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1 OBJECTIVES 

This paper reviews traditional and novel techniques 
for the characterization of motor unit firing 
properties and the determination of their underlying 
determinants. 

These methods are becoming increasinly 
important because of advances on techniques to 
accurately identifiy the spike trains of several motor 
units non-invasively (Holobar and Zazula, 2007, 
Holobar et al., 2009), which enables the assessment 
of the neural drive to muscle in an unprecedented 
accurate fashion. It is further motivated by the fact 
that traditional analysis using the surface 
electromyogram (EMG) is largely influenced by a 
number of intrinsic factors that limit the accuracy 
that may be attained (Farina et al., 2004). Being the 
most relevant among them the effect of the spatial 
filter effect due to volume conduction of motor unit 
action potentials through soft tissues to the skin 
(where they are recorded, Merletti et al., 2008), the 
influence of cross-talk among neighboring muscles 
(Farina et al., 2004), and the effect of cancellation of 
motor unit actions potentials (Keenan et al., 2004). 

Throughout this review we employ the terms 
motor unit or motor neuron according to common 
usage in literature.  

2 SIGNAL PROCESSING 
METHODS  

2.1 Motor Unit Firing Statistics 

Statistical properties of the interval between motor 
unit discharges provide the first relevant piece of 
information when investigating the neural drive to 
muscle. The histogram representing the distribution 
of the time period between consecutive motor unit 

discharges, termed inter-spike interval (ISI) 
histogram has been widely used in the field. For 
example, it has been shown that, in patients 
suffering from some neurological diseases (e.g., 
Parkinson’s disease, Christakos et al., 2009), these 
histograms exhibit abnormal patterns. Second and 
third order distributions, which reflect the interval 
between two and three consecutive discharges, have 
also proved to be useful in some contexts. 

2.2 Motor Unit Synchronization 

The development of techniques to accurately 
estimate motor unit synchronization has received 
considerable attention (see the reviews in Nordstrom 
et al., 1992, and Negro and Farina, 2012) because of 
the observed relation between common-stem 
synaptic inputs and the increased possibility of 
motoneurons firing simultaneously (Kirkwood and 
Sears, 1978). 

Most existing techniques are based on the 
calculation of the cross-correlogram between pairs 
of motor neurons, and the calculation of metrics 
based on its characteristics. Relevant examples of 
this are the Common Input Synchronization index 
(CIS) proposed in (Nordstrom et al., 1992), which is 
defined as the count of discharges in excess of 
chance, and calculated as the area of the peak in the 
cross-correlogram divided by its duration. Other 
relevant synchronization metrics based on the cross-
correlogram are De Luca’s common drive index 
(CDI, De Luca et al., 1982), and the synchronous 
impulse probability (SIP, Datta et al., 1990). 

Interestingly, it has also been shown that the 
cumulative sum of the cross-correlogram permits 
identifying the significant peak in the cross-
correlogram (Ellaway, 1978), and it is useful to 
assess whether such peak is statistically significant 
(Davey et al., 1986). 
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The influence of the frequency of the synaptic input 
has been a traditional concern as to the usage of 
metrics to assess motor unit synchronization using 
the cross-correlograms (Nordstrom et al., 1992). A 
recent study by Negro and Farina demonstrated that 
such influence significantly distorts the results in 
healthy subjects, based on simulation and 
experimental data (Negro and Farina, 2012). The 
authors of that paper showed that a method based on 
the activities of several motor units provides a better, 
unbiased indicator of the properties of common 
synaptic input to motor neurons (Negro and Farina, 
2012), as explained below. 

2.3 Common Synaptic Inputs to Motor 
Neurons 

As previously mentioned, animal studies proved that 
the presence of an input common to a population of 
motor neurons increases the possibility of such units 
firing synchronously (Kirkwood and Sears, 1978). 
However, the estimation of this input is largely 
influenced by the statistics of input current and the 
discharge rate of the motor neurons (Negro and 
Farina, 2012). Indeed, higher discharges rates imply 
a better sampling of the input current, and thus allow 
a better reconstruction.  

Under the assumption that groups of motor unit 
spike trains (referred to as composite spike trains) 
increases the average sampling rate of the common 
input to motor neurons (Negro and Farina, 2011, 
2011b), Negro and Farina showed that the coherence 
between such composite spike trains provides the 
best estimate of the strength and frequency of 
common synaptic inputs to motor neurons. Notice 
that coherence is the normalized Fourier transform 
of the cross-correlation function, and that it is 
independent of filter functions.  

Interestingly, traditional methods for the 
estimation of motor unit synchronization (see 
Section 2.2), and thus of common input properties, 
consisted in applying certain filters to the cross-
correlogram (e.g., De Luca et al., 1982, Nordstrom 
et al., 1992), which corresponds, in the frequency 
domain, to considering a certain frequency band of 
the coherence spectrum (Negro and Farina, 2012). 
This clearly shows that such estimators are 
intrinsically influenced by the input frequency. 

2.4 Corticospinal Coupling 

The projection of supraspinal, typically cortical, 
oscillations to the muscle has been commonly 
investigated by computing the coherence between 

the supraspinal signal and the surface EMG. This 
technique has allowed demonstrating the existence 
of cortical involvement during different type of 
muscle contractions in healthy subjects (Conway et 
al., 1995, Raethjen et al., 2008), and also in the case 
of tremor (Volkmann et al., 1996).  

Remarkably, since coherence is a linear 
technique, the existence of significant coherence 
between the supraspinal signal and the EMG implies 
that the transmission is partly linear, despite the non-
linearity of the motor neuron transfer function 
(Gerstner and Kistler, 2002, Negro and Farina, 
2011). However, due to the intrinsic limitations of 
the surface EMG, it is not possible to gather further 
insight on how such projection actually occurs. 

A recent study showed that linearity of the 
transmission can only be achieved if the supraspinal 
inputs mediating voluntary contraction are a 
common synaptic input to the motor neuron pool 
(Negro and Farina, 2011). This was demonstrated 
based on two facts. The first was that sampling a few 
motor neurons already provided significant 
coherence, which implies that a few motor neurons 
are able of transmitting the cortical input. The 
second observation was that the accuracy of such 
estimation (magnitude of the coherence) did not 
further increase after a few motor neurons were 
sampled, which indicates to a saturation in sampling, 
only possible in the case of common inputs. 

The demonstration of the linearity of the 
transmission also has physiological implications, 
because due to the non-linear properties of 
interneurons (Gerstner and Kistler, 2002), linear 
transmission implies that direct pathways mediate 
voluntary contractions. Thus, such finding further 
supports the relevant role of the corticospinal tract in 
voluntary movement control (Lemon, 2008). 

3 CONCLUSIONS 

In this paper we have reviewed traditional and novel 
methods to assess motor unit properties and their 
underlying determinants. These methods are 
becoming increasingly important since they permit 
to assess motor unit activities with an unprecedented 
accuracy, thereby enabling advances in basic 
neuroscience, muscle physiology and motor control, 
thanks to a more accurate characterization of the 
neural drive to muscle 
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