
A Model-based Tool for Generating Software Process Model
Tailoring Transformations

Luis Silvestre, María Cecilia Bastarrica and Sergio F. Ochoa
Computer Science Department, Universidad de Chile, Santiago, Chile

Keywords: Software Process Tailoring, Model Transformation, Generative Approach, Model-based Tool.

Abstract: Tailoring is the mechanism of adapting a software process to the needs of a project. Model-Driven
Engineering (MDE) provides a formal basis and tools infrastructure for automatic software process
tailoring. However, the use of a MDE approach can become awkward for most process engineers, because it
requires knowledge of MDE concepts and formalisms to implement the required models and tailoring
transformations. Proposals trying to address this problem should balance the formality required by MDE
and the usability needed by the users. This paper presents a model-based tool and its associated procedure
that allow process engineers to automatically generate tailoring transformation rules using a graphical user-
interface, obtaining the desired balance. The proposal is illustrated with a running example.

1 INTRODUCTION

Software process tailoring is the adaptation of a
software process so that it is adjusted to the needs of
a particular project. There are a variety of
approaches to address tailoring, ranging from self-
emerging processes as in XP (Beck, 1999), to
template-based tailoring as in Crystal methodologies
(Cockburn, 2000), and ultimately automatic software
process tailoring based on MDE techniques
(Bendraou et al., 2010) (De Oliveira Barros et al.,
2002) (Hurtado et al., 2013).

MDE promotes building software by defining
software models and successively refining them
through formal model transformations (Schmidt,
2006). In this way, this approach has allowed
software modeling at different abstraction levels and
addressing different application domains (Kleppe et
al., 2003). However, all this power requires
mastering new concepts and formalisms relating
model definition and writing model transformations
in specific languages. These complexity issues have
sometimes prevented these techniques to be applied
in industrial settings.

MDE-based tailoring considers software
processes as models, and process tailoring as model
transformations. Model transformations are
programs that generate one or more output models
from one or more input models. Transformations
may be written in general purpose languages such as

Java or C++, but transformation-specific languages
such as ATL (AtlanMod Group, 2006) or QVT
(OMG, 2001) provide higher abstraction level
constructs for writing transformations.

For software process tailoring, the tailoring
transformation takes the organizational process
model including its variability, and the project
context model as input, and generates the project
adapted process model. For each variable process
element in the process model, there will be a rule in
the transformation that determines if it is to be
included or not (for optional elements), or which
realization of the process element should be included
(for alternative elements), according to the values of
the project context model attributes.

Generating appropriate tailoring transformations
requires two different kinds of knowledge. On the
one hand, the process engineer, who is in charge of
this activity, should know precisely how the context
attribute values impact the process variation. On the
other hand, she/he should be able to write the model
transformation, mastering the syntax and semantics
of the transformation language used to implement
the tailoring rules. The company's process engineer
usually has the first kind of knowledge (i.e., how to
tailor the process), but she/he is almost never
experienced in the use of transformation languages
and MDE concepts. While it has been shown that it
is technically feasible to apply MDE to tailor
software process models, the complexity of this

533Silvestre L., Bastarrica M. and Ochoa S..
A Model-based Tool for Generating Software Process Model Tailoring Transformations.
DOI: 10.5220/0004715805330540
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 533-540
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

solution limits its use in the software industry.
To address this challenge, we present a model-

based tool to automatically generate tailoring
transformation rules through a generative approach.
This tool, that we have called Architect of Tailoring
Rules (ATR), allows process engineers to
interactively define rules using a graphical user
interface, taking advantage of the formality provided
by MDE but hiding its inherent complexity.
Therefore, the process engineer can define
transformation rules to tailor the organizational
software process, only by selecting on a graphical
user interface the values of project context attributes
that impact variable process elements.

The rest of the paper is structured as follows.
Next section presents and discusses the related work.
Section 3 presents the general strategy used to tailor
software processes, and shows how the proposed
tool contributes to such an activity. The proposed
model-based tool is described in Sect. 4, along with
its main components. Finally, conclusions and future
work are presented in Sect. 5.

2 RELATED WORK

There are several kinds of model transformations
according to different criteria: declarative or
imperative; in-place or new-target; deterministic,
non-deterministic, or interactive (Czarnecki et al.
2006). However, building the appropriate model
transformation requires expertise for choosing the
right kind of transformation, and also for mastering
the transformation language syntax and semantics.
These knowledge-gap barriers are partly addressed
by transformation-by-example techniques (Kappel et
al. 2012). Writing model transformations is usually
difficult, and the required knowledge for writing any
kind of transformation is not generally available for
process engineers, that are the people in charge of
process design and tailoring.

MOLA (Kalnins et al., 2004) allows specifying
transformation rules through visual mapping
patterns. Similar to GREaT (Balasuramanian et al.,
2006), MOLA specifies rules and mappings using
class diagrams, but considering an environment
inspired in activity diagrams. Both works define the
possibility of establishing relationships between
metamodel attributes and elements. A limitation of
MOLA and GREaT is that they need the user to
directly interact with metamodels and class
diagrams, which still represents a strong restriction
for process engineers in terms of usability.

Varró and Balogh, through the VIATRA

framework (Varró et al., 2002), provide a text-based
rule editor. Although this proposal is supported by
Eclipse, it does not provide an easy-to-use
environment that can be used by process engineers
for defining tailoring rules.

There are also some recent proposals such as
MTBE (Model Transformations By Example)
(Wimmer et al., 2007) (Varró and Balogh, 2007) and
MTBD (Model Transformation By Demonstration)
(Sun et al., 2009) that present innovative solutions
for simplifying the implementation of model
transformations, by using strategies and patterns
with a visual support. These strategies generate part
of the code required for the model transformations,
however, the process engineer still needs to
understand and complete such a code. Therefore,
this represents a semi-automatic process to generate
model transformation rules.

Hurtado et al. (Hurtado et al., 2013) present a
proposal that generates an adapted process model
from a general process model, which is tailored
according to a context model that specifies the
characteristics of a particular project. The tailoring
transformation is written in ATL (AtlanMod Group,
2006) and its rules consider information from the
project context model to decide the elimination or
not, or the choice of variable elements in the general
software process model. This proposal demonstrates
the feasibility of the MDE-based tailoring approach,
but rules still need to be directly written.

These proposals highlight the need for
developing new solutions for simplifying rule
definition while still providing all the expressive
power required for software process model tailoring.
Software process tailoring is only an example of the
application scenarios that are not well supported by
the current way of developing model
transformations. This knowledge gap has lately been
addressed by new proposals such as Domain-
specific transformation languages (Rumpe et al.,
2011).

3 SOFTWARE PROCESS
TAILORING STRATEGY

Figure 1 shows the general architecture of the MDE-
based process tailoring. This approach requires two
input models: an organizational software process
model that conforms to the eSPEM (experimental
SPEM) metamodel that is a subset of SPEM
(Software Process Engineering Metamodel) (OMG,
2008a) and a project context model that is an
instance of the Organizational Context Model.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

534

Figure 1: MDE-based software process tailoring.

This proposal uses a model-to-model transformation
to generate a project adapted software process
model as output. The resulting process model also
conforms to eSPEM.

The organizational software process model has
been defined using the Eclipse Process Framework
Composer (EPFC), along with its variabilities
(Simmonds et al., 2013). This tool has been well
received by software companies' process engineers.
However, the process, as specified in EPFC,
conforms to the UMA (Unified Method
Architecture) metamodel in its internal
representation, and therefore the tool exports an xml
file that cannot be directly used as input for the
tailoring transformation. Therefore, an injector has
been built for converting the process representation
between formats obtaining an organizational
software process model in xmi format and
conforming to eSPEM as needed.

The organizational context model indicates the
project attributes that may influence the process
tailoring along with their potential values. A project
context model is an instance of this organizational
context model. The organizational context model is
defined using Eclipse Modeling Framework (EMF)
and conforming to the SPCM (Software Process
Context Metamodel) metamodel (Hurtado et al.,
2013).

The tailoring transformation in this proposal is
written in ATL. For each variable element identified
as part of the organizational process, there is a rule
included in the transformation. For optional process
elements, the rule decides, according to the values in
the project context model attributes, if it should be
included or not in the adapted process. For process
elements defined with alternatives, the rule decides
which of them will realize the process element in the

adapted process. Even though this strategy seems
quite clear, translating it into ATL rules is a
challenging task.

Although this tailoring proposal has shown to be
technically feasible in real scenarios, it clearly has
important limitations when process engineers have
to use it. For that reason we have developed the
Architect of Tailoring Rules (ATR), a tool that
allows process engineers to interactively define the
process tailoring rules using a graphical user
interface. The tool’s output is the tailoring
transformation that can be used to adapt the
organizational software process (Fig. 1). The
following section describes the proposed model-
based ATR tool, along with is associated procedure.

4 MODEL-BASED TOOL FOR
GENERATING TAILORING
TRANSFORMATIONS

Figure 2 presents the architecture of ATR, the
model-based tool that allows the automatic
generation of the tailoring transformation.

Figure 2: Architecture of the proposed heuristic.

The ATR tool uses the organizational software
process model as an input because such a model
contains the information about the variable process
elements for which the process engineer must define
tailoring rules. The tool also uses the organizational

A�Model-based�Tool�for�Generating�Software�Process�Model�Tailoring�Transformations

535

context model as an input, because the conditions of
the tailoring rules are defined according to the
values of the attributes in this context model.

The process engineer uses a visual interface to
indicate the models that will be used in the definition
of tailoring rules (Fig. 3). After that, she/he can
define tailoring rules for each process variation
point. This activity involves two steps: the
interactive definition of a decision model (using the
visual user interface) and the automatic generation
of the tailoring transformation, based on the
previously built decision model.

Figure 3: Interface for input models selection.

During the first step, the process engineer uses the
ATR tool to interactively define the relationships
between the context attribute values and process
variable elements yielding a Variation Decision
Model (VDM). This VDM is a high-level
representation of the transformation rules. The VDM
is then used as input for a Higher Order
Transformation (HOT) to automatically generate the
tailoring transformation that will be used to adapt
the organizational software process model.

Thus, the proposed tool allows process engineers
to apply MDE concepts to generate tailoring
transformations, hiding the inherent complexity of
such concepts. Their complexity is encapsulated
mainly in the VDM and the HOT.

Next sections describe each component of the
tool. In order to illustrate its capabilities, we will
use, as a running example, the generation of the
tailoring rules for Rhiscom’s process. Rhiscom is a
medium-sized software company that develops
software for the retail industry. It has around 70
employees and offices in four Latin-American
countries. This company has a software process
formalized in SPEM 2.0.

4.1 Interactive Definition
of the Variation Decision Model

Once the process engineer has specified the models

that will be used as input, she/he can start with the
interactive definition of the variation decision
model. Figure 4 shows five variation points for
Rhiscom’s process: requirements, environment
definition, environment checklist, requirement
specification and design. If the user selects a
variation point (e.g. requirements) and clicks on the
“Create Rules” button, she/he can define the rules
that will be used to tailor the organizational process
in such a point, depending on the values of the
context attributes of a specific project.

Figure 4: Selection of process variation points.

Figure 5 shows the interactive interface that allows
the process engineer to define the decision model.
Each decision has a condition and a conclusion. The
condition is a predicate that could be simple or
complex. Simple predicates are typically a list of
context attributes linked to particular values through
a logical operator. Complex conditions consider the
use of predicates connected through logical
connectors. In the right part of the figure we can see
the conditions defined so far.

Figure 5: Interactive Interface.

In this example, the engineer defines that the
Requirements activity should not be included when
the project type is “Maintenance-Adaptation”, when
the project duration is “Small” and also when the
team size is “Small” or business knowledge is
“Known”. These decisions are part of the

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

536

adaptations defined by Rhiscom for its
organizational process. Table 1 shows other
adaptations also considered for such a process.

Table 1: Rules for Rhiscom’s tailoring transformation.

5
Context

Attribute
Context Attribute

Value
Conclusion

Decision

1

Project type Maintenance-
Correction Remove:

Environment
Definition

Project
duration

Small

Decision
2

Project type Maintenance-
Adaptation

Remove:
Requirements

Project
duration

Small

(Team size = Small) or
(Business Knowledge = Known)

Decision

3

Project type Incidents Remove:
Environment

Checklist Team size Small

In the “context attribute” column of Table 1, we can
see four context attributes that influence the process
tailoring. For optional process elements, the decision
establishes, according to the values in the “context
attribute value” column, if it should be included or
not in the adapted software process model. We can
also see in the “conclusion” column the process

element to be removed according to each decision.
We will use decision 2 as an example to show how
to derive a transformation rule from it.

Next section describes the variation decision
model in detail.

4.2 Variation Decision Model

The variation decision model is generated by the
interactive rule definition of the ATR tool. The tool
establishes relationships between context attribute-
values and variable process elements. Then, ATR
automatically builds a VDM, which is used as an
input for the HOT that actually generates the
tailoring transformation.

Decision models have been used in software
product lines for establishing the conditions for
configuring particular products of the line. There is
no standard formalization for these models. In this
work we provide a formal metamodel: the Variation
Decision MetaModel (VDMM), as shown in Fig. 6.

VDMM organizes a VDM in two main parts:
configuration content and configuration rule, similar
to the work of Weiss on Decision Models (Weiss et
al., 2008) and the work on Semantics of Business.

Vocabulary and Business Rules (SMVB), used

Figure 6: Variation Decision MetaModel.

A�Model-based�Tool�for�Generating�Software�Process�Model�Tailoring�Transformations

537

for building decision rules (OMG, 2008). The
configuration content’s goal is to incorporate
specific information that will be needed for
modeling decisions including ContextElements and
VariabilityPointElements. The configuration rule
defines the tailoring rules using domain concepts.
They have two subcomponents: Condition and
Conclusion. Conditions may be simple (just one
condition), or complex (several conditions with
logical connectors). According to the literature on
decision models, conditions should have a left and a
right side that in our case are called myAttribute
(left) and myAttributeValue (right). Similarly, the
conclusion must also have a left and a right side; in
our case they are myVariabilityElement (left) and
myVariabilityValue (right).

Figure 7 shows the VDM generated through the
interactive interface. We can see that the
Configuration Content is formed by the Context
Elements and the Process Variability Point
Elements. On the other hand, in the Configuration
Rule we can see that Term 1 is highlighted and in
the lower part we can see that the Project Type
attribute has been assigned the Maintenance-
Adaptation value, as stated in Fig. 5. As part of this
rule conclusion, Requirements is set to False.

Figure 7: Variation Decision Model Instance.

4.3 HOT for Generating Tailoring
Transformations

Provided that model transformations can also be
considered as models conforming to their language
metamodel (Bézivin et al., 2006), a Higher-Order

Transformation (HOT) is a transformation in itself,
but it either takes a transformation model as input or
generates a transformation model as output (Tisi et
al., 2010). We use a HOT to generate the tailoring
transformation, thus avoiding writing it directly. Our
HOT takes the VDM previously built as input, and
its output is the desired process tailoring
transformation.

There are two approaches for building HOTs:
model-to-model (M2M) and model-to-text (M2T)
transformations. We choose M2T and therefore the
output is the ATL source code of the tailoring
transformation.

To build a M2T transformation it is possible to
use transformation-specific or general-purpose
languages. Transformation-specific languages for
this task like ATL, Acceleo and MOFScript provide
transformation-specific abstractions. However, we
have decided to use a general purpose language such
as Java to build the HOT, at least for the first
version, because it is a mature language that is easily
mastered by developers (Silvestre et al., 2013). A
final version of the HOT will be probably
implemented in a transformation-specific language.

The M2T transformation built in Java has two
aspects: its fixed and its variable parts. The fixed
parts are instructions that do not change and that will
be present in all tailoring transformations created,
e.g., the head of the input metamodels and code to
build the output transformation model. The variable
parts are statements that make use of libraries to read
the information and statements that recursively
create the tailoring transformation according to the
VDM.

Figure 8: HOT implemented in Java.

Figure 8 shows an excerpt of the Java code that
builds the body of the tailoring transformation and
recursively generates the transformation rules
considering the information in the VDM. After
executing the HOT, the process tailoring
transformation is obtained in text format (i.e., ATL
source code).

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

538

4.4 Resulting Tailoring
Transformation

Once we have the process and the context models, as
well as the generated tailoring transformation, it is
possible to encapsulate them into an interactive tool:
ATR. This tool includes building the VDM and the
HOT that takes this model as input and
automatically generates the tailoring transformation.

Figure 9 shows the transformation automatically
generated for tailoring Rhiscom’s process. As stated
in Figure 5, Requirements is optional, and it has an
associated rule in the tailoring transformation.
Figure 10 highlights the helper called by rule 2 for
deciding about the deletion of the Requirements
activity.

Figure 9: Tailoring transformation. “Requirements” is
optional so a decision is made with respect to its inclusion.

Figure 10: Tailoring transformation excerpt. Decision
about deleting the “Requirements” activity is highlighted.

5 CONCLUSIONS

We have presented ATR, a model-based tool for
interactively defining and automatically generating
process tailoring transformations. ATR combines
MDE and generative programming aspects. We have
also described the implemented user interface, the
underlying VDM model and the involved HOT. The

resulting tool is powerful enough to generate the
tailoring transformation for a real world company's
process.

The main purpose of building an interactive tool
was aiding the process engineer tailoring her/his
process. We provided a running example that shows
how to apply MDE concepts without interacting
with the code or knowledge about transformation
languages. Transformations in general could be quite
complex. However, we have shown that building
process tailoring transformations requires only a few
types of rules that may be automatically generated
from a VDM. Although we have been able to
generate transformations automatically, this kind of
tool is only applicable for software process domain,
but this experience can be the starting point to be
extended to other domains.

ATR generates complex rules using simple
conditions, logical operators and complex conditions
(with logical operators). In this sense, if there are
rules with different conclusions on the same
variability point, ATR still does not solve it; this can
be addressed adding constraint definitions. Future
work is necessary to extend the VDM to support
constraints definition between software process
elements and complex rules.

Finally, we need empirical evidence that help us
validate the tool usability for real world process
engineers.

ACKNOWLEDGEMENTS

This work is partly funded by Project Fondef
D09I1171, Conicyt, Chile. The work of Luis
Silvestre was supported by PhD Scholarship
Program of Conicyt-AGCI (Chile), “Doctorado
Nacional para Estudiantes sin Permanencia
Definitiva- Convocatoria 2013”.

REFERENCES

AtlanMod Group (2006). Atlas Transformation Language.
ATL Eclipse Project. Online http://www.eclipse.org/
atl/.

Balasubramanian, D., Narayanan, A., vanBuskirk, C., and
Karsai, G. (2006). The graph rewriting and
transformation language: GReAT. In Proceedings of
the Third International Workshop on Graph Based
Tools, pp. 1–8.

Beck, K. (1999). Embracing Change with Extreme
Programming. IEEE Computer 32(10): 70-77.

Bendraou, R., Jezequel, J., Gervais, M.P., and Blanc, X.
(2010). A Comparison of Six UML-Based Languages

A�Model-based�Tool�for�Generating�Software�Process�Model�Tailoring�Transformations

539

for Software Process Modeling. Software Engineering,
IEEE Transactions on, 36(5):662–675.

Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev,
I., and Lindow, A. (2006). Model transformations?
transformation models! In MoDELS’06, LNCS 4199,
pp. 440–453. Springer.

Cockburn, A. (2000) Selecting a Project's Methodology.
IEEE Software 17(4): 64-71.

Czarnecki, K., Helsen, S. (2006). Feature-based survey of
model transformation approaches, IBM Systems
Journal 45(3): 621-645.

De Oliveira Barros, M., Werner, C. M. L., and Travassos,
G. H. (2002). A system dynamics metamodel for
software process modeling. Software Process:
Improvement and Practice, 7(3-4):161–172.

Hurtado, J.A., Bastarrica, M.C., Quispe, A., Ochoa, S.F.
(2013). MDE-Based Process Tailoring Strategy.
Journal of Software: Evolution and Process, in press.
DOI: 10.1002/smr.1576.

Kalnins, A., Barzdins, J., and Celms, D. (2004). Model
Transformation Language MOLA. In Aßmann, U.,
Aksit, M., and Rensink, A., (Eds), Model-Driven
Architecture: European MDA Workshops:
Foundations and Applications, LNCS 3599, pp. 62–76.

Kappel, G., Langer, P., Retschitzegger, W., Schwinger,
W., Wimmer, M. (2012). Model Transformation By-
Example: A Survey of the First Wave. In the
Conceptual Modeling and Its Theoretical
Foundations, LNCS 7260, pp. 197-215.

Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

OMG (2001). Meta Object Facility (MOF) 2.0
Query/View/Transformation V1.1. Object
Management Group. OMG doc. formal/2011-01-01.

OMG (2008). Semantics of Business Vocabulary and
Business Rules (SBVR), Version 1.0. Object
Management Group. OMG dtc/07-09-04.

OMG (2008a). Software Process Engineering Metamodel
SPEM 2.0 OMG Specification. Object Management
Group. OMG Technical Report ptc/07-11-01.

Rumpe, B., and Weisemöller, I. (2011). A Domain
Specific Transformation Language. In Proceedings of
the ME’11 - Models and Evolution, Wellington, New
Zealand, Oct. 2011.

Schmidt, D.C. (2006). Guest Editor’s Introduction: Model
Driven Engineering. IEEE Computer, 39(2):25-31.

Silvestre, L., Bastarrica, M.C., and Ochoa, S.F. (2013):
Implementing HOT’s that Generate Transformations
with Two Input Models. Accepted in XXXII
International Conference of the Chilean Computer
Science Society (SCCC’13), Temuco, Chile.

Simmonds, J., Bastarrica, M.C., Silvestre, L., and Quispe,
A. (2013). Variability in Software Process Models:
Requirements for Adoption in Industrial Settings. In
4th International Workshop on Product line
Approaches in Software Engineering (PLEASE’13),
San Francisco, California, USA.

Sun, Y., White, J., and Gray, J. (2009). Model

Transformation by Demonstration. In MoDELS’09,
pp. 712–726.

Tisi, M., Cabot, J., and Jouault, F. (2010). Improving
Higher-Order Transformations Support in ATL. In
Tratt, L. and Gogolla, M. (Eds), ICMT, LNCS vol.
6142, pp. 215–229. Springer.

Varró, D. and Balogh, Z. (2007). Automating model
transformation by example using inductive logic
programming. In Proc. of the 2007 ACM Symposium
on Applied Computing (SAC’07), Seoul, Korea.

Varró, D., Varró, G., and Pataricza, A. (2002). Designing
the automatic transformation of visual languages.
Science of Computer Programming, 44(2):205–227.

Weiss, D. M., Li, J., Slye, H., Dinh-Trong, T., and Sun, H.
(2008). Decision-Model-Based Code Generation for
SPLE. In 12th International Software Product Line
Conference (SPLC’08), pp. 129–138.

Wimmer, M., Strommer, M., Kargl, H., and Kramler, G.
(2007). Towards Model Transformation Generation
By-Example. In HICSS’07, IEEE Computer Society:
285-294.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

540

