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Abstract: It is known that nucleotide sequences are not homogeneous and from this heterogeneity arises the task of 
segmentation of a sequence into a set of homogeneous parts by the points called change points. In the work 
we investigated a special case of change points in genes – paired change points (PCP). We used a well-
known property of coding sequences – triplet periodicity. The sequence that we are especially interested in 
consists of three successive parts: the first and the last parts have similar triplet periodicity (TP) and the 
middle part is of another TP type. We aimed to find genes with PCP and provide explanation for the 
phenomenon. We developed a mathematical method for PCP detection based on new measure of similarity 
between TP matrixes. Among 66936 studied genes we found 2700 genes with PCP and 6459 genes with 
single change point (SCP). We suppose that PCP could be associated with double fusion or insertion events. 

1 INTRODUCTION 

It is widely known that nucleotide content is not 
absolutely homogeneous within genetic sequences 
and this heterogeneity could not be explained just by 
random fluctuations (Li 1997; Elton 1974). From 
this heterogeneity arises the task of segmentation of 
the sequence into a set of homogeneous parts. 
Analogous problem was firstly introduced in the 
quality control context. It was called a “change point 
problem” and a position in a sequence between two 
consecutive homogeneous segments was called a 
“change point” (CP) (Bhattacharya 1994). Сhange 
point reflect internal changes of the process.  

Many of CP finding methods were later applied 
to the DNA segmentation task (Braun & Müller 
1998). In this case one considers a retrospective (or 
fixed) change point problem, where the entire 
sequence is known prior to analysis and the task is to 
find points that separate it into a set of homogeneous 
and contiguous segments. The work (Braun & 
Müller 1998)  provides comprehensive overview and 
analysis of the first change points detection methods 
for DNA sequences.  The first DNA segmentation 
methods were based on hidden Markov models 
(Churchill 1989) and walking Markov models 
(Fickett et al. 1992).  Later Bayesian Markov models 

(Nur et al. 2009; Boys et al. 2000) and entropy 
segmentation methods (Evans et al. 2010) were 
introduced. A lot of methods were developed for 
detecting poly-regions (regions which contain a high 
occurrence of one or more nucleotides) in DNA 
sequences  (Papapetrou et al. 2012).   

Change-points methods were used for finding 
borders between coding/non-coding regions. For 
instance, in the work (Bernaola-Galván et al. 2000) 
entropic segmentation method based on triplet 
periodicity was proposed for the task. Later the 
method was improved by adding stop-codon 
symbols into consideration (Nicorici & Astola 
2004). This allowed authors to achieve higher 
accuracy of segmentation.  Similar method for 
coding-region detection was developed in the work 
(Deng et al. 2012) - the authors considered 
dinucleotides and stop-codons.  

Working with protein coding sequences we can 
use their well known property, so-called “triplet 
periodicity” (TP). TP is a common property of all 
known living organisms and it is associated with a 
gene reading frame (RF) (Frenkel & Korotkov 2008). 
The feature of TP was used to distinguish coding 
regions from non-coding (Shao et al. 2012). 
Classification analysis of TP of genes from the 
KEGG database previously showed that most of 
them belonged to relatively small set of TP classes 
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(about 2500 classes) and these classes may vary 
greatly (Frenkel & Korotkov 2008). That led us to 
the idea that  if a DNA coding sequence has 
fragments with different TP,  this event can be 
relatively easy to detect (Suvorova et al. 2012). One 
can find in the sequence segments within which TP is 
the same or nearly the same and between which TP 
are different. And the positions between these 
segments we called change points of TP.  It means 
that TP allows the segmentation of the gene 
sequence. This work was started earlier by us 
(Suvorova et al. 2012; Korotkova et al. 2011). There 
are three reasons to develop a special mathematical 
method for the gene segmentation task.  The first one 
is the relatively small size of gene sequences that 
results in the small sample size statistic and forced us 
to use Monte-Carlo simulations. The second is that 
the triplet periodicity could change from one gene to 
another (Frenkel & Korotkov 2008) as well as inside 
a gene. It makes impossible to apply learning 
methods such as Markov models, neural networks 
and other. Third reason is related to the fact that TP is 
well described by the corresponding  3×4 frequency 
matrix (Frenkel & Korotkov 2008). The main subject 
of the study is a gene sequence with paired change 
points (PCP) of TP.  This sequence consists of three 
successive parts: the first and the last parts have 
similar TP and the middle part is of another TP.  So 
one can see the first CP when going from the first 
part to the second one and another CP will be found 
between the second and the last part. The motivation 
for this work was to improve the results of the work 
(Korotkova et al. 2011) in two directions. First, we 
aimed to identify pair change points without paired 
reading frame shifts. The second goal was to find 
PCP event with a small-size middle part (<100 b.p.).  
PCP could be a marker of evolutionary sequence 
formation if the sequence was formed by insertion of 
one DNA sequence into another (parent) sequence or 
by sequential fusions where the first and the last 
fused parts have similar TP.  To investigate these 
sequences we introduced new measures of similarity 
between TP matrixes and applied the measure of 
difference between two TP matrixes that was used 
before (Korotkov et al. 2003). These measures are 
based on comparison of frequency matrixes of 
corresponding regions. The method of PCP searching 
is described in the next section. Using the method we 
collected a set of genes with supposed PCP from 17 
bacterial genomes. The last section presents an 
analysis of the obtained results and a brief discussion.  

 
 
 

2 METHODS AND ALGORITHMS 

2.1 Data 

Coding sequences for 17 genomes (Table 1) were 
download from the KEGG/Genes database (Ogata et 
al. 1999). These genomes together contain 69,936 
gene sequences 

2.2 Simulated Data 

In our work we created three sets of simulated data. 
The first one was dataset of homogeneous TP 
sequences (denoted as Set1). During this simulation 
we created sequences of the same length and level of 
TP as in the analyzed genes. Each considered gene 
sequence (S) was divided into three subsequences. 
The first one (denoted as C1) was obtained by the 
selection of symbols which were at first codon 
positions in S ( ( ) : 1 3 ;  0,1,2,...( -3)/3s i i n n L   ). 

The second sequence C2 was generated by choosing 
symbols which were at second positions 
( ( ) : 2 3 ;  0,1, 2,..., ( -3)/3s i i n n L   ), and the third 

sequence C3 was of the symbols from thirds position 
( ( ) : 3 3 ;  0,1, 2...( -3)/3s i i n n L   ). Here s(i) is the 

element of sequence S. Then from sequence Cj 
sequence Rj was created by random shuffling 
(j=1,2,3). And finally sequences Rj were again 
combined in one (R) in accordance to the codon 
position. This simulated sequence R is of the same 
length and TP level as the original gene S but after 
the shuffling it became TP-homogeneous sequence. 
The occurrence of PCP in the generated random 
sequences could be explained only by random 
fluctuations in a homogeneous sequence. 

Then we simulated datasets of artificial 
insertions (Set2) and fusions (Set3). We created two 
simulated datasets each of 104 sequences. To create 
these sets we randomly choose two genes from the 
total dataset of 17 bacterial genomes. Then 
randomly chosen parts of these genes were fused or, 
in case of insertion simulation, a part of one gene 
was inserted into another. These procedures were 
repeated 104 times.  

Therefore Set1 contains sequences which TP 
corresponds to the studied bacterial genes, but CP or 
PCP could arise in these sequences only as a result 
of random fluctuations.  The volume of Set1 was 
equal to the volume of the original genes set.  The 
dataset Set1 allows us to estimate the number of type 
I errors (false positives) in the PCP search in genes. 
There is only PCP event in each sequence from Set2 

and only SCP event in Set3. The Set2 set was 
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constructed to estimate number of the type II errors 
for the PCP search method while Set3 allows us to 
evaluate the influence of SCP events to the PCP 
search in genes. 

2.3 Measure of Difference between 
Triplet Matrixes 

We are concerned with a protein coding gene 
sequence S of length L (L is divisible by three and 
more than 60 b.p.). We say that there is a TP in S if 
probabilities of symbols in the positions j1=1+3i, 
j2=2+3i and j3=3+3i (i=0,1,2,…,(L-3)/3 ) differ from 
the probabilities of the corresponding symbols in the 
whole sequence S. In this sense TP presents in the 
most of DNA sequences of length L. But only in 
some sequences TP is statistically significant.  It was 
shown that the feature of TP is not associated with 
regions with a high occurrence of one or more 
nucleotides or with segmentation of genome 
sequences according to GC content and gene 
concentration (Melodelima et al. 2007).  It is 
convenient to use mutual information as a measure 
of statistical significance of TP (Kullback 1997). 
The mutual information (I) is computed based on TP 
frequency matrix of size 4x3. The columns of the 
matrix represent the positions j1,  j2 and j3 of triplets, 
and the rows represent four DNA bases. If 
considered a set of random sequences S, 2I 
calculated for the 4x3 matrixes would follow chi-
square distribution with six degrees of freedom 
(Frenkel & Korotkov 2009).  Using the chi-square 
distribution one can determine a threshold value x0 

when P(2I≥x0)=0.05. TP of the sequence S with 
2I≥x0 one could consider as significant. 

Let consider two coordinates in S: x1 and x2 
(1≤x1≤x2≤L-l) and two corresponding regions of 
length l [x1, x1+l-1) and [x2, x2+l-1). For these regions 
one could calculate frequency matrixes 

1 1 1 4 3( , ) [ ( , )]  M M x l m i j   and

2 2 2 4 3( , ) [ ( , )]M M x l m i j   . An element of such a 

matrix is a number of nucleotides of type i (i=1 for 
‘a’, i=2; for ‘t’, i=3, for ‘g’ and i=4 for ‘с’), which is 
in the position j of a codon (j=1,2,3), in the 
considered region. For example the element m1(1,2) 
is a number of symbols ‘t’ on the second position of 
codons in the region [x1, x1+l).  As a measure of 
difference between two frequency matrixes we used 
a value  

1 2 1 1 2 2 1 2 3 1 2( , ) ( , ) ( , ) ( , )I M M I M M I M M I M M    (1)

where It (t=1,2,3) is information measure of 
difference (Kullback 1997) between the 
corresponding  columns  of  the  matrixes  defined as 

4

1 2 1 1
1

( , ) ( , ) ln( ( , ))t
i

I M M m i j m i j


   

4

2 2
1

( , ) ln( ( , ))
i

m i j m i j


  

4

1 2 1 2
1

( ( , ) ( , )) ln( ( , ) ( , ))
i

m i j m i j m i j m i j


    

1 2 1 2( ( ) ( )) ln( ( ) ( ))s j s j s j s j    

1 1 2 2( ) ln( ( )) ( ) ln( ( ))s j s j s j s j   

(2)

here 
4

1

( ) ( , )k k
i

s j m i j


  . 2It has an asymptotic chi-

square distribution with three degrees of freedom 
(Vinckenbosch et al. 2006). Hence 1 22 ( , )I M M  has 

an approximately 2 ( )df and df is equal to six 

because 1 1 2( , )I M M  and 2 1 2( , )I M M  are 

independent and 3 1 2( , )I M M  completely determined 

by 1 1 2( , )I M M  and 2 1 2( , )I M M  (Kullback 1997). 

Then using approximation of the normal distribution 

1 2 1 2( , ) 4 ( , ) 2 1I M M I M M df    (3)

we obtain the value 1 2( , ) ~ (0,1)I M M N . To take 

into account possible reading frame shifts after the 
point x2, let introduce two additional matrixes for the 

second region: 2 2 2 4 3( , ) [ ( , 1)]M M x l m i j 
     and 

2 2 2 4 3( , ) [ ( , 2)]M M x l m i j 
    . It is useful to 

note that these matrixes are the cyclic shifts of the 
matrix M2 by one or two bases correspondingly. 
Using (1)-(3), one can calculate difference between 
the matrix M1 and new matrixes 2M   and 2M  . 

Further as a measure of TP difference of two gene 
regions of length l that begins at x1 and x2 
correspondingly we used 

1 2 1 2 1 2 1 2( , ) min[ ( , ), ( , ), ( , )]D x x I M M I M M I M M   (4)

2.4 The Similarity Measure 

For similarity measure as well as in the previous 

section we consider two frequency matrixes M1 and 

M2, which correspond to the regions of length l, and 
begin at the positions x1 and x2. Let us consider the 

null hypothesis H0 that the matrixes are random and 
uncorrelated. Before introduce the similarity 
measure between two matrixes one should 
normalized them using the following element-wise 
transformation  
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(5)

k=1,2, ( , ) ~ (0,1)kn i j N . We denoted matrixes that 

obtained in the result of the transformation (5) as N1 

and N2. Then we constructed one more matrix 
Z=[z(i,j)]4×3, by multiplication of corresponding 
elements of the matrixes N1  and N2 

1 2( , ) ( , ) ( , )z i j n i j n i j   (6)

The product of two normally distributed values 
follows the distribution with density function (Craig 
1936) f(z) = π−1K0(|z|) (K0 is the modified Bessel 
function of the second kind). Then for each z(i,j) one 
can find probability P(z>z(i,j)) and using the inverse 
function of the normal distribution calculate 
corresponding value of argument of the  normal 
distribution y(i,j), that satisfies the condition 
P(y>y(i,j))=P(z>z(i,j)). And finally we summarized 
all values  

4 3

1 2
1 1

,( ) ( , )
i j

xS x y i j
 

  (7)

Thus, under the null hypothesis 1 2( , ) ~ (0,6)S x x N , 

where N(0,6) is the normal distribution with and the 
value 1 2( (0,6) ( , ))P N S x x  shows the probability 

of randomness of the matrixes similarity.  We tested 
the distribution of 1 2( , ) ~ (0,6)S x x N  using random 

matrixes.  If 1 2( , )S x x  is sufficiently large, then the 

probability, that similarity of two matrixes is 
random, becomes low and the hypothesis about 
random similarity of matrixes should be rejected. 

2.5 Method for PCP Detection 

Let introduce a set of points in S: 
( 1) 1kx step k    ; k = 1,2…K. For each position 

xk we calculated matrixes M(xk,l). Totally 
( ) / 1K L l step      matrixes were calculated in S 

(the length of considered regions was defined as 
l=60 and the step size as step=9). Then K matrixes 
were compared with each other and two big matrixes 
Sim=[sim(i,j)]K×K and Dif=[dif(i,j)]K×K were 
constructed as: 

( , ) ( , )

( , ) ( , )

i j

i j

sim i j S x x

dif i j D x x




 (8)

The elements of the matrix Sim that were 
calculated using equation (7) reflect similarity and 
the elements of Dif, that were calculated using (4) 
reflect difference between corresponding regions. 
Then for arbitrary values k1 and k2 ( 1 21 k k K   ) 

we calculated  

1 2

1 1 2 1 2

1 2 1 2 1 2 2

2 2

1 1 2
1 1

1 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , )

i k j k

i k k j k i k k j K

k i k k j k k i k k j K

k j K k j K

W k k sim i j

r dif i j sim i j

sim i j r dif i j

sim i j

   

       

       

   



 

 



 

   

   

 

 

(9)

To illustrate the idea of the equation (9) let assume 
that the sequence S has an insertion of different TP of 
length multiple to three between the positions 
corresponding to k1 and k2 (the case of insertion not 
divisible by three is described further).  In this case 
the first, fourth and sixth terms of equation (9) reflect 
the similarity of the triplet periodicity within the 
intervals (1,k1), (k2,k1) and (k2,K), respectively. The 
second and fifth terms of equation (9) reflect the 
difference between the TP of the intervals (1, k1) and 
(k2, k1), and (k2, k1) and (k2, K), respectively. The third 
term of equation (9) reflects the similarity of the TP of 
the intervals (1,k1) and (k2,K).  The coefficient r was 
found to balance the contributions of difference and 
similarity measures in the final value. On the test set 
of artificial sequences with PCP (Set2) the r value was 
chosen to maximize PCP finding (r=7). To take into 
account an overall homogeneity of the considered 
sequence we used the following correction  

2
1 1

( , )
i K j K

W sim i j
   

    (10)

Equation (10) reflects a case of homogeneous 
sequence without insertions. Given this correction 
for PCP search the next equation was used: 

1 2 1 1 2 2( , ) ( , )W k k W k k W   (11)

The calculations of W were performed for all 
possible combinations of k1 and k2 in S. And the 
positions where W reached its maximum 

1 2
max 1 2

,
max( ( , ))
k k

W W k k  were found. Then we need to 

define whether this maximum value is significant.  

2.6 Determine Statistical Significance 

To determine the statistical significance of Wmax for 
every considered gene we simulated 500 
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homogeneous sequences (see materials, Set1). For 
each simulated sequences the corresponding value of 
Wmax was determined (see previous section).  From 

the simulated set mean maxW  and standard variance 

max( )W were calculated and finally for S we found 

the statistic 

maxmax

max( )

W W
Z

W


  (12)

In our analysis we also considered possible reading 
frame shift after the second change point (this is a 
case of inserts of length that is not divisible by 
three). In order to consider a case of shift by one or 
two positions one should use left region frequency 
matrix corresponding to the second or third reading 
frame instead of first in the third term of equation 
(9). Let denote Z value which is corresponds to the 
non-reading shift case as Z1, case of one-position 
shift as Z2, and in case of shift by two positions as 
Z3. 

Because of triplet structure of real genes Z value 
(equation (12)) does not follow normal distribution, 
so the thresholds for Z1, Z2 и Z3 have to be found 
empirically using additional simulations. 

2.7 Search of Single Change Points 
(SCP) of Triplet Periodicity 

It is important to note that gene sequences with SCP 
(Suvorova et al. 2012) could give values Z1, Z2, or Z3 

greater than the corresponding thresholds. Therefore, 
each gene where PCP was found should be 
additionally tested for SCP presence before the final 
conclusion. Searching process of the SCP is similar 
to the process of PCP search that described in the 
section 2.3 but here only one coordinate k1 is 
considered and the value 1 1 2( , )W k k , is defined as 

1 1( )W k : 

1 1

1 1 1 1

1 1
1 1

1

( ) ( , )

( , ) ( , )

i k j k

i k k j K k i K k j K

W k sim i j

r dif i j sim i j

   

       



 

 

   
 (13)

Then for equations (10-12) were used and instead of 
W(k1,k2) was used  W1(k1) in formula (11). For SCP 
value Z was redesignated as V in formula (10).  

2.8 Determine threshold Values 

To determine statistical significance of found PCP 
and SCP we examined the dependencies of 1-FZ(z)  
from Z1,  Z2,  Z3   for PCP and 1-FV(v) for SCP cases. 

Here FZ(z) is the distribution functions for Z1, Z2, 
and Z3  and  FV(v) is the distribution function for V.  
To build these distribution functions we created 100 
independent Set1 sets (each real sequence was 
shuffled 100 times according to procedure described 
in the Section 2.2.).  Then the distribution functions 
were calculated for mean values of Z1, Z2, Z3   and V.  
We chosen one threshold value Z0  for PCP and SCP 
events so that the maximum of 

1Z 01- ( ) F Z , 

2Z 01- ( ) F Z , 
3Z 01- ( ) F Z  and 01- ( ) VF Z constituted no 

more than 18%. The value of Z0 was equal to 3.8. 
So the cases where V was the maximum 

( 0 , 1,2,3iV Z Z i   ), were considered as SCP 

events. And only the genes where one of Zi was 
higher than V 0( )iZ V Z  , were considered as 

containing PCP.     

2.9 Contour Plots of TP Difference 
in Genes  

To illustrate TP distribution of different part of a 
gene sequence we used contour plots of measure of 
difference 1 2( , )D x x  (equation (3)) between regions 

of S of length l. Varying independently coordinates 
x1 and x2 along the sequence (x1=1+3i, x2=1+3j,  
i=0,1,2,…,(L-3)/3, j=0,1,2,…,(L-3)/3, i and j are 
changed independently of each other), we calculated 
matrixes M1 and M2. Then we calculated 1 2( , )I M M  

according to the formula (1) and 1 2( , )I M M  

according to the formula (2). Then the contour plot 
was built to represent the dependence of 1 2( , )I M M   

on x1 and x2. Such contour plots are symmetric about 
the main diagonal. The darker color of a certain 
region on the plot, the greater difference of the 
corresponding region’s TP from TP of the rest of the 
sequence. So one can see the region between two CP 
that has another TP than the surrounding regions 
have. 

2.10 BLAST Analysis 

To investigate the possible causes of PCP we 
denoted the scheme of a sequence S with PCP as 
S(L)=S1+S2+S3 1 1[0, ]S S CP ; 2 1 2[ , ];S CP CP  

3 2[ , ]S CP L  where CP1 and CP2 are the 

coordinates of the first and the second CP in gene. 
Now we may consider two possible ways of 
evolution formation of the sequence S. The first one 
is that S was formed by the insertion of sequence S2 
into a parent sequence (S1+S3). And the second 
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hypothesis is that S was created by two sequential 
fusion events and the subsequences S1, S2 and S3 
initially belonged to three different sequences (but S1 
and S3 had similar TP).  

To test both hypotheses we performed a search 
of potential ancestral sequences of the sequence S by 
special similarity search. Under the first hypothesis 
we looked for the sequence that is similar to S1 and 
S3 but has no central part S2. Under the second 
hypothesis one can discover genes which are similar 
to only one of the region S1, S2 or S3. But to consider 
a significant result we required the existence of at 
least two regions with proper similarity (S1, and S2 or 
S2 and S3 or S1 and S3) (or, in the best case, found all 
three) in different sequences. 

We used BLAST (Altschul et al. 1990) (option 
blastx) with the E-value cutoff 0.001. BLAST 
scanning was performed on a set of proteins from 
the Swiss-Prot database (Boeckmann et al. 2003) 
(531473 protein sequences). For each query 
sequence we looked for alignments corresponding to 
one of the hypotheses. Of course, CP coordinate 
defined by our method could not be considered as 
exact so we introduced an error interval in 
comparing the coordinate of obtained alignment and 
CP coordinate. The error was equal to 5% of the 
length of a query sequence. 

2 RESULTS  

3.1 Simulated Dataset 

Firstly we made the control search of the PCP in 
artificial periodic sequence. We took the periodic 
sequence (atg)160 and analyzed it by developed 
algorithms. In this case it is impossible to identify 
any CP. Then we took the sequence of the gene of 
the chitosanase from B.subtilis genome 
(KEGG:BSU26890). In this gene PCP was not found 
too. Then we made an insertion of fragment of 180 
nucleotides with another triplet periodicity after 
240th position of the gene. The contour plot of new 
generated sequence is shown in Fig.2. One can see 
the great difference between TP in the interval from 
240 to 400 nt and triplet periodicity of others parts 
of the sequence. 

We used Set1 and Set2 sets to determine levels of 
type I and II errors.  In the first case there were 486 
sequences with PCP (with level 3σ = 72). This level 
was found by the analysis of 100 different Set1 

datasets. The number of type I errors for the stated 
threshold (Z0= 3.8) constituted about 18% from the 
total number of  PCP found  in  real  bacterial  genes 

 

Figure 2: Contour plot of difference of TP in gene coding of 
the chitosanase from B.subtilis genome (KEGG:BSU26890) 
with artificial insertion of 180nt. length after 240th nt.  One 
can see that the region from ~200 b.p. to ~300 b.p. has 
different TP matrix than another sequence. 

(see 3.2). The level of 18% was selected to compare 
the number of PCP with the results of our previous 
works (the number of insertions that was estimated 
by the other method (Korotkova et al. 2011) and the 
number of reading frame shifts (Korotkov & 
Korotkova 2010). 

We used the Set2 set to evaluate type II error rate. 
The results were the following: totally 8018 cases 
were determined by the program. In 6306 cases the 
results were post defined as meaning SCP and 
remain 1712 cases were meaning PCP.  Since the 
total size of Set2 was 104 sequences then the level of 
type II error constitutes about 83%. The results of 
the study of Set2 demonstrate, that the method 
determined only the lowest border of the possible 
PCP number (because of 83% type II error rate). The 
test also demonstrates that considerable part of SCP 
cases found in the work could be actually PCP 
events. 

Last, we estimated the contribution of SCP into a 
PCP number. In the Set3 dataset 7566 cases were 
defined as SCP and only 127 as PCP.  This means 
that about 1,3% of SCPs would be found by the 
program as PCPs.  Our previous results (Suvorova et 
al. 2012) showed that about 10% of genes contain 
SCP, which in present case can be estimated as 
7x103 genes. The number of SCP defined as PCP by 
the method should be about 90 cases from the total 
set. This means that we were quite accurate in PCP 
detection among the real SCP cases.  

3.2 Real Dataset 

Then we analyzed genes from our main set from 17 
bacterial genomes (see Table 1 for details). Totally we 
found 9159 gene sequences where one of Zi was greater 
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than the corresponding threshold. Subsequent analysis 
revealed in this set 6459 genes with SCP (about 10% of all 
studied genes, this value is consistent with our earlier 
results obtained in work (Suvorova et al. 2012) and 2700 
genes with PCP. 

Table 1: Total Change-Points Statistic 

Genome SCP PCP, 
shift 0 

PCP, 
shift 1 

PCP, 
shift 2 

A.butzleri 227 50 23 20 
A.vinelandii_Ent 477 92 71 64 
B.avium 232 72 32 14 
B.mallei 847 150 94 87 
B.subtilis 444 114 49 20 
E.coli 357 70 35 32 
L.fermentum 170 41 15 19 
M.capsulatus 281 78 25 26 
P.aeruginosa 635 142 96 98 
S.aureus_COL 221 51 17 18 
S.enterica_Choler
aesuis 

417 88 60 33 

S.pneumoniae 150 29 13 8 
S.sonnei 396 71 35 30 
S.typhimurium 392 95 50 43 
V.cholerae 246 48 31 17 
X.campestris 604 91 63 33 
Y.pseudotuberculo
sis_YPIII 

363 80 48 19 

The list of used bacterial genomes with corresponding numbers of 
found paired and SCP. 

Genes with the SCP were described in detail in our 
work (Suvorova et al. 2012) and in there we found 
that SCP could be associated with fusion event. So 
here we just compared corresponding genomes 
results. In the previous work 5843 genes (at level of  

 
Figure 3: Contour plot of difference of TP in gene 
sequence that coding the glycerol-3-phosphate permease 
in B.subtilis genome (KEGG:BSU02140). One can see the 
paired change points in the positions ~600 and ~700 nt. 

18% false positives) with SCP were found in the 
same 17 genomes and ~ 50% are in the same genes 
as in the current work. The difference can be 
explained by the fact that early to identify the CP we 
took into account only the difference between the TP 
matrixes. In some cases it could lead to detection of 
shifts of the TP phase as the CP (Suvorova et al. 
2012). In this study we additionally used new 
similarity measure and it allowed us to obtain more 
accurate results in the SCP search. 

The main interest to us in this work was in the 
set of 2700 genes with PCP. This number constitutes 
about 4% of the sample size. Example of the gene 
with PCP are shown in Fig.3.  This figure 
demonstrate the sequences with TP fragment 
different from all other parts of the genes. 

3.3 Blast Results  

We performed BLAST analysis for each from 2700 
sequence with PCP searching for double fusion or 
insertion hypothesis corresponding alignments. For 73 
sequences we found proper alignment corresponding 
to the insertion hypothesis.  

3.4 Insertion Database 

We compared the results with online database of 
insertion in protein structures (Aroul-Selvam et al. 
2004). We downloaded 2137 PDB that contain 
insertions and for 1676 of them corresponding DNA 
sequences were found using online server 
(Hovmoller & Zhou 2004). After removing the 
redundancy there were 232 sequences. We tested 
DNA sequences from this non-redundant set for CP 
presence using our program. Significant CP cases 
were found in 55 cases (35 cases of SCP, 9 
sequences contain PCP without shift, 6 PCP with 
shift equal one and in 5 cases PCP with shift on two 
bases). Found results (20 from 232 cases) are 
comparable to those obtained on simulated data 
(1712 from 104). The difference in the results is 
effect of different distribution of TP classes in 
simulated and real datasets.  

4 DISCUSSION 
AND CONCLUSIONS 

We developed the method for finding paired and 
single change points in coding sequences and the 
program for visualisation of such events. The 
analysis using the method was performed on both 
simulated and real datasets of 17 bacterial genomes. 
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Our study demonstrated that about 10% of 
investigated coding sequences contain SCP and 
about 4% - PCP. The number of SCP is comparable 
with the results of our previous work (Suvorova et 
al. 2012).  The results on simulated 
fusions/insertions sets showed that the number of 
SCP falsely detected as PCP should not be greater 
than 2% of found cases. In the same time rely on the 
simulation results we can conclude that the method 
determined only the lowest border of the possible 
PCP number (number of false negative error  ~83%) 
because most of them could be falsely detected as 
SCP. 

We found alignment-based confirmation of 
relation between PCP and fusion/insertion events 
only for the minor part of genes with PCP (~13%) 
(see Section 3.3.).  In our opinion, there are several 
reasons to explain this difference. The first one is 
that used database is not a comprehensive collection 
of existing and existed amino acid sequences. So the 
parental sequences (that were involved into 
fusion/insertion events) could be absent in the 
Swiss-Prot database. That’s why some of these 
events could be missed by the alignment-based 
search.  Secondly during long evolutionary period 
after fusion or insertion event occurred sequences 
could be lost from present day genomes or greatly 
changed so the programs could not detect similarity. 
So the alignment-based methods could detect only a 
small part of actually produced PCP. So, our method 
could provide an additional approach for prediction 
of such events.  

Performed BLAST search with the same 
parameters on Trembl database we obtained slightly 
different results. For 86 sequences we found proper 
alignment corresponding to the insertion hypothesis. 
In case of double fusion hypothesis: for 34 
sequences with PCP all three supposed ancestral 
genes were found (similar to S1, S2 and S3) and for 
301 sequences alignments for two of three parts 
were found.  Despite the high level of the type II 
error, the method is seems to be more effective than 
alignment-based methods for detection of insertions 
and paired fusions.    

The modeling process lets us to conclude that 
found change points in genes could not be the result 
of random fluctuations. Besides the change points 
could not be the result of changes in protein 
structure (if it was true CP would be found 
practically in every gene sequence). We suppose that 
the change points are the reflection of evolution 
events like fusions and insertions. The additional 
BLAST testing showed that found cases of PCP 
could reflect double fusion and insertion events (but 

using the results we could not estimate the 
quantitative contribution of these processes into PCP 
formation).  

It is interesting to note that we found PCP cases 
with a reading frame shift. Most likely, this 
phenomenon could be explained by the insertion of 
DNA fragments of length not multiple of three 
bases. In this work we found less than half of 
insertions of DNA fragment with a length not a 
multiple of three that we found before in work 
(Korotkova et al. 2011). This could be due to the 
fact that in the present study we considered the PCP 
events and in previous work we searched for pair 
phase shifts of TP. These pair TP phase shifts can 
occur without any insertions but by the way of 
double shifts of the reading frame. Thus, the 
previous results took into account both insertions of 
DNA fragments and the pair shifts the reading 
frame.  It implies that only about 1350 genes from 
the total 2809 genes with insrtion found in our 
previous work (Korotkova et al. 2011) contained 
PCP.  So the rest (2809-1350=1449) genes contained 
paired phase shifts of TP (2,1% of the total analyzed 
set). This result seems to be realistic since it lower 
than the number of genes with a single TP phase 
shift (3.6%) found in the work (Korotkov & 
Korotkova 2010).   Actual number of single phase 
shifts of TP may be less than 3.6% since some cases 
of paired phase shift of TP could be detected in 
(Korotkov & Korotkova 2010) as a single. This 
result does not related to the lack of mathematical 
method developed in the work (Korotkov & 
Korotkova 2010), but rather shows that the statistical 
significance of pair phase shifts may be above the 
threshold, but separately threshold can overcome 
only one phase shift. 

Also in contrast to the method proposed in the 
work (Korotkova et al. 2011) our new method could 
detect short insertions (<100 bp). In the previous 
work this short regions were merged and considered 
as SCP.  That’s why we found additionally 1350 
cases of PCP. This is not a surprising result because 
short insertion may have less impact on the protein 
structure and therefore higher chances to remain in 
the gene. 

A mathematical method based on Jensen–
Shannon divergence proposed in works (Bernaola-
Galván et al. 2000; Li et al. 2002) is most similar to 
our approach. The method is devoted to distinguish 
coding sequences from non-coding based on 
presence/absence of TP in a region.  Authors 
introduced 12-dimentional vector (Li et al. 2002) 
which is an equivalent to our TP matrix. But the 
Jensen–Shannon divergence that was used to 
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compare the vectors computed for the subsequence 
to the left and the subsequence to the right of the 
pointer could not detect the difference between two 
TP matrixes. Therefore in the work we introduced a 
new mathematical method to detect PCP based on 
measures of similarity and difference between TP 
matrixes. 

The method could reveal the fusion and 
insertions events in genes without any additional 
information. Study of sequences with artificial 
insertions/fusions and distribution of TP among 
genes inside genome support the idea that not all 
cases of insertions or fusions could be found using 
the TP changes. Only fusions/insertions of 
sequences with different TP matrixes would lead to 
TP change points. We suppose that real number of 
genes formed by insertions or fusions events could 
be 5-7 greater than we obtained in the work. Now it 
is difficult to say whether the function of the protein 
was changed after these events and whether such 
events led to creation of new genes and new 
biological functions of the encoded proteins. Some 
answers to the question could be found after the 
experimental work.  
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