). 

4.2 Statistical Data Analysis 

The analysis of variance (ANOVA) is a statistical 
technique usually used in the design and analysis of 
experiments. According to Trivedi (Trivedi, 2002), 
the purpose of applying the ANOVA technique to an 
experimental situation is to compare the effect of 
several factors applied simultaneously to the 
response variable (quality characteristic). It allows 
the effects of the controllable factors to be separated 
from those of uncontrolled variations. Table 9 
presents the results of this analysis of the 
experimental factors. 

As can be seen in the contribution column of 
Table 9, these results can be interpreted as follows 
(represented graphically in Figure 5): 

 Number of tasks is the factor that has the most 
influence (43% of the contribution) on the 
physical memory in this case study. 

 Total number of bytes to process is the factor 
that has the second greatest influence (34% of 
the contribution) on the processing time. 

 Number of files is the factor with the least 
influence (23% of the contribution) on the 
processing time in the cluster. 

Table 9: Analysis of Variance (ANOVA). 

 Factors 
Degrees of 
Freedom 

Sum of Squares 
(SS) 

Variance 
(MS) 

Contribution 
(%) 

Variance 
ration (F) 

 

 No. of files 1 0.2280 0.2280 23   

 
Total no. of bytes to 

process 
1 0.3379 0.3379 34 2  

 No. of tasks 1 0.4268 0.4268 43 3  
 Error 0 0.0000 0.0000    
 Total 3 0.9927     
 Error estimate 1 0.2280     
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L2
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Figure 5: Percentage contribution of factors. 

In addition, based on the column related to the 
variance ratio F shown in Table 9, we can conclude 
that the following: 

 The factors Number of tasks and Number of 
Mbytes to process have the most dominant effect 
and the second most dominant effect on the 
output variable respectively. 

 According to Taguchi’s method, the factor with 
the smallest contribution is taken as the error 
estimate. So, the factor Total number of files to 
process is taken as the error estimate, since it 
corresponds to the smallest sum of squares. 

 

The results of this case study show, based on both 
the graphical and statistical data analyses of the 
SNR, that the number of tasks into which to divide 
the Job in a MapReduce application in our cluster 
has the most influence, followed by the number of 
bytes to process, and, finally, the number of files. 
To summarize, when an application is developed in 
the MapReduce framework to be executed in this 
cluster, the factors mentioned above must be taken 
into account in order to improve the performance of 
the application, and, more specifically, the output 
variable, which is the amount of physical memory to 
be used by a Job. 

5 SUMMARY 

One of the challenges in CC is to deliver good 
performance to its end users. In this paper, we 
present the results of using a method that determines 
the relationships among the CCA performance 
parameters. This proposed method is based on a 
performance measurement framework for Cloud 
Computing (PMFCC) system, which defines a 
number of terms that are necessary to measure the 
performance of CCS using software quality 
concepts. The PMFCC defined several collection 

functions which are automated to obtain derived 
measures and enable analysis of the performance of 
a CCA. One of the challenges we faced in designing 
these functions was to decide how to determine the 
extent to which the base measures are related, and 
their influence in the analysis of CCA performance. 
To address this challenge, we proposed the use of 
Taguchi’s method of experimental design.  

Using this experimental design method, we 
carried out experiments to analyze the relationships 
between the configuration parameters of several 
Hadoop applications and their performance quality 
measures based on the amount of physical memory 
used by a Job. We found that there is a strong 
relationship between the number of tasks executed 
by a MapReduce application and the amount of 
physical memory used by a Job. Our next research 
activity will be to reproduce this experiment in a 
production environment, in order to confirm these 
‘trial group’ results with greater certainty. Also, this 
early research work serves as a basis for a next 
activity that will need to determine the most 
important relationships between the performance 
concepts defined in the PMFCC and enable us to 
propose a robust model for CCA performance 
analysis.  

Further research is also needed on the design of 
measurement models and mechanisms to analyze the 
performance of a real Cloud Computing application, 
which could also contribute to further validate our 
proposed method. Such evaluation work would 
include performance concepts related to software, 
hardware, and networking. These concepts would be 
mapped to the collection functions identified in the 
PMFCC previously developed in order to improve it. 
We expect that it will be possible, based on this 
work, to propose a robust model in future research 
that will be able to analyze Hadoop cluster behavior 
in a real Cloud Computing environment. This would 
allow real time detection of anomalies that affect 
CCS and CCA performance. 
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