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Abstract: This paper is focused on partial reconfiguration of Field Programmable Gate Arrays (FPGAs) Virtex®-6, 
produced by Xilinx®, and its application implementing Artificial Neural Networks (ANNs) of Multilayer 
Perceptron (MLP) type. This FPGA can be partially reprogramed without suspending operation in other 
parts that do not need reconfiguration. It can be performed by specifying the Modular Project’s flow, where 
the modules that compose the project can be synthesized separately, and, after that, reunited in another 
module of highest hierarchical level. Alternatively, it is possible developing reconfigurable modules 
inserted in partial bitstreams and, later, downloading partial bitstreams successively in hardware. Therefore, 
it is possible configuring topologies of different MLP networks by using partial bitstreams in reconfigurable 
areas. It is expected that, in this kind of hardware, applications with MLP ANNs be easily embedded, and 
also allow easily configuration of many kinds of MLP networks in field. 

1 INTRODUCTION 

In the modern industry, designing, building and 
managing “information”, as a strategy of supporting 
system monitoring and controlling processes, are 
extremely important to the whole industry, 
especially to processes under uncertainties and with 
incomplete data. Dealing with this strategy has 
demanded improvements in computational systems, 
making them answer faster or even in real time. It is 
also observed that, when processing information, 
some applications require many resources when 
dealing with sequential architectures. 

In this context, performance requirements of 
many applications are not met, when running 
through conventional computational systems, which 
have only one sequential processor, based on Von 
Neumann Architecture. This architecture does not 
incorporates any kind of intelligence in machine 
actions, but only runs commands given by some way 
of algorithm. To circumvent this problem, artificial 
neural networks arise as a solution, allowing, thus, 
interpreting and connecting data and instructions 
through intelligent decisions. Systems based on 
ANNs are substantiate in the belief that intelligent 
behavior can be performed only with a huge parallel 

processing and data distribution, as happen in 
neuronal connections of human beings (Haykin, 
2001). 

As a result of those limitations imposed by the 
Von Neumann model, many implementations of 
ANNs began to be developed in hardware, trying to 
explore the intrinsical parallelism of those networks. 
In many practical applications, particularly the 
embedded ones, it is verified that using Field 
Programmable Gate Arrays (FPGAs) has allowed 
overcoming the missing flexibility of 
implementations based on Application Specific 
Integrated Circuits (ASICs) (Braga, 2005). 

By employing FPGAs as a platform for 
implementing ANNs in integrated circuits, it has 
been allowed exploring their high power of 
processing, portability, consumption without losing 
performance, low availability of memory, and ability 
of reconfiguring its circuit, what makes the network 
adaptable to different applications. Even though, 
there are some barriers to a more generic adoption of 
this kind of implementation, related to the 
development of the artificial neuron, together with 
its internal structures: multiplier, activation function 
and other parts that, eventually, can be needed 
(Silva, Neto, Oliveira and Melo, 2009). 

To overcome those barriers and reach more 
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flexibility in topological configuration of neural 
networks, it is needed using FPGAs, which allow the 
dynamic and partial reconfiguration of neuronal 
connections. Those characteristics can be found in 
Virtex®  family FPGAs, produced by Xilinx®. 

These FPGAs can be integrated in a 
computational system and configured during 
runtime, which allows implementing a specific 
software function with high performance. They can 
also be partially reprogramed without suspending 
operation of some parts that do not need to be 
reconfigured. This last function can be performed by 
specifying the flow of modular project, where the 
modules that compose the project can be synthesized 
separately and, after that, reunited in a module of 
highest hierarchical level. Alternatively, it is 
possible developing reconfigurable modules inserted 
in partial bitstreams and, after that, making 
successive downloads of those partial bitstreams in 
hardware (Xilinx, 2010). 

In this context, this paper aims at studying the 
flow of modular project to implement and partially 
reconfigure FPGA Virtex®-6, describing MLP 
ANNs. The modular project will contain 
reconfigurable modules of MLP networks, which 
will be transferred to the hardware in distinct 
moments. 

This paper has the following structure: section 2 
presents theoretical basis to comprehend artificial 
neural networks (ANNs); partially reconfigurable 
devices, in this case, Virtex®-6 FPGA, produced by 
Xilinx®, and some aspects that have to be considered 
when implementing ANNs in FPGA; section 3 
describes the methodology applied to develop the 
project and solutions used to implement it; section 4 
presents some results obtained after implementing 
an ANN in FPGA; and, finally, section 5 presents 
conclusions. 

2 THEORETICAL BASIS 

Next, is presented a brief review about the 
theoretical bases that support this project, whose 
objective is giving the ground needed to this 
research. 

2.1 Artificial Neural Networks (ANNs) 

Computational systems based on conexionist 
methods of artificial neural networks (ANNs) show 
effectiveness, behaving different from conventional 
computational programs, which calculate solutions 
to a problem, anticipating all the conditions to the 

input data to forecast outputs. Conexionist 
computational systems try to simulate the behavior 
of the human brain, acquiring knowledge to the 
solution of a given problem through the processes of 
learning and generalization (Haykin, 2001). 

ANNs are widely applied in tasks like: function 
approximation, time series and forecasting, 
classification and standards recognition. Even 
having these advantages and applications, those 
kinds of systems have some deficiencies, like taking 
too long during the training phase, having a high 
computational cost, and behaving like a black box 
after the training (Prado, 2011).  

2.1.1 The Representation of Artificial 
Neurons 

The model of artificial neurons adopted in this paper 
was the perceptron, proposed by McCulloch and 
Pitts (1943). This model was chosen because it 
establishes the basis for many existing networks, and 
their ability for learning, which occurs through the 
solution of an optimization problem.  This model has 
a limitation of processing only problems with 
linearly separable data sets (Figure 1), i. e., data sets 
that have a well-defined boundary region between 
the classes, which can be limited by a line (Haykin, 
2001). 

 

Figure 1: Linearly separable classes. 

Related to the functional perspective, the neuron 
functionality can be defined in terms of the 
mathematical model of a perceptron (Figure 2), 
which is constituted by a transfer function (sum) 
followed by an activation function. The scalar 
product of inputs and synaptic weights, whose result 
is added to the threshold, compose the transfer 
function. The result of this function is, then, passed 
to the activation function that, for this task, can be of 
sigmoidal or hyperbolic tangent types. 

2.1.2 Multilayer Perceptron (MLP) 

When  working  with  ANNs  to  solve  some   given 
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Figure 2: Schematic model of a perceptron. 

problem, it has to be defined some architecture, the 
learning method and an algorithm for learning. In 
this paper, it was applied the Multilayer Perceptron 
(MLP) architecture, which is characterized by being 
a network fed forward with artificial neurons 
(perceptrons) disposed in one input layer, one or 
more hidden layers, and one output layer (Figure 3). 

 

Figure 3: Multilayer Perceptron (MLP). 

In this kind of architecture, the supervised 
learning method is characterized by the presentation 
of pairs of examples for inputs and desired outputs, 
which are compared with the real network outputs, 
with the aim of adjusting its parameters, such as 
synaptic weights and threshold, and also minimize 
the difference between the real and desired outputs. 
To reach this goal, the backpropagation algorithm 
can be used as learning algorithm and to correct 
errors (Haykin, 2001). 

2.2 Partial Reconfiguration of 
Hardware 

During the last decade, it has been observed that 
many projects of embedded systems have been 
adopting more and more reconfigurable chips (Field 
Programmable Gate Arrays – FPGA) for different 
types of applications. The hardware that uses this 

kind of chip is different from the static one 
(Application-Specific Integrated Circuit – ASIC), 
because of its flexibility of changing its internal 
architecture during the execution time, which is a 
process made by software without turning the 
hardware off (Vahid, 2007). 

The application of partial reconfiguration has 
been motivated by two distinct conditions: the first 
one is the existence of idle or underutilized 
hardware, and the second one is the need of 
partitioning a big system to limited FPGA resources. 
Because of that, advances in the newest FPGA 
technology have given support to two kinds of 
reconfiguration: the static and the partial. The static 
reconfiguration refers to the ability of performing a 
total reconfiguration of the chip, but once 
programmed, its configuration remains in the FPGA 
while the application is running. On the other side, 
the partial reconfiguration (Figure 4) is defined as 
the selective update of one or more subsections of 
FPGA and its routing resources, while the rest of the 
programmable resources of that device keep running 
during the reconfiguration time (Mesquita, 2003).  

 

Figure 4: Partial reconfiguration. 

The partial reconfiguration has provided 
expressive benefits to systems that demand 
flexibility, high performance, high data-transfer rate 
and efficiency of energy consumption, as it 
minimizes hardware resources demanded. Many 
applications have been reported in areas that include 
image processing (Manet, 2008), artificial neural 
networks (Upegui, Peña-Reyes, Sánchez, 2003), 
computational vision (Sen, 2005) and genetic 
algorithms. 

Besides the benefits listed before, the partial 
reconfiguration presents also some disadvantages, 
being the complexity of working with dynamic 
allocation the most complex one. Changes 

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

144



performed by the dynamic allocation, during the 
running time, make harder understanding the exact 
system behavior, being needed a previous 
understanding of all the possible running sequences. 

2.2.1 The Architecture of Reconfigurable 
FPGAs  

Xilinx is among the pioneer companies in 
developing FPGAs that allow partial 
reconfiguration. 

FPGAs from the Virtex family have 
configurable logic blocks (CLBs), input/output 
blocks (IOBs), random access memory blocks 
(RAMs), clock resources, programmable routing and 
electrical circuit configuration. Each CLB has 
resources for local routing and a connection to the 
general routing matrix (GRM). A peripheral routing 
ring, named VersaRing, allows additional routing 
with input and output blocks (IOBs). 

RAM blocks, presented by this architecture, are 
dual-port type, with reading and writing channels, 
where is possible running simultaneously these two 
options with distinct addresses. Those FPGAs have 
also blocks that implement DLLs functions to 
control, distribute and compensate clock delay 
(Xilinx, 2010). 

Figure 5 shows an abstraction of the internal 
FPGA Virtex architecture. 

 

Figure 5: FPGA Virtex architecture. 

Device functionalities are defined through the 
configuration file, named bitstream, which have a 
mix of commands and data. They can be red and 
written through some of the Virtex configuration 
interfaces. Virtex devices have the internal 
architecture organized in columns (Figure 5) that can 
be individually red and written. Thus, it is possible 
partially reconfigure those devices through the 
change of those columns in the configuration file 
(Mesquita, 2003). 

2.3 ANNs Implemented in FPGA 

Literature presents some examples of artificial 
neural networks implemented in FPGA. Some of 
those networks adopt the Very High Speed 
Integrated Circuit Hardware Description Language 
(VHDL) as input method, which is a language 
supported by most of the synthesis tools. VHDL 
allows that complex circuits to be designed from a 
structural model, data flow and behavioral 
description. 

To implement an ANN through reprogrammable 
devices, both input and output values must be 
processed in fixed point arithmetic, as a way of 
adapting it to the digital architecture of FPGAs. 
Thus, it has to be determined the amount of bits to 
the number representativeness, taking into account 
the accumulation of errors to be generated through 
the fixed point calculation, when despising truncated 
data (Himavathi, Anitha and Muthuramalingam, 
2007) and (Silva, Dória Neto, Oliveira and Melo, 
2010). Alternatively, it can be chosen working with 
a hybrid combination of fixed and floating 
arithmetic. In this context, some bits are split to 
define mantissa, exponent, sign and a fixed offset, 
which allows representing the value in floating point 
(Wiist, Kasper, Reininger, 1998).  

The neural architecture proposed by (Silva, 
2010) implements an artificial neuron, as the basic 
processing unit, and replicates it, in the sequence, to 
create an MLP network. 

Embedded systems, in just one only chip, have a 
large industrial acceptance. With this goal, (Lopes 
and Melo, 2009) developed a set of specialists in just 
one committee machine, using the Nios® II 
processor, synthesized in FPGA. Such proposal 
intended to solve problems with highest complexity, 
which need more than one evaluator expert system. 

3 THE PROJECT 

In this research, it was used the ISE 14.2 and 
PlanAhead 14.2 tools, by Xilinx, and partial 
reconfiguration based on modules, because the 
methodology adopted by Xilinx tools has changed 
drastically in the last years, especially after the 
macros bus, which allows manual routing, needed to 
communicate modules. PlanAhead allows creating 
reconfigurable partitions in FPGA and also setting 
each of those reconfigurable regions. Besides that, to 
make this reconfiguration possible, it is needed that 
the FPGA supports this functionality, and also a 
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specific communication port to that, as the Internal 
Configuration Access Port (ICAP) (Xilinx, 2010). 

Each configuration meets the FPGA’s static parts 
– clock managers, processors, buses – with the 
specific dynamic part. When a configuration 
changes only one region, it imports data about pins 
from other partitions, with which occurs 
communication. From each configuration is possible 
generating a bit file that can be charged to partially 
or totally reconfigure the FPGA. 

The project flow to partially reconfigure (Figure 
6) consists, initially, of describing functions that the 
hardware will have to run, through the hardware 
description language (HDL). Thus, it is possible 
synthesizing the modules to make possible 
connecting them, and using PlanAhead. Before 
generating each partial or full bit file, it is needed 
adding board and project constraints, being the file 
responsible for defining the minimum delays in 
communication between modules; pins, where input 
and output data are connected; and the slice 
coordinates that bound each reconfigurable region.  

Next subsection will present methods applied in 
this project to implement ANNs with partial 
dynamic reconfiguration. 

3.1 The Perceptron in FPGA 

Having as reference the neuron proposed by 
McCulloch and Pitts (Figure 2), the architectures 
proposed for neurons in this paper followed the 
model developed by (Silva, 2010), using VHDL, 
showed in Figure 7. Those two architectures were 
divided in two functional blocks: the first one is a 
linear combiner, responsible for adding the inputs 
pondered by synaptic gains; and the second one is 
responsible for calculating the activation function, 
named, respectively, NET and FNET blocks. 

The construction of those blocks is based on the 
RTL design approach (project in transfer level 
among records), including registers to synchronize 
the data flow. 

3.1.1 Static Neuron 

The static and total implementation of FPGA, the 
NET block (Figure 7), besides calculating the 
induced perceptron local field with up to eight inputs 
of 16 bits, which are imposed to it, also presents the 
data flow among MULT and ADDER blocks. 

To keep parallelism, each neuron input is 
directed to an exclusive multiplier that performs

 

Figure 6: Design flow for partial reconfiguration.
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Figure 7: Proposed structure of the neuron in hardware. 

the product with the synaptic weight, both defined in 
fixed point with sixteen bits and sign. In each 
MULT block is performed the shifting of sixteen 
bits to keep the compatibility with the fixed point 
representation of system data. The ADDER block is 
the unit responsible for adding the results from 
multiplication and threshold. 

To conclude the NEURON block, after the 
calculation of the induced local field, it is performed 
the calculation of the activation function, in the 
FNET block. In this calculation, it can be chosen 
using sigmoid or tangent sigmoid activation 
functions, calculated as described in section 3.2. 

3.1.2 Dynamic Neuron  

The description of NEURON block, with partial 
reconfiguration, is different from the static 
description only because of the FNET block. This 
block has two reconfigurable modules, one for each 
activation function, which are translated in BIT 
partial files. Those files are selected and downloaded 
to some reconfigurable regions of FPGA, by a 
controller (state machine) that will define a new 
functionality to the artificial neuron. 

3.2 The Calculation of the Activation 
Function  

The implementation of the sigmoid or hyperbolic 
tangent activation function in FPGA is performed by 
applying a lookup table (LUT), whose structure is 
constituted by a comparator block, and two 16 x 21 
data bits parallel ROMs. The reason why a lookup 
table is chosen to simulate the tangent sigmoid 
function is related to the cost and the difficulty of 
implementing it mathematically in FPGA. The 

applied activation function is constituted by a table 
of 21 points with previously defined values (Silva, 
2006). 

To define this function, the solution adopted was 
representing the function by the set of linearly 
interpolated points, in such a way that the difference 
between the curves of the function and of the points 
be minimal. To reach this goal, it was applied the 
computational intelligence technique, known as 
genetic algorithm, which is intended to achieve the 
smallest error for each individual, based on some 
objective function. 

After running the genetic algorithm, it was 
obtained 21 points showed in table x, corresponding 
to the x road function of the sigmoid tangent and 
their respective y outputs. Thus, it was obtained the 
angular and linear coefficients, stored in the ROM of 
the LUT unit. 

So, the calculation of the output value of the 
FNET block is executed in the following way: from 
the input value (from the NET block), it is defined a 
LUT address common to both ROMs, where are 
stored the angular and linear coefficients of the line 
segment, to be used by the interpolator block, to 
generate the output signal. 

3.3 Structural Descriptions of Neural 
Networks in FPGA 

Solutions proposed to enable studying ANNs with 
partial reconfiguration of FPGA were based on 
describing the NEURON block using VHDL. By 
this way, the natural flow of implementation was 
describing the neural network architecture, through 
the replication of NEURON block. 

By using this solution, there were built three 
structures to replicate the NEURON block, being 
them all MLPs. The first structure was a network 
with two inputs, two neurons in the hidden layer, 
and one neuron in the output layer. The second one 
was a network with just one input, three neurons in 
the hidden layer, and one neuron in the output layer. 
The third structure was composed by one input, five 
neurons in the hidden layer, and one neuron in the 
output layer. 

The partial reprogramming of FPGA demands a 
control circuit similar to the ones used to reprogram 
reconfigurable FPGAs, but having the possibility of 
partially reconfiguring it, not totally. The control 
circuit must have spare and dynamic releasing 
capacities. Every time that some ANN has to be run, 
but it is not in the memory yet, it has to be 
transferred from the external memory to the 
configuration memory of the FPGA. As this kind of 
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FPGA has a symmetric architecture, it is noted that 
the same ANN will probably work in the same way, 
independent from the zone it is charged in FPGA. 
On the other side, every time that is needed to run a 
new ANN, which is not changed in FPGA, without 
having some available zone, it has to select among 
mapped blocks some of them that are not being 
needed or temporary suspended, transferring the new 
block to it (Figure 8). 

 

Figure 8: Partial reconfiguration ANN. 

4 RESULTS AND DISCUSSION 

All the results were obtained through simulations 
and tests using ISE® 13.2 and planhead® softwares, 
both produced by Xilinx®, and also through circuit 
synthesis information in a FPGA with reference 
number XC6VLX240T, Virtex® -6. 

Architecture was tested using three problems 
related to neural networks, such as the XOR 
problem, interpolation of Sinc and exponential 
functions.  

Neural network topologies used for solving 
previously mentioned problems were defined and 
tested in software. To select the topologies used in 
those problems, a simplified heuristic was used. The 
heuristic used to define the topology was to create a 
small network, with a few NEURON blocks, and the 
amount of NEURON blocks was increased until the 
network output error was minimal. Between each 
increasing of the amount of NEURON block, during 
the training, the learning parameter was modified to 
adapt it to each network topology. These weights 
and thresholds were then normalized and 
transformed into a fixed point. After data were 
obtained simulations and syntheses of the system in 
the hardware implemented can begin. Only after 
obtaining those data from software, it could be 
possible implementing them on hardware. 

4.1 Synthesis Results 

In this section, it is possible verifying a comparative 
between occupation rates of two MLP network 
architectures through FPGA. 

The architecture proposed by (Silva, 2010) was 
composed by seven NEURON blocks, being one of 
them for the input and the other one for the output 
layers. Thus, the architecture proposed in this study 
was composed by three neurons in the hidden layer 
and one for the input and the other one for the output 
layer. The proposed architecture resulted in 
increasing 2% in the amount of logical units when 
compared to the previous implementation. This 
increasing occurs because of the partial bitstreams. 

Table 1: FPGA Area Analyses. 

Architectures 
Comparison 

Architectures Comparison 
Architecture 

proposed in this 
study 

Architecture 
proposed in 
(Silva, 2010)

Device XC6VLX240T EP2C35F672C6 
Logical 

elements 
6,375/37,680 

(14%) 
3,975/33,216 

(12%) 
Number of 
registers 768 482 

Number of 
pins 

536/832 (78%) 458/475 (96%) 

Number of 
bits of 

memory 
1/14,976 (0%) 0/483.840 (0%) 

Dedicated 9-
bit multiplier 

32/90 (40%) 32/70 (46%) 

Clock 
frequency 

62.32 MHZ 55.92 MHZ 

Table 1 presents a comparison between 
characteristics of FPGA synthesis in the architecture 
proposed here and the others discussed in this study. 
Maximum working frequency that the device can 
operate at is 62.32 MHz, a good index when 
compared with architectures developed by other 
authors exhibited in Table 1. Information about 
maximum working frequency was obtained using 
Xilinx ISE Design Suite 13.2 software. 
Another point to observe is the energy analysis of 
the device, considering costs involved in 
implementing an MLP-type ANN. Total thermal 
energy dissipated by the device is 242.34 mW. This 
energy is partially dissipated by the input and output 
drives (87.23mW), while the other part occurs 
through dissipation of static thermal energy in the 
core. The maximum current drained by the 
architecture will be 155.03 mA, internally, and 17.06 
mA at the input and output pins. These data were
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 based on analysis performed by Xilinx ISE 
software. 

4.2 Results from Simulations 

In this section, it is shown results from processing 
MLP networks to solve the classification problem of 
XOR logical function and interpolation problems of 
Sinc and Exponential functions. Those networks 
were previously trained and tested by software. 

To run the XOR function, it was used an MLP 
network with two inputs, two neurons in the hidden 
layer, and one neuron in the output layer. To the 
activation functions, it was used partial bitstreams, 
which configured the MLP network outputs. It was 
observed that, implementing this neural network, 
following the given model, taken to solving the 
XOR problem, and the output values are shown in 
Table 2. They show that the implementation using 
Vitex-6 FPGA is valid, once the maximum relative 
error was just 0.25%. 

Table 2: Comparative results of the neural network used 
for implementation of the XOR. 

Input 

Output 
(software) 

Fixed 
point 

Output 
(FPGA) 
Function 
Sigmoid 

Output 
(FPGA) 
Function 
Sigmoid 
tangent 

00 103 105 105 
01 5657 5651 5651 
10 5679 5672 5672 
11 91 90 90 

Figure 9 shows a comparative between software 
and hardware implementation of Sinc function. The 
implemented MLP network was composed by one 
input, five neurons in the hidden layer, and one 
neuron in the output layer, both with hyperbolic 
tangent activation function. 

Figure 10 shows another comparative, but it is 
between software and hardware implementation of 
Exponential function. The implemented MLP 
network was composed by one input, three neurons 
in the hidden layer, and one neuron in the output 
layer, both with sigmoid tangent activation function. 

5 CONCLUSIONS 

FPGA, in running time, makes the reconfiguration 
flexibility wider and reduces the silicon area, 
allowing reprograming it in field. As a result of the 
new  FPGA  tools, projects of partial reconfiguration 

 

Figure 9: Comparative Sinc function. 

 

Figure 10: Comparative Exponential function. 

were made simple, reducing their complexity and 
the project’s time market.   

In this context, it was performed a description of 
one neuron, using numerical notation of fixed point 
and by employing a partial reconfiguration strategy 
to implement sigmoid and hyperbolic tangent 
functions. To those functions, data was obtained 
from linear interpolation, using lookup table. 

By specifying the NEURON block, constituted 
by NET and FNET blocks, it was verified that, in 
this study, the used architecture descriptions become 
very modular, making possible easily increase and 
reduce the number of neurons, and also the network 
structure. As a result, there were created partial 
modules of complete neural networks in Virtex-6 
FPGA, with the proper numerical precision and high 
ability of parallel processing. 

The MLP architectures, developed in partially 
reconfigurable Virtex-6 FPGA, allowed qualifying 
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the methods and approaches developed in this study 
as able to being transported from the simulation 
phase to real systems, complying with the 
established requirements for the project. 

In future, it is planned to create a Graphical User 
Interface (GUI) as an easy way of specifying other 
ANNs. 
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