
Rating of Discrimination Networks for Rule-based Systems

Fabian Ohler, Kai Schwarz, Karl-Heinz Krempels and Christoph Terwelp
Informatik 5, Information Systems and Databases, RWTH Aachen University, 52072 Aachen, Germany

Keywords: Rule-based System, Discrimination Network, Rating.

Abstract: The amount of information stored in a digital form grows on a daily basis but is mostly only understandable
by humans, not machines. A way to enable machines to understand this information is using a representation
suitable for further processing, e. g. frames for fact declaration in a Rule-based System. Rule-based Systems
heavily rely on Discrimination Networks to store intermediate results to speed up the rule processing cycles.
As these Discrimination Networks have a very complex structure it is important to be able to optimize them or
to choose one out of many Discrimination Networks based on its structural efficiency. Therefore, we present
a rating mechanism for Discrimination Networks structures and their efficiencies. The ratings are based on
a normalised representation of Discrimination Network structures and change frequency estimations of the
facts in the working memory and are used for comparison of different Discrimination Networks regarding
processing costs.

1 INTRODUCTION

This paper presents a rating function for Discrimina-
tion Networks (DNs) in Rule-based Systems (RBSs).
It elaborates the need for information about the fact
base of the RBS and introduces a normalised form
for DNs. This normalised form allows for a rating of
the DN disregarding implementation details. Using
these ratings it is possible to evaluate the efficiency of
DNs, measure optimization attempts and improve the
overall performance of the RBS without the need for
benchmarking.

The paper is organized as follows: 2 explains why
a new rating approach is worthwhile. 3 introduces
existing rating approaches for DNs. The new rating
algorithm is developed in 4. Finally, conclusions are
given in 5.

2 MOTIVATION

The different existing construction algo-
rithms (e.g. TREAT (Miranker, 1987), Gator
(Hanson and Hasan, 1993)) are suited for different
use cases. Therefore the resulting DNs yield varying
runtime and memory costs while maintaining the
same semantics. In most cases it is desirable to
minimize runtime and memory usage as much as
possible. To achieve this goal a way to identify

the DN which best suits the given environment is
necessary.

As DNs are complex and large an automated com-
parison of DNs is required. The idea is to rate a DN’s
runtime and memory usage in order to compare differ-
ent DNs. Benefits include enabling to find the ‘best’
DN for a given environment as well as measuring the
pay-off of optimization attempts.

The composition of the facts in the working mem-
ory contribute largely to the DNs performance regard-
ing runtime and memory usage. An approach for rat-
ing will have to take this into account and rate a DN
in the context of the composition of the given work-
ing memory. Therefore a rating only gives informa-
tion about the performance of a DN with a working
memory that satisfies the statistical information used
to rate. If a different working memory is used with
the DN it is possible that the rating no longer gives an
accurate estimate of the performance.

3 STATE OF THE ART

There already are some approaches to compare DNs,
mostly used to show that a new construction algo-
rithm is an improvement.

Benchmark
TREAT (Miranker, 1987) uses benchmarks like
‘monkeys and bananas’ (Brownston et al., 1985)

32 Ohler F., Schwarz K., Krempels K. and Terwelp C..
Rating of Discrimination Networks for Rule-based Systems.
DOI: 10.5220/0004634900320042
In Proceedings of the 2nd International Conference on Data Technologies and Applications (DATA-2013), pages 32-42
ISBN: 978-989-8565-67-9
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

and ‘waltz’ (Winston, 1992) for an OPS5
(Forgy, 1981) rule based system. These bench-
marks test a construction algorithm by letting it
construct a DN and then benchmarking it. This
approach often leads to construction algorithms
being optimized for the existing benchmarks.
But because the performance depends on the
composition of the working set and the possible
compositions are nearly endless, a construction
algorithm can yield very good results in a bench-
mark and still be outperformed when constructing
a DN in an actual application.
Another possibility is to actually benchmark the
possible DNs with the real working memory and
take the best one. While being very accurate these
benchmarks need a lot of time and resources.
Therefore, benchmarks are of limited use when
trying to rate a DN efficiently.

Cost Function
Gator (Hanson and Hasan, 1993) (Hanson, 1993)
uses a thorough cost function for single rules us-
ing statistical information about the composition
of the working memory as well as the selectivity
of filters to predict the runtime and memory us-
age. It even considers the size of facts in memory
and how many memory pages have to be touched
to apply changes to the working memory.
While an efficient approach the cost function only
rates a single rule, not the whole DN. It ignores
the benefits of shared nodes on the one hand. On
the other hand negated condition elements can not
be rated (Hanson, 1993). Additionally the cost
function was developed having implementation
of databases in mind, so rating a DN not imple-
mented on a database can lead to deviating results.

4 APPROACH

The considerations taken in the last section suggest
providing a universal cost function for rating DNs.
Such a cost function is introduced in this section. To
rate the DN, at first its structure is normalised in a
very general way representing optimizations concern-
ing the network’s structure as detailed as possible. For
each normalised component cost functions are given.
The costs of all network components can be used to
rate any DN structure.

4.1 Normalisation

The construction algorithms introduced differ not
only in the resulting network structure but also in in-
ternal mechanisms regarding the RBS. To rate DNs

in a normalised manner the following simplifying as-
sumptions are made:

4.1.1 Alpha Nodes

An alpha node filters for one attribute of a fact only.
Alpha nodes filtering for more than one attribute are
split up and represented as a chain of alpha nodes as
they are semantically equivalent. If an alpha node
is connected to other alpha nodes only and does not
have a negated input (see 4.1.3) the internal memory
is omitted (virtual alpha node). This approach pre-
vents memory overhead by splitting up alpha nodes.

Facts in alpha nodes are stored for optimal perfor-
mance regarding joining and selection.

4.1.2 Beta Nodes

For every input a beta node has a list containing the
other nodes connected to its inputs in the order they
are supposed to be joined to keep the intermediate re-
sults as small as possible. Variant I beta nodes include
the negated inputs in their lists, variant II beta nodes
don’t (variants explained in 4.1.3). This lists can be
created based on estimates regarding fact correlation
or in a simplified way by ordering the nodes accord-
ing to estimated size.

The storage of the fact tuples in a beta node is op-
timised for the beta nodes connected to its output to
allow for efficient selection on relevant facts or their
slots similar to alpha nodes.

To delete facts or fact tuples in beta nodes the
following common optimisation is used: If a fact is
deleted in one of the nodes connected to an input, the
fact tuples resulting from that fact are deleted and the
fact is propagated to successor nodes as it entered the
node, meaning it is not joined. This optimisation is
not used for nodes connected negatively.

4.1.3 Negated Condition Elements

A lot of RBSs allow elements of a rule’s condition to
be negated (negated condition elements). There are
several ways to represent these in DNs. In the ob-
vious variant a beta node combines a positive set of
facts with a negated set of facts by propagating the
set of facts in the positive set that have no counter-
part (regarding the join) in the negated set. Both in-
put nodes continue to be usual (positive) nodes, but
one of the edges is marked as negated. Because no
joined fact tuples are produced and passed on, such
nodes can be implemented in the alpha network too:
Two alpha nodes are connected by a negated edge.
The ‘one input rule’ in the alpha network is diluted,

Rating�of�Discrimination�Networks�for�Rule-based�Systems

33

alpha nodes have exactly one positive input and an ar-
bitrary number of negated inputs. Negated condition
elements can thus be realized in the alpha and beta
network.

If a negated edge connects the output of x with
an input of y, we call x a negatively connected node
(NCN) of y.

The possible implementations of negations are
now discussed briefly. As above we start in the beta
network.

Variant I in the Beta Network
The already mentioned method of implementation
in a beta node shall be explained in more detail. A
beta node with positively connected nodes (PCNs)
and NCNs joins with the PCNs and filters using
the NCNs. If a new fact tuple reaches the node
from a PCN it is joined with the other PCNs. The
result is stored in the node’s memory only if no
matching fact tuples can be found in any of the
NCNs. Deleting a fact tuple in a PCN deletes the
fact tuples resulting from that fact. A new fact tu-
ples reaching the node on a NCN is joined with
the current result set and matching fact tuples are
deleted. If a fact tuple is deleted in a NCN, match-
ing fact tuples are searched for in the PCNs or
their joins. Fact tuples found are filtered by NCNs
and added to the result set.

Variant II in the Beta Network
The second method tries to reduce the compara-
tively high effort of the joins needed in a variant I
beta node if a fact tuple is deleted in a NCN. For
that purpose all join results of the PCNs are saved
instead of only saving a filtered set. To every fact
tuple a counting field is added for every NCN.
The counting field holds the number of matching
fact tuples in the corresponding NCN. Only the
fact tuples with zeros in their counting fields are
relevant to successor nodes. If a new fact tuple
reaches the node from a PCN, it is joined with the
other PCNs and added to the result set. The count-
ing fields are filled with the sizes of the particular
joins with every NCN. Deleting a fact tuple in
a PCN deletes the fact tuples resulting from that
fact. A new fact tuple reaching the node from a
NCN is joined with the result set and the counting
fields of the matching fact tuples are increased by
one. One of the counting fields raising from zero
triggers a propagation of the corresponding fact
tuple to successor nodes as deleted. If a fact tu-
ple is deleted in a NCN, it is joined with the re-
sult set and the counting fields of the matching
fact tuples are decreased by one. A counting field
dropping to zero has the corresponding fact tu-
ple propagated as new to successor nodes. The

rule based system Jamocha (Jamocha, 2006) uses
nodes of this kind.

Negation in the Alpha Network
As mentioned above, negation can also be imple-
mented in the alpha network. The implementation
is similar to the second variant in the beta network
adding counting fields for the NCNs. If a new fact
reaches the node, it is joined with the NCNs and
saves the join size in the counting fields. Only if
no matching facts are found, the fact is passed on
to successor nodes. Deleting a fact in the node
propagates the fact to successor nodes only if the
counting field is zero. A new fact reaching a
NCN is joined with the node and the counting
fields of the fact tuples in the join result are in-
creased by one. One of the counting fields rais-
ing from zero triggers a propagation of the cor-
responding fact to successor nodes as deleted. If
a fact in a NCN is deleted, it is joined with the
node and the counting fields of the fact tuples in
the join result are decreased by one. A count-
ing field dropping to zero has the correspond-
ing fact propagated as new to successor nodes.
Gator (Hanson and Hasan, 1993) (Hanson, 1993)
uses negation in this way.

The methods mentioned above are certainly not
the only ways to implement negation, but one possi-
bility to negate in the alpha network and two funda-
mentally different variants to negate in the beta net-
work with dissimilar pros and cons have been pre-
sented. It has been clarified that a negated condition
element does not change the nodes themselves, but
how facts from the corresponding nodes are handled.
The possibility to negate in the alpha network already
offers potential for network optimization.

On the other hand the task to estimate the costs
for a negation in a network has become more diffi-
cult than just estimating the costs of nodes concerning
joins. Here the costs arising from a negation are to be
added to the costs of the adjacent nodes. However to
estimate the cost in a proper way, both mechanisms
have to be rateable. If it is not known how a network
implements negations, it is rated as if it uses variant I.

According to the considerations above, the con-
straints for rateable networks can be summarised as
follows: Each rule condition has at least one non-
negated condition element and different negated con-
dition elements don’t have shared bound variables.
Alpha nodes with negated edges always have an in-
ternal memory.

4.1.4 Processing Tokens

Upon creation of a new factf (by a rule for example)

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

34

it is encapsulated into a + token. This token is injected
into the root node to be processed by the DN. Analog
a deleted fact is injected using a - token. The fol-
lowing section explains the steps necessary to process
these facts when a token reaches a node. In the fol-
lowingZ always has the semantic of the correspond-
ing beta node.

+ token reaches alpha node If the fact f
does not pass the test set it is discarded. Else the
node stores the fact inside its memory (if appli-
cable) and passes the + token on to the following
nodes.
f is joined with the memory of any alpha NCN
and stores the size of the joins in the matching
counting fields. Only if all fields contain zeros,
i. e. there are no facts matchingf in alpha NCN
the + token is passed on to the following nodes.
For follow-up beta nodes the fact is encapsulated
into a +Temporary Result (TR) token first.
As a NCN the node joinsf with the memories
of the connected nodes and updates their counting
fields. The corresponding counting fields are in-
cremented by one if the join yields a result. If the
increment changes the value from zero a - token
or -TR token for f has to be created and passed
on from the connected node.

- token reaches alpha node. If the fact f
does not pass the test set it is discarded. Else the
node deletes the fact from its memory (if appli-
cable) and passes the - token on to the following
nodes. The - token is only passed on to successor
nodes if all (possible) counting fields are zero.
For follow-up beta nodes the fact is first encapsu-
lated into a -TR token.
As a NCN the node joinsf with the memories
of the connected nodes and updates their count-
ing fields. The corresponding counting fields are
decremented by one if the join result yields a re-
sult. If the decrement changes the value to zero a
+ token or +TR token forf has to be created and
passed on from the connected node.

+TR token reaches beta node. When a
+TR token reaches a node from a NCN one has to
distinguish: Variant I beta nodes join the fact with
their result sets, delete the resulting tuples from
its result set and propagate this to the follow-up
nodes. Variant II beta nodes join the fact with
their result sets and increment the counting fields
of the resulting tuples by one. If a counting fields
is incremented from zero, a -TR token is passed
on to the following nodes.
When a +TR token reaches a node from a PCN
one has to distinguish again: Variant I beta nodes
(or beta nodes without NCNs) have sorted lists

of all their inputs excluding the input the +TR
token arrived from. The nodes then join the token
with the inputs iterating the list (TRZinput) or
subtract the join for NCNs (TR-TRXinput). In
each iteration the result is stored in TR. The final
result is stored in the internal memory and passed
on to the following nodes.
Variant II beta nodes have lists of their PCNs
excluding the input the TR token arrived from.
The node then joins the token with the inputs
iterating the list (TRZinput). In each iteration the
result is stored in TR and the final result is stored
in the internal memory. Additionally the size of
the join of each result with each NCN is stored
in the appropriate counting field. Only results
whose counting fields are zero are passed on to
the follow-up nodes.

-TR token reaches beta node. A -TR to-
ken reaching the node from a NCN is handled
similar to a +TR token from a PCN. Additionally
one has to distinguish: Variant I beta nodes have
sorted lists of all inputs excluding the inputs the -
TR token arrived from. The node then joins the to-
ken with the inputs iterating the list (TRZinput) or
subtracts the join for NCNs (TR-TRXinput). TR
is then filtered by the input the token originated
from (TR-TRXinput). The result is then stored in
the internal memory and passed on to following
nodes.

4.2 Rating

The DNs shall be rated using a cost analysis. In this
context costs are considered to be memory usage and
runtime. The normalisation allows a uniform rating.
A detailed rating is done based on statistical values
about filters, joins and relations. If the facts are stored
in a relational database, a lot of the values used are
available for internal use already.

The better the statistical values match the real val-
ues, the more precise the DN can be rated. But even
without these values, statements on DNs can be made.
DNs can be compared e.g. using general mean values
for the missing values or by rating all conceivable sce-
narios.

For the sake of brevity nodes are tagged corre-
sponding to 1.

Hereafter is explained, which statistical values are
used to rate a DN and how the different node types
can be rated.

4.2.1 Statistical Values the Rating Bases On

The naming partially follows Gator (Hanson and

Rating�of�Discrimination�Networks�for�Rule-based�Systems

35

Table 1: Node tags.

xα is an alpha node
x−α is an alpha node in a negated context
xβ is a beta node
x−β is a beta node in a negated context
x+ is an alpha or beta node in a

non-negated context
x− is an alpha or beta node in a

negated context

Hasan, 1993), (Hanson, 1993).

|U(xα)| U(xα) is the set of facts contained in node xα

including the ones filtered out by NCNs.|U(xα)|
is the size of this set and is a statistical input value
for alpha nodes. X is the set of facts belonging to
node x as it reaches successor nodes, thus already
filtered. Estimates for|X| will be given.

JSF(x,y). Estimated size of the join in relation to the
joined nodes’ fact set sizes, so this value describes
the selectivity of the join (Join Selectivity Factor).
It is an expected value for:

|X Z Y|
|X| · |Y|

. (1)

Sel(xα). The selectivity of a node is the ratio between
accepted and rejected facts.

Fi(xα). The frequency of + tokens reaching and
changing the node x. Fi ’(xα) is the frequency of +
tokens reaching the node x which lead to a prop-
agation to follow-up nodes – this value is calcu-
lated as necessary.

Fd(xα). The frequency of - tokens reaching and
changing the node x. Fd(xα) is the frequency of -
tokens reaching the node x which lead to a prop-
agation to follow-up nodes – this value is calcu-
lated as necessary.

T(x). Tuple Size (T) in node x. For the sake of sim-
plicity facts in alpha nodes are treated to be of
the same size (T(aα)= 1). A way to calculate this
value is given for beta nodes.

TPP(x). The number of Tuples per Page (TPP) for
facts in node x. Caused by the simplification of
fact sizes the TPP is inversely proportional to the
tuple size T.

Remark Concerning the Join Selectivity Factor.
Let x and y be nodes with non-empty internal mem-
ory, thus|X| > 0 and|Y| > 0. Adding or removing
a fact from X emerges the node x’ with the result set
X’. The size of the join XZ Y is expected to change

by someµ∈ R+. An estimated value for this can be
calculated using the JSF(x,y).

(2a)JSF(x,y) =
|X’ Z Y|
|X’ | · |Y|

(2b)=
|X Z Y| ± µ
(|X| ± 1) · |Y|

(2c)=
JSF(x,y)± µ

|X|·|Y|

1± 1
|X|

(2d)⇔
JSF(x,y)

1± 1
|X|

(1±
1
|X|
− 1) =

±µ
(|X| ± 1) |Y|

(2e)⇔
JSF(x,y)
|X| ± 1

=
µ

(|X| ± 1) |Y|

(2f)⇔ JSF(x,y) · |y| = µ

Until now, the Join Selectivity Factor (JSF) has been
considered for node pairs only. For a precise size
estimation of joins with several inputs JSFs influ-
enced by conditional probabilities of intermediate re-
sults and further inputs would be necessary. To keep
the amount of input values small, the calculations are
simplified in the following way: The JSF for two in-
puts is a good mean for the JSF between these two
inputs as well as for the JSF between each of these
inputs and all intermediate results arising during the
processing of the join list in the node.

Preliminary Considerations about Join Costs.
At this point the problem of join cost estimation
is discussed. Without considering implementation
details it is hard to determine the right criteria for
the estimation. Thus primarily the costs of a join in
a network using an optimal implementation are to
be examined. As mentioned in the normalized form
description, nodes are optimized for successor nodes.
Hence for the costs of the join LZ R mainly the size
of the result,S≔ |L| · JSF(l, r) · |R| , is to be consid-
ered. The size of this set is a main characteristic of
the join and can not be changed by optimisations in
the join implementation. To factor the size of facts in
this set into the resulting costs accesses to memory
pages are chosen as basis for the rating.
This approach can also be found in Gator
(Hanson, 1993). There an algorithm applied by
Cárdenas (Cárdenas, 1975) is used to calculate
the amount of memory pages touched for datasets
(uniformly) distributed acrossmmemory pages when
selectingk datasets as follows:

C(m,k) = m(1− (1− 1/m)k) (3)

A derivation can be found in Yao (Yao, 1977), where
the formula is considered to be faulty as it reflects a

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

36

combination with repetitioninstead of acombination
without repetition, but Yao’s corrected version only
allows integer numbers of touched memory pages.
The error described is insignificant for large TPP val-
ues and is to be put up with to allow for non-integer
estimated numbers of touched memory pages without
interpolation. According to Yao alternative formulas
are by far more complicated, but can be used to
replace the Cárdenas formula as needed to determine
more accurate results.
The number of resulting datasets isk≔ S.
Most nodes are connected to multiple successor
nodes and their facts are usually joined with different
slots, so datasets can not be stored optimized for
selection of a particular slot. Thus to assume a
uniform distribution of the datasets will presumably
cause only a minor deviation for most of the nodes.
Nodes that store their data sets optimized in this
way cause less runtime costs and can be considered
separately. In the interest of clarity this is not done
here.
Using the simplified knowledge about the number
of facts / fact tuples of a node r fitting on a memory
page, the number of memory pages needed for r can
be determined:

(4)m(r) ≔ ⌈|R|/TPP(r)⌉

(5)m(U(R)) ≔ C

(⌈

|U(R)|
TPP(r)

⌉

,m(r)

)

The costs to join a set ofp facts / fact tuples from node
l on node r will be given for subsequent calculations
by the following formula:

JCl,r (p)≔C(m(r), p ·JSF(l, r) · |R|) (6)

4.2.2 Root Node

This node is necessary and therefore present in every
network. Its outer structure is unique. Thus its need-
less to factor this node into the rating.
However statistical values about the set of facts in the
root node, the number of facts per memory page and
the frequency of +/- tokens reaching the root node and
changing it, are important to derive values for succes-
sor nodes.

4.2.3 Alpha Node

An alpha node causes memory and runtime costs in
the network. Memory costs are involved only if the
node has an internal memory.

Memory. To determine the memory costs of alpha
node xα with internal memory, letN(xα) be the set of
alpha NCNs of xα. Neglecting the counting fields the
memory costs of xα are given by|U(xα)| . Depending
on the implementation and size of the facts, the mem-
ory cost impact of counting fields varies. For now a
counting field shall increase the size of a fact by 15%.

Result. The memory costs for alpha node results in

|U(xα)| (1+0,15· |N(xα)|) (7)

memory units.

Runtime. Below an attempt is made to give an esti-
mation for runtime costs for xα regarding new facts:

(8)

Fi(x
α)

(

InsCxα + ∑
y−α∈N(xα)

JoinCxα(y−α)

+ ∑
yα∈N(x−α)

JoinCx−α(yα)

)

InsCxα are the costs to filter and insert a fact into the
internal memory. These are 1 for applying the filter
if x α does not have an internal memory. Otherwise
the costs are increased by 1 for storing the fact in the
node appropriately, resulting in 2 runtime units.
If there are alpha NCNs for xα, upon inserting a fact
into xα it is joined with their facts. Let N(xα) be the
set of alpha NCNs of xα. JoinCxα(y−α) are the join
costs for the new fact in xα with the NCN y−α. These
are approximated by JCxα,U(y−α) (1).
As a NCN for other alpha nodes, x−α joins any in-
serted facts with the memories of its connected nodes.
Let N(x−α) be the set of nodes x−α is connected to.
JoinCx−α(yα) are the join costs for the new fact in x−α

with the connected node yα. These are approximated
by JCx−α,U(yα) (1).
In the same manner an estimate for costs resulting
from deleting a fact is given:

(9)

Fd(x
α)

(

DelCxα + CheckCounters

+ ∑
yα∈N(x−α)

JoinCx−α(yα)

)

Here DelCxα are the costs to filter and delete the fact
from the internal memory. These are 1 for applying
the filter if xα does not have an internal memory. Oth-
erwise the costs are increased by 1 for deleting the
fact, resulting in 2 runtime units.
If there are alpha NCNs for xα, it has to check the

Rating�of�Discrimination�Networks�for�Rule-based�Systems

37

fact’s counting fields before propagating it in the net-
work. For this action 1 runtime unit is assessed.
As a NCN for other alpha nodes, x−α joins any
deleted facts with the memories of its connected
nodes. Let N(x−α) be the set of nodes x−α is con-
nected to. JoinCx−α(yα) are the join costs for the
fact to be deleted in x−α with the connected node yα.
These are approximated by JCx−α,U(yα) (1).

Result. The runtime costs for an alpha node xα

without internal memory are

Fi(x
α)+Fd(x

α) (10)

runtime units, those for an alpha node xα with internal
memory are

(11)

Fi(x
α)

(

2+ ∑
yα∈N(x−α)

JCx−α,U(yα) (1)

)

+ Fd(x
α)

(

2

+ ∑
yα∈N(x−α)

JCx−α,U(yα) (1)

)

runtime units if xα does not have any NCNs and

(12)

Fi(x
α)

(

2+ ∑
y−α∈N(xα)

JCxα,U(y−α) (1)

+ ∑
yα∈N(x−α)

JCx−α,U(yα) (1)

)

+ Fd(x
α)

(

3

+ ∑
yα∈N(x−α)

JCx−α,U(yα) (1)

)

runtime units if xα has NCNs.

Further Considerations The set of facts propa-
gated by xα is filtered by its NCNs ad can be described
by U(xα)−

⋃
y−α∈N(xα)U(xα) X y−α. As only those

facts are propagated appearing in none of the joins,
but as facts can easily appear in several joins, the set
of facts propagated can not just be estimated (similar
to the reverse triangle inequality) by

(13)

|U(xα)| − ∑
y−α ∈N(xα)

∣

∣U(xα) X y−α∣
∣

≤

∣

∣

∣

∣

∣

∣

U(xα)−
⋃

y−α∈N(xα)

U(xα) X y−α

∣

∣

∣

∣

∣

∣

.

Following thoughts will elaborate how the number of
propagated facts can be estimated. The sum of the
counting fields of U(xα) regarding y−α can be ex-
pected to be|U(xα)Z y−α| . The estimate for a count-
ing field of a fact in U(xα) is therefore

(14)
|U(xα) Z y−α|

|U(xα)|
=
∣

∣y−α∣
∣ · JSF(U(xα),y−α) .

The expected probability that a fact in U(xα) matches
a fact in y−α is therefore JSF(U(xα,b−α)). The prob-
ability that a fact in U(xα) has no matching fact in
y−α can be calculated with

(15)
(

1− JSF(U(xα),y−α)
)|y−α| .

An estimate for the number of facts in U(xα) which
have zero in all counting fields is given by

(16)
|xα| = |U(xα)| · ∏

y−α∈N(xα)

(

1

− JSF(U(xα),y−α)
)|y−α|

.

Hereby an estimate for the number of propagated facts
has been found. Changes in alpha NCNs can lead
to changes in the counting fields and therefore to +/-
(TR) tokens to be propagated.
An estimate for the number of (TR) tokens is valu-
able for further considerations. Let z−α be an alpha
NCN. Further letN(xα) be the set of NCNs of xα, so
z−α ∈N(xα). Referencing (16) the number of facts in
U(xα) with zeros in all counting fields when a fact is
added to z−α can be estimated with:

(17)

(

1− JSF(U(xα),z−α)
)

|U(xα)|

· ∏
y−α ∈N(xα)

(

1− JSF(U(xα),y−α)
)|y−α|

The expectancy for the number of generated - (TR)
tokens after inserting a fact in z−α can be described
as the difference between (16) and (17):

(18)JSF(U(xα),z−α) |xα|

The expectancy for the number of generated + (TR)
tokens after deleting a fact in z−α can be calculated
analogue:

(19)
JSF(U(xα),z−α)

1− JSF(U(xα),z−α)
|xα|

With these thoughts an expectancy for the number of
generated +/- (TR) tokens can be given:

Fi ’(x
α)

= Fi(x
α)
|xα|

|U(xα)|

+ ∑
y−α∈N(xα)

Fd(y
−α) |xα|

JSF(U(xα),y−α)

1− JSF(U(xα),y−α)

(20)

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

38

Fd’(xα) = Fd(x
α)
|xα|

|U(xα)|

+ ∑
y−α∈N(xα)

Fi(y
−α) |xα| JSF(U(xα),y−α)

(21)

Now one can estimate the frequency of +/- tokens that
reach and change xα from the PCN wα as follows:

(22a)Fi(x
α) = Sel(xα)Fi(w

α)

(22b)Fd(x
α) = Sel(xα)Fd(w

α)

Lacking a expectancy for facts in a node one can esti-
mate this analogue:

|U(xα)| = Sel(xα) |wα| (23)

4.2.4 Beta Node

A beta node always causes memory and runtime
costs. Let E(xβ) be the (multi-)set of the nodes con-
nected to the inputs of xβ. Further let E(xβ) =P(xβ)∪

N(xβ) with N(xβ) being the set of NCNs and P(xβ) the
set of PCNs.

Preliminary. When a new fact reaches a beta node
it has to be joined with the facts of all other PCNs.
Below an estimate for the size of this join will be de-
veloped. The expectancy for the input y of node xβ

is JoinSizexβ(y).
For nodes lacking an edge in the join graph the JSF
values are always one. Let xβ haven inputs. For the
input y it has a sorted join list of all inputs excluding
y. This join list consecutively numbers the inputs ei
of xβ beginning with index 2. e1 always is y. The JSF
values are marked with the indices of the correspond-
ing inputs for the sake of clarity

(24)JoinSizexβ(y+) =
n

∏
k=2

|ek| · JSFy+(ek−1,ek)

with e1 = y+

Memory.
∣

∣U(xβ)
∣

∣ is to be calculated. The mean of
all join sizes will give an estimate.
∣

∣

∣U(xβ)
∣

∣

∣ =
1

∣

∣P(xβ)
∣

∣

∑
y+∈P(xβ)

∣

∣y+
∣

∣ JoinSizexβ(y+)

(25)

This estimate is further filtered by NCNs, see (16).
∣

∣

∣xβ
∣

∣

∣ =
∣

∣

∣U(xβ)
∣

∣

∣ ∏
y−∈N(yβ)

(1− JSF(U(xβ),y−))|y
−|

(26)

The size of the fact tuple equals the sum of the tu-
ples joined. Given the size the number of tuples per
memory page can be calculated.

(27a)T(xβ) = ∑
y+∈P(xβ)

T(y+)

(27b)TPP(xβ) = TPP(root)/T(xβ)

Result. The memory costs of a beta node without
NCNs and a variant I beta node (see 4.1.3) is given by

∣

∣

∣
xβ
∣

∣

∣
T(xβ) . (28)

In a variant II beta node the counting fields further
increase the memory costs:

(29)
∣

∣

∣U(xβ)
∣

∣

∣

(

T(xβ) + 0,15 ·
∣

∣

∣N(xβ)
∣

∣

∣

)

Runtime. The frequency of +/-(TR) tokens being
passed on from beta nodes is needed to estimate the
runtime costs. The frequency can be estimated simi-
lar to the frequency in the alpha network. As no esti-
mate about the bundling of facts in TR tokens can be
made without a distribution function the assumption
is made that a TR token only encapsulates one fact
tuple. Given this assumption the frequency can sim-
ply be multiplied with the expectancy for the number
of generated fact tuples.
For -TR tokens reaching a beta node from a PCN the
optimization described in 4.1.2 is used. Therefore
only the fact to be deleted is considered and not the
deleted elements. This optimization can not be used
for NCNs.

Fi ’(x
β)

=

∣

∣xβ∣
∣

∣

∣U(xβ)
∣

∣

∑
y+∈P(xβ)

Fi ’(y
+) · JoinSizexβ(y+)

+ ∑
y−∈N(xβ)

Fd’(y−)
∣

∣

∣xβ
∣

∣

∣

JSF(U(xβ),y−)

1− JSF(U(xβ),y−)

(30a)

Fd’(xβ) = ∑
y+∈P(xβ)

Fd’(y+)

+ ∑
y−∈N(xβ)

Fi ’(y
−)
∣

∣

∣xβ
∣

∣

∣ JSF(U(xβ),y−)

(30b)

The formula for JoinSizexβ(y) (24) only considers
PCNs of xβ.

Rating�of�Discrimination�Networks�for�Rule-based�Systems

39

Algorithm 1: costPosInsVarIxβ(y+): Expected
costs for handling a +TR token from a PCN of a vari-
ant I beta node or one without NCNs.

input : beta node xβ, input y+ of xβ

output: expected costs
begin

costs← 0
size← 1
r1← y+

while not empty(joinList) do
// Rk is right join operand
rk← pop(joinList)
costs← costs+JCrk−1,rk (size)
if rk is positive then // i. e. r+k

size← size ·JSFy+(rk−1, r
+
k) ·
∣

∣r+k
∣

∣

else // i. e. r−k
size←
(

M
xβ (r−k)

√

|X|
|U(X)|

)weighting
xβ (y+,r

−
k)

return costs

The runtime costs can be described with:

∑
y+ ∈P(xβ)

Fi ’(y
+) · costPosInputxβ(y+)

+ Fd’(y+) · costPosDelxβ(y+)

+ ∑
y− ∈N(xβ)

Fi ’(y
−) · costNegInputxβ(y−)

+ Fd’(y−) · costNegDelxβ(y−)

(31)

The costs vary depending on whether a variant I or
variant II beta node is used.

Variant I Beta Nodes (or without NCNs). The
costs for handling a -TR token from a PCN (costPos-
Del) are: As the result set has to be searched and the
matching entries have to be deleted, the costPosDel
are:

costPosDelxβ(y+) = m(xβ)

+C(m(xβ),JoinSizexβ(y+))

(32)

The costs for handling a +TR token from a NCN
(costNegIns) can be approximated by JCy−,xβ (1), as
the corresponding join can be performed efficiently
for NCNs.

The costs for handling a +TR token from a PCN
(costPosIns) can be approximated by 1.

The costs for handling a -TR token from a NCN
(costNegDel) can be approximated by 2 for variant I
beta nodes. For beta nodes without NCNs, no algo-
rithm is necessary. 2 and 1 are identical except for the
additional line in 2 and the positive / negative signs

Algorithm 2: costNegDelVarIxβ(y+): Expected
costs for handling a -TR token from a NCN of a vari-
ant I beta node.

input : beta node xβ, input y− of xβ

output: expected costs
begin

costs← 0
size← 1
r1← y−

while not empty(joinList) do
// Rk is right join operand
rk← pop(joinList)
costs← costs+JCrk−1,rk (size)
if rk is positive then // i. e. r+k

size← size ·JSFy−(rk−1, r+k) ·
∣

∣r+k
∣

∣

else // i. e. r−k
size←
(

M
xβ (r−k)

√

|X|
|U(X)|

)weighting
xβ (y−,r

−
k)

costs← costs+JCxβ,y− (size) // final join
return costs

marking the input node y and the node l. They have
only been separated for the sake of clarity.

A way to identify theweighting of a node is
still needed. Why theweighting is important was
discussed in 4.2.3: Fact tuples that originated from
the join of PCNs of a node can be culled by several
NCNs. This fact prevents using
∣

∣

∣
U(xβ)

∣

∣

∣
− ∑

y−∈N(xβ)

∣

∣y−
∣

∣ JSF(y−,U(xβ))
∣

∣

∣
U(xβ)

∣

∣

∣

to estimate
∣

∣xβ
∣

∣ .
From now on this multiple culling is called over-

lap – as the filters from the different NCNs overlap.
The following holds when the overlap is maximal, i. e.
all culled fact tuples are filtered by all NCNs:

max
{

∣

∣y−
∣

∣ JSF(y−,U(xβ))
∣

∣

∣U(xβ)
∣

∣

∣ | y− ∈ N(xβ)
}

=

∣

∣

∣

∣

∣

∣

⋃

y−∈N(xβ)

y− Z U(xβ)

∣

∣

∣

∣

∣

∣

.

(33)

While the overlap is minimal, i. e. every culled fact
tuple is filtered by only one NCN,

(34)

∑
y− ∈N(xβ)

∣

∣y−
∣

∣ JSF(y−,U(xβ))
∣

∣

∣U(xβ)
∣

∣

∣

=

∣

∣

∣

∣

∣

∣

⋃

y−∈N(xβ)

y− Z U(xβ)

∣

∣

∣

∣

∣

∣

holds. As in general the data is not sufficient to calcu-
late the overlap correctly, the mean between the min-
imal and maximal overlap will be used.

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

40

Me is the mean expectancy for the number of
matching fact tuples in the NCNs in the join list of
e (using its order). The indices of the nodes d−

k match
the indices of the join list of e. d+j→k−1 is the last PCN
with an index lower thank.

(35)

Mxβ (e) =
1
2
·



 max
d−k ∈N(xβ)

∣

∣d−k
∣

∣ JSFe(d
+
j→k−1,d

−
k)

+ ∑
d−k ∈N(xβ)

∣

∣d−k
∣

∣ JSFe(d+j→k−1,d
−
k)





The weightingxβ(e,z−) gives an estimate for the
number of matching fact tuples in the NCN z− after
handling all joins in the join list of e until reaching
z−.

weightingxβ(e,z−k) = Mxβ (e)

·

∣

∣z−k
∣

∣ JSFe(d+j→k−1,z
−
k)

∑
d−k ∈N(xβ)

∣

∣d−k
∣

∣ JSFe(d+j→k−1,d
−
k)

(36)

Now we can deduce

|X|
|U(X)|

=

(

M
xβ (ek)

√

|X|
|U(X)|

)M
xβ (ek)

=

(

M
xβ (ek)

√

|X|
|U(X)|

)∑e−k ∈N(xβ) weightingxβ (y,e
−
k)

= ∏
e−k ∈N(xβ)

(

M
xβ (ek)

√

|X|
|U(X)|

)weighting
xβ (y,e

−
k)

.

(37)

Now a function for estimating the size of the join con-
sidering NCNs can be given:

JoinSizexβ (y)

=
n

∏
k=2















∣

∣e+k
∣

∣ · JSFy(d
+
j→k−1,e

+
k) for e+k

(

M
xβ (ek)

√

|X|
|U(X)|

)weighting
xβ (y,e

−
k)

otherwise

(38)

For variant I beta nodes or beta nodes without NCNs
the runtime costs are:

∑
y+ ∈P(xβ)

Fi ’(y+) · costPosInsVarIxβ (y+) + Fd’(y+)

·
(

m(xβ) +C(m(xβ),JoinSizexβ (y+))
)

+ ∑
y− ∈N(xβ)

Fi ’(y
−)

· JCy−,xβ (1) + Fd’(y−) · costNegDelVarIxβ(y−)

(39)

Variant II Beta Node. The costs for handling a -TR
token from a PCN (costPosDel) can be approximated
by m(U(xβ))+C(m(U(xβ)),JoinSizexβ(y+)) runtime
units, because the result set has to be searched and the
matching fact tuples have to be updated.

The costs for handling a +TR token from a NCN
(costNegIns) can be approximated by 2·JCb−,U(aβ) (1)
runtime units because the fact has to be joined with
the result set and the counting fields have to be up-
dated.

3 calculates the costs for handling a +TR token
from a PCN (costPosIns) and 4 the costs for handling
a -TR token from a NCN (costNegDel).

Algorithm 3: costPosInsVarIIxβ(y+): Estimated
costs for handling a +TR token from a PCN of a vari-
ant II beta node.

input : beta node xβ, input y+ of xβ

output: estimated costs
begin

costs← 0
size← 1
r+1 ← y+

while not empty(positiveJoinList) do
// R is right join operand
r+k ← pop(positiveJoinList)
costs← costs+JCr+k−1,r

+
k
(size)

size← size ·JSFy+(r+k−1, r
+
k) ·
∣

∣r+k
∣

∣

while not empty(negativeInputList) do
n−← pop(negativeInputList)
costs← costs+JCU(xβ),n− (size) // join

// save results and counting fields
costs← costs+size
return costs

Algorithm 4: costNegDelVarIIxβ(y−): Estimated
costs for handling a -TR token from a NCN of a vari-
ant II beta node.

input : beta node xβ, input y− of xβ

output: estimated costs
begin

costs← 0
size← 1
r1← y−

while not empty(positiveJoinList) do
// R is right join operand
r+k ← pop(positiveJoinList)
costs← costs+JCrk−1,r

+
k
(size)

size← size ·JSFy−(rk−1, r+k) ·
∣

∣r+k
∣

∣

// decrement counting fields
costs← costs+size
return costs

Rating�of�Discrimination�Networks�for�Rule-based�Systems

41

So the runtime costs of a variant II beta node are:

∑
y+ ∈P(xβ)

Fi ’(y+) · costPosInsVarIIxβ (y+)

+ Fd’(y+)
(

m(U(xβ)) +C(m(U(xβ)),JoinSizexβ(y+))
)

+ ∑
y− ∈N(xβ)

Fi ’(y
−) · 2 · JCy−,U(xβ) (1)

+ Fd’(y−) · costNegDelVarIIxβ (y−)

(40)

4.2.5 Terminal Node

The runtime and memory costs of a terminal node can
be omitted as it only needs to set a flag if and only
if the connected beta node xβ has fact tuples in its
internal memory.

5 CONCLUSIONS

In this paper a general structure for DNs has been de-
veloped allowing for a consistent rating. For the com-
ponents of DNs in this structure cost functions have
been worked out. By rating the normalised DN every
DN can be rated.

In the course of the rating simplifications and es-
timations had to be made for several reasons. These
include the estimates for means of the overlap or the
simplified fact sizes. Both quantities could have been
declared as necessary input parameters, but the im-
provement of the cost estimates don’t seem to com-
pensate the additional expenses for the one using the
rating function. The same holds for the severe sim-
plification regarding the JSFs. To force the specifi-
cation of all values means increasing the amount of
base values needed vehemently forfeiting the abstract
character of the algorithm.

On the other hand all simplifications made can be
replaced by the correct values with little effort allow-
ing for a more precise rating.

REFERENCES

Brant, D., Grose, T., Lofaso, B., and Miranker, D. (1991).
Effects of Database Size on Rule System Perfor-
mance:Five Case Studies. InProceedings of the 17th
International Conference on Very Large Data Bases
(VLDB).

Brownston, L., Farrell, R., Kant, E., and Martin, N. (1985).
Programming expert systems in OPS5: an introduc-
tion to rule-based programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Cárdenas, A. F. (1975). Analysis and performance
of inverted data base structures.Commun. ACM,
18(5):253–263.

Forgy, C. L. (1981). OPS5 User’s Manual. Technical report,
Department of Computer Science, Carnegie-Mellon
University.

Forgy, C. L. (1982). Rete: A fast algorithm for the many
pattern/many object pattern match problem.Artificial
Intelligence, 19(1):17 – 37.

Hanson, E. N. (1993). Gator: A Discrimination Network
Structure for Active Database Rule Condition Match-
ing. Technical report, University of Florida.

Hanson, E. N. and Hasan, M. S. (1993). Gator: An Op-
timized Discrimination Network for Active Database
Rule Condition Testing. Technical report, University
of Florida.

Jamocha (2006). Jamocha Project Page. http://
www.jamocha.org, http://sourceforge.net/projects/
jamocha.

Miranker, D. P. (1987). TREAT: A Better Match Algorithm
for AI Production Systems; Long Version. Techni-
cal report, University of Texas at Austin, Austin, TX,
USA.

Winston, P. H. (1992). Artificial intelligence. Addison-
Wesley.

Yao, S. B. (1977). Approximating block accesses in
database organizations.Commun. ACM, 20(4):260–
261.

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

42

