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Abstract: This paper is devoted to autonomous cognitive machines by mean of the design of an artificial curiosity 
based cognitive system for autonomous high-level knowledge acquisition from visual information. Playing a 
chief role as well in visual attention as in interactive high-level knowledge construction, the artificial 
curiosity (e.g. perceptual and epistemic curiosities) is realized through combining visual saliency detection 
and Machine-Learning based approaches. Experimental results validating the deployment of the 
investigated system have been obtained using a humanoid robot acquiring visually knowledge about its 
surrounding environment interacting with a human tutor. As show the reported results and experiments, the 
proposed cognitive system allows the machine to discover autonomously the surrounding world in which it 
may evolve, to learn new knowledge about it and to describe it using human-like natural utterances. 

1 INTRODUCTION 

Emergence of cognitive phenomena in machines 
have been and remain active part of research efforts 
since the rise of Artificial Intelligence (AI) in the 
middle of the last century, but the fact that human-
like machine-cognition is still beyond the reach of 
contemporary science only proves how difficult the 
problem is. In fact, if nowadays there are many 
systems, such as sensors, computers or robotic 
bodies, that outperform human capacities, 
nonetheless, none of existing machines or robotic 
bodies can be called truly intelligent. In other words, 
machines sharing everyday life with humans are still 
far away. Somewhat, it is due to the fact that we are 
still far from fully understanding the human 
cognitive system. Partly, it is so because if 
contemporary machines are often fully automatic, 
they linger rarely fully autonomous in their 
knowledge acquisition. Nevertheless, the concepts of 
bio-inspired or human-like machine-cognition 
remain foremost sources of inspiration for achieving 
intelligent systems (intelligent machines, intelligent 
robots, etc…). This is the slant we have taken (e.g. 
through inspiration from biological and human 
mechanisms) to investigate the design of a human-
like machine-cognition based system able to acquire 

high-level semantic knowledge from perceptual 
(namely visual) information. Our main source of 
inspiration has been the “human’s curiosity” 
intellectual process for discovering the surrounding 
world or acquiring new knowledge about it. 

It is important to emphasize that the term 
“cognitive system” means here that characteristics of 
such a system tend to those of human’s cognitive 
system. This means that a cognitive system, which is 
supposed to be able to comprehend the surrounding 
world on its own, but whose comprehension would 
be non-human, would afterward be incompetent of 
communicating about it with its human counterparts. 
In fact, human-inspired knowledge representation 
and human-like communication (namely semantic) 
about the acquired knowledge become key points 
expected from such a system. To achieve the 
aforementioned capabilities such a cognitive system 
should thus be able to develop its own high-level 
representation of facts from low level visual 
information (such as image). Accordingly to 
expected autonomy, the processing from the 
“sensory level” to the “semantic level” should be 
performed solely by the robot, without human 
supervision. However, this does not mean excluding 
interaction with human, which is, on the contrary, 
vital for any cognitive system, be it human or 
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machine. Thus the investigated system shares its 
perceptual high-level knowledge of the world with a 
human tutor by interacting with him. The tutor on 
his turn shares with the cognitive robot his 
knowledge about the world by in natural speech 
(utterances) completing observations made by the 
robot. 

Curiosity is indeed a foremost mechanism among 
key skills for human cognition. It may play the role 
of an appealing source for conceiving artificial 
systems that gather knowledge autonomously. We 
will devote a discussion on this purpose further in 
this paper. Nevertheless, we have taken into 
consideration this enticing cognitive skill making it 
our principle foundation in investigated concept. The 
present paper is devoted to the description of a 
cognitive system based on artificial curiosity for 
high-level knowledge acquisition from visual 
information. The goal of the investigated system is 
to allow the machine (such as a humanoid robot) to 
anchor the heard terms to its visual information and 
to flexibly shape this association according to its 
budding knowledge about the observed items within 
its surrounding world. In other words, the presented 
system allows the machine to observe, to learn and 
to interpret the world in which it evolves, using 
appropriate terms from human language, while not 
making use of a priori knowledge. This is done by 
word-meaning anchoring based on learning by 
observation stimulated (steered) by artificial 
curiosity and by interaction with the human tutor. 
Our model is closely inspired by juvenile learning 
behaviour of human infants (Yu, 2005), 
(Waxman,2009). By analogy with natural curiosity 
the artificial curiosity has been founded on two 
cognitive levels. The first ahead of reflexive visual 
attention plays the role of perceptual curiosity and 
the second coping with intentional learning-by-
interaction undertakes the role of epistemic 
curiosity.  

The present paper is further organized as follow. 
Next section is dedicated to a brief overview of 
existing techniques in autonomous learning and 
knowledge acquisition, especially in robotics 
systems. Section three elucidates theoretical aspects 
of the investigated cognitive system. Section four 
briefly runs through perceptual curiosity, relying on 
our previously published works on salient vision. 
Section five details the higher-level cognitive layer 
and provides its validation. Section six provides 
details about deployment of the system on a 
humanoid robot in real world conditions. Finally a 
conclusion and a perspective on future directions 
close this paper. 

2 BRIEF OVERVIEW 
OF RELATED WORKS 

Before running through a brief synopsis of already 
accomplished works and available techniques 
relating the purpose of this paper, it is pertinent to 
note that the cognition and related aspect cover an 
extremely extensive spectrum of competencies and 
regroup a huge hoard of multi-disciplinary works. 
Thus, it is neither the purpose of this section nor our 
intent to fully overview the colossal amount of 
research works linking different parts of the 
presented work. That is why, in this section we will 
focus on research efforts that have played, in some 
way, an influential role for achieving the presented 
work or on those closely related to its subject. We 
therefore focus on cognitive systems, perceptual 
curiosity (notably visual saliency) and on works 
concerning knowledge acquisition. 

In the present work the term “cognition” is 
considered as human-like knowledge based 
functionality of machines. A machine (or a robot) 
responding correctly to such challenge cannot rely 
only on a priori knowledge that has been stored in it, 
but should be able to learn on-line from environment 
where it evolves by interaction with the people it 
encounters in that environment. On this subject, the 
reader may refer to (Kuhn et al., 1995), a monograph 
on knowledge acquisition strategies and to 
(Goodrich and Schultz, 2007) giving a survey on 
human-robot interaction and learning and to 
(Coradeschi and Saffiotti, 2003) providing an 
overview of the anchoring problem. In (Madani and 
Sabourin, 2011), a multi-level cognitive machine-
learning based concept for human-like “artificial” 
walking is proposed. Authors define two kinds of 
cognitive functions: the “unconscious cognitive 
functions” (UCF), identified as “instinctive” 
cognition level handling reflexive abilities, and 
“conscious cognitive functions” (CCF), 
distinguished as “intentional” cognition level 
handling thought-out abilities. In (Madani, 2012) 
authors focus the concept of Artificial Awareness 
based on visual saliency with application to 
humanoid robot's awareness. 

The autonomous learning benefiting from 
interaction with humans will inherently require the 
machine’s ability of learning without explicit 
“negative training set” (or negative evidence) and 
from a relatively small number of samples. This 
important capacity is observed in children learning 
the language and is discussed in (Bowerman, 1983). 
The problem of autonomous learning has been 
addressed on different degrees in several works. For 
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example, in (Greeff et al., 2009) a computational 
model of word-meaning acquisition by interaction is 
presented. In (Saunders, 2010) a humanoid robot is 
taught by a human tutor to associate simple shapes 
to human lexicon in an interactive way. A more 
advanced work on autonomous robot learning using 
a weak form of interaction with the tutor has been 
recently presented in (Araki et al., 2011). Another 
interesting approach to autonomous learning of 
visual concepts in robots has been published in 
(Skocaj et al., 2011). Authors show capacity of their 
robotic platform to engage in different kinds of 
learning in interaction with a human tutor. 

Concerning the use of curiosity in machine-
cognition, by observing the state of the art it may be 
concluded that the curiosity is usually used as an 
auxiliary, single-purpose mechanism, instead of 
being the fundamental basis of the knowledge 
acquisition. In (Ogino et al., 2006), a lexical 
acquisition model is presented combining more 
traditional approaches with the concept of curiosity 
to alternate the attention of the learning robot. To 
our best knowledge there is no work to date which 
considers curiosity in context of machine cognition 
as a drive for knowledge acquisition on both low 
(perceptual) level and high (“semantic”) level of the 
system, as it is described in this chapter. 

Visual saliency (also referred in literature as 
visual attention, unpredictability or surprise) is 
described as a perceptual quality that makes a region 
of image stand out relative to its surroundings and to 
capture attention of observer (Achanta et al., 2009). 
The inspiration for the concept of visual saliency 
comes from the functioning of early processing 
stages of human vision system and is roughly based 
on previous clinical research. In early stages of the 
visual stimulus processing, human vision system 
first focuses in an unconscious, bottom-up manner, 
on visually attractive regions of the perceived image. 
The visual attractiveness may encompass features 
like intensity, contrast and motion. Although there 
exist solely biologically based approaches to visual 
saliency computation, most of the existing works do 
not claim to be biologically plausible. Instead, they 
use purely computational techniques to achieve the 
goal. One of the first works using visual saliency in 
image processing has been published by (Itti et al., 
1998). Authors use a biologically plausible approach 
based on a centre-surround contrast calculation 
using Difference of Gaussians. Published more 
recently, other common techniques of visual 
saliency calculation include graph-based random 
walk (Harel et al., 2007), centre-surround feature 
distances (Achanta et al., 2008), multi-scale contrast, 

centre-surround histogram and color spatial 
distribution or features of color and luminance (Liu, 
2008). A less common approach is described in 
(Liang et al., 2012). It uses content-sensitive hyper-
graph representation and partitioning instead of 
using more traditional fixed features and parameters 
for all images. 

3 CURIOSITY BASED 
ARTIFICIAL INTELLECT 

3.1 Concept and Role of Artificial 
Curiosity 

As it has already been mentioned, “curiosity” is a 
key skill in human cognitive ability for acquiring 
knowledge. Thus it is an appealing concept in 
conceiving artificial systems supposed to gather 
knowledge autonomously. So, before exposing the 
investigated system let us focus on curiosity in more 
depth. 

Berlyne (Berlyne, 1954) addresses the concept of 
human’s curiosity by splitting up the curiosity into 
two kinds. The first, so-called “perceptual curiosity”, 
leads to increased perception of stimuli. It is a lower 
level function, relating perception of new, surprising 
or unusual sensory inputs. It contrasts to repetitive or 
monotonous perceptual experience. The other one, 
so called “epistemic curiosity”, is related to the 
desire for knowledge that motivates individuals to 
learn new ideas, to eliminate information-gaps, and 
to solve intellectual problems (Litman, 2008).  

 

Figure 1: General concept of knowledge acquisition’s 
regulation by curiosity in human cognition. 

It also seems that it acts to stimulate long-term 
memory in remembering new or surprising 
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information (Kang et al., 2009).Without striving for 
biological plausibility, the above-mentioned gives an 
important motivation for building of our system: 
curiosity stimulates acquisition of new knowledge 
and in turn the newly learned knowledge whips up 
or appeases the curiosity. In other words, it is the 
curiosity, which motivates and regulates any action 
of the system. Figure 1 depicts the above-formulated 
concept. 

3.1.1 Perceptual Curiosity and Visual 
Saliency 

In their perception, humans rely strikingly much on 
vision. It is then pertinent to consider chiefly the 
visual information and its learning processes. Thus, 
it appears appropriate here to draw inspiration from 
studies on human infants learning by demonstration. 
Experiments in (Brand et al., 2002) show that it is 
the explicitness or exaggeration of an action that 
helps a child to understand, what is important in the 
actual context of learning. It may be generalized, 
that it is the saliency (in terms of motion, colors, 
etc.) that lets the pertinent information “stand-out” 
from the context and become “surprising” (Wolfe, 
2004). We argue that in this context the visual 
saliency may be helpful to enable unsupervised 
extraction and subsequent learning of a previously 
unknown object by a machine. In other words, 
perceptual curiosity has been realized through a 
saliency detection approach. 

3.1.2 Epistemic Curiosity 
and Learning-by-Observation 
and Interaction 

Epistemic curiosity stimulates the high level 
knowledge acquisition mechanism constructing new 
semantic knowledge and to fill the gaps of missing 
knowledge. Thus, epistemic curiosity operates 
inherently at “conscious” cognitive level, as it 
requires an intentional search and premeditated 
interaction with the environment. This mechanism 
allows the machine to learn abstract (e.g. 
insubstantial) knowledge, after interpreting the 
world in which it evolves, by using appropriate 
terms from human language. It is important to stress 
that this is done without making use of a priori 
knowledge. The task is realized by word-meaning 
anchoring based on learning-by-observation and by 
interaction with its human counterpart. The model is 
closely inspired by learning process of human 
infants. 

The machine shares its perception of the 
surrounding world with the human (tutor) and 

interacts with him. The tutor on his turn shares with 
the machine his knowledge about the world within 
the form of natural speech (utterances) 
accompanying machine’s observations and 
completing its knowledge about the perceived 
reality. In other words, of such a high-level 
cognitive mechanism is to allow the machine to 
anchor the heard terms to its sensory-motor 
experience and to flexibly shape this anchoring 
accordingly to its growing knowledge about the 
world. The described mechanism can play a key role 
in linking object extraction and learning techniques 
on one side, and ontologies on the other side. The 
former ones are closely related to perceptual reality, 
but are unaware of the meaning of objects they 
identify. While the latter ones are able to represent 
complex semantic knowledge about the world, but, 
they are unaware of the perceptual reality of 
concepts they are handling. 

3.2 Architecture of the Curiosity based 
Artificial Cognitive Intellect 

As depicted in figure 2, the general architecture of 
the investigated artificial intellectual system is 
organized around four main modules, derived from 
needs outlined previously and from what has been 
previously mentioned about the role of curiosity. 
The “Behaviour Control” unit shapes the overall 
coherent (intelligent) behaviour of the machine by 
collecting results from the three other units and by 
providing information and requests issued from 
surrounding environment. The “Navigation” unit is 
in charge of machines apposite evolution in its 
surrounding world. The task of the 
“Communication” unit is to allow communicating 
this knowledge to the outer world and to handle 
inputs from humans and transfer them into a 
machine readable form. It enables the system to 
communicate in two ways with other actors, be it 
similar intelligent machines or human beings. 
Finally, the task of “Knowledge Acquisition” unit is 
knowledge gathering and handling, derivation of 
high-level representation from low-level sensory 
data and construction of semantic relationships from 
interpretation of perceived information. 

Accordingly to (Madani and Sabourin, 2011) and 
as in (Madani et al., 2012), the general concept of 
“Knowledge Acquisition” unit could be depicted as 
shown in figure 3. It includes one unconscious visual 
level containing a number of UCF and one 
conscious visual level which may contains a number 
of CCF. The knowledge extraction from visual 
pattern follows the process involving both kinds of 
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aforementioned curiosity (“perceptual curiosity” and 
the “epistemic curiosity”.  

 

Figure 2: Block diagram showing the general architecture 
of the investigated artificial intellectual system. 

 

Figure 3: Block diagram of “Knowledge Acquisition” unit 
and places of the perceptual and the epistemic curiosities. 

The perceptual curiosity motivates or stimulates 
what we call the low level knowledge acquisition 
and concerns “reflexive” (unconscious) processing 
level. It seeks “surprising” or “attention-drawing” 
information in given visual data. The task of the 
perceptual curiosity is realized by perceptual 
saliency detection mechanisms. This gives the basis 
for operation of high-level knowledge acquisition, 

which is stimulated by epistemic curiosity. Being 
previously defined as the process, that motivate to 
“learn new ideas and solving intellectual problems”, 
the epistemic curiosity is here the motor of: learning 
new concepts based on what has been gathered on 
the lower-level and eliminating information gaps by 
encouraging an active search for the missing 
information.  

4 PERCEPTUAL CURIOSITY 
THROUGH VISUAL SALIENCY 

As mentioned in previous section, the perceptual 
curiosity relates visual attention and thus could be 
realized through the saliency detection approach. 
However, the exiting salient objects’ detection 
approaches as well as those connecting the detection 
and recognition techniques used by those approaches 
rely on human made databases, requiring a 
substantial time and a skilled human expert. Thus, a 
fully autonomous machine vision system, aiming 
recognizing salient objects on its own, could not be 
achieved with the above-mentioned techniques. 
Motivated by the mentioned shortcoming regarding 
existing object recognition methods, we have 
proposed earlier an intelligent Machine-Vision 
system able to detect and to learn autonomously 
individual objects within real environment. The 
approach has been detailed in (Ramik, 2011-a) and 
(Ramik, 2011-b) using an architecture following 
“cognitive” frame described in (Madani, 2011) and 
(Madani, 2012). Its key capacities are: autonomous 
extraction of multiple objects from raw unlabeled 
camera images, learning of those objects 
autonomously and recognition of the learned objects 
in different conditions or in different visual contexts. 

Allowing the machine to learn  and  to  recognize 

 

Figure 4: Block diagram of visual saliency system. 
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Original input image Using (Acanta, 2009) Using (Liu, 2011) Using our system 

    

    

Figure 5: Comparison of different salient object detection algorithms. 1st column: original image, 2nd column: results using 
(Achanta et al., 2009), 3rd column: results using (Liu et al., 2011) and 4th column: results of our approach. 

       

       

Figure 6: Samples of real environment issued images (upper row) and salient objects detected by our algorithm, marked by 
green rectangles (lower row). 

Allowing the machine to learn and to recognize 
objects encountered in its surrounding environment 
in a completely automated manner, the designed 
object learning system consists of several units 
which collaborate together. Figure 4 depicts the 
block-diagram of the system showing different units 
and their relations. Two main parts may be 
identified, each one containing several processing 
units. The first part, labelled “Acquisition of new 
objects for learning” takes a raw image from the 
camera, detects visually important objects on it and 
extracts them so that they can be used as prospective 
samples for learning. In parallel the input image is 
segmented and split into a set of segments according 
to the chromatic surface properties. 

The algorithm is shown to be robust to common 
illumination effects like shadows and reflections, 
which helps our system to cope with real 
illumination conditions. Finally, combining results 
of the two aforementioned units, the “Salient object 
extraction” unit extracts segments found on salient 

regions and constructs the salient objects from the 
input image. 

The second part incrementally clusters the 
detected salient objects, learns new salient objects 
and handles the recognition of previously learned 
objects (in recognition phase). In fact, the extracted 
salient objects are fed into the “Incremental 
fragment grouping” unit. Here, an on-line 
classification is performed on each object by a set of 
weak classifiers and incrementally groups containing 
the same object extracted from different images are 
formed. These groups can be then used as a kind of 
visual memory of visual database describing each of 
the extracted objects. This alone would be enough 
for recognition of each already seen object, if it was 
ensured that each particular object will be found in 
the same visual context next time it is encountered 
by our system. However, such hypothesis (e.g. 
expectation) is clearly too restrictive for a system 
that aims to recognize the once learned objects in 
any conditions or contexts. That is why the last unit 
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of the system, tagged “Object recognition methods”, 
is added. Its role is, by employing existing object 
recognition algorithms, to learn from the visual 
database built by “incremental fragment grouping” 
unit and to recognize those objects regardless to 
their saliency in new settings. Thus the already 
learned objects can be recognized directly from the 
input image. Figures 5 and 6 give examples of 
salient objects’ detection obtained by the presented 
system compared to two already existing techniques 
(figure 5) as well as examples obtained from 
observing the real environment (figure 6). 

With respect to the expected goal requiring real-
time processing skills, the system is designed with 
emphasis on on-line and real-time operation. 
Moreover, the system itself is however not limited to 
mobile platforms and can be amply used in context 
of various other applications ( as those dealing with 
sensor networks, intelligent houses etc...). 

5 HIGH-LEVEL KNOWLEDGE 
ACQUISITION 

The problem of learning brings an inherent problem 
of distinguishing the pertinent sensory information 
(the one to which the tutor is referring) and the 
impertinent one. It indeed is a paradox, but in 
contrary to what one may believe, sensors provide 
generally too much data input: a lot more than the 
amount effectively needed. It is the task of higher 
structures (e.g. an attention system or in general a 
machine learning system adapted to this task) to 
draw the attention to particular features of the data, 
which are pertinent in context of a particular task. 
The solution to this task is not obvious even if we 
achieve joint attention in the robot. This is illustrated 
on figure. 7. Let us consider a robot (machine) 
learning a single type of features, e.g. for example 
colors. If a tutor points to one object (e.g. for 
example a red flower) among many others, and 
describes it by saying: “The flower is red!”, the 
robot still has to distinguish which of the several 
colors and shades, found on the concerned object, 
the tutor is referring to. This step is an inevitable one 
before beginning the learning itself. In traditional 
learning systems, such task-relevant (i.e. pertinent) 
information is extracted by a human expert. In a 
system capable of autonomous learning, however, 
this has to be done in an automated way and without 
recourse to human-extracted features. 

Figure 8 gives the bloc-diagram of key 
operations flow of the system proposed in this 

section. As it could be seen in figure 7, sensor data 
bring inherently both pertinent and impertinent 
information mixed up. To achieve correct detection 
of pertinent information in spite of such an 
uncertainty, we adopt the following strategy. The 
system extracts features from important objects 
found in the scene along with words the tutor used to 
describe the presented objects. Then, the system 
generates its beliefs about which word could 
describe which feature. The beliefs are seen as 
organisms in a genetic algorithm. Here, the 
appropriate fitness function is of major importance. 
To calculate the fitness, a classifier is trained based 
on each belief about the world. Using it, the 
cognitive system undertakes to interpret the objects 
it has already seen. The utterances pronounced by 
the human tutor in presence of each already seen 
object are compared with the machine’s utterances 
used to describe it based on its current belief. The 
closer the machine's description is to the one given 
by the human, the higher the fitness is. 

5.1 Observation and Interpretation 

The present sub-section explains how observed (e.g. 
visual) information is interpreted by the presented 
system. For, this, let us suppose that visual 
information is acquired through appropriate sensor 
(for example a camera, etc…), which makes the 
system able to observe the surrounding world. This 
means that the observed world is represented as a set 
of features  

k
iiiI ,,,

21
 . Let us also suppose 

that each time the machine makes an observationO , 
a human tutor gives it a set of utterances 

H
U  

describing important objects found currently in the 
observed world. Let us denote U the set of all 
utterances ever given about the world. Accordingly 
to what has been introduced at the beginning of this 
section, the goal for the machine is to discriminate 
the pertinent information from the impertinent one 
and to correctly map the utterances to appropriate 
perceived features. In other words, the machine has 
to establish a word-meaning relationship between 
the uttered words and its own perception about the 
observed information. The machine is further 
allowed to interact with the human in order to clarify 
and verify its interpretations, following the 
stimulation of its epistemic curiosity. 

For this purpose, we define an observation O  as 
an ordered pair  

Hl
UIo , , where II

l
  stands 

for the set of features obtained from observation 
and UU

H
   is  the  set  of  utterances  given  in the  
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Figure 7: A human would describe this flower as being “red” in spite of the fact, that this is not its only color. 

 

Figure 8: The proposed system’ operational flow showing learning process of single-type of features. The example shows 
the context of a particular learning task, i.e. color learning and interpretation. 

context of that observation. Following Eq. (1)
l

I is a 

sum of all the pertinent information 
p

i for a given 

utterance Uu  (i.e. features that can be described 

as u in the language used for communication 
between the human and the robot), all the 
impertinent information 

i
i  (i.e. features that are not 

described by the given u , but might be described 
by another Uu

i
 ) and noise . 

     
HH U

i
U

pl
uiuiI  (1)

Let us define in a general way, an interpretation 

 uX  of an utterance u as an ordered pair 

   
j

IuuX ,  (where II
j
 ), which denotes 

that a sub-set of features 
j

I  of I  is interpreted as 

u . Then a belief is defined accordingly to Eq. (2) 

as an ordered set of  uX  interpreting utterances 

u , where Un  . Belief B  is a mapping 

(relation) from the set of U  to I . All members of 
U  map to one or more members of I  and no two 
members of U  map to the same member of I . 

    
n

uXuXB ,,
1
  (2)

According to Eq. (3) one can determine the belief B , 
which interprets in the most coherent way the 
observations made so far. It is done by looking for 
such a belief, which minimizes across all the 
observations Oo

q
  the difference between the 

utterances 
Hq

UU  made by human on each 

particular observation Oo
q
 , and those composed 

the machine (denoted 
Rq

U ), by using the belief B  

on the same observation. In other words, we are 

 
pertinent 

impertinent 

ip (“Red”) 

ii (“Red”) 

 Noise 

“Green” 

“Black” 

“Yellow” 

This flower 
is “Red” 
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looking for a belief B , which would make the 
machine describe a particular sight with utterances 
as close as possible to those that would make a 
human on the same prospect. 






 



O

q
RqHq

B

UU
1

minarg  (3)

5.2 Evolutionary Searching for Most 
Coherent Interpretation 

The system has to look for a belief B , which would 
make the robot describing a particular scene with 
utterances as close and as coherent as possible to 
those made by a human on the same scene. For this 
purpose, instead performing the exhaustive search 
over all possible beliefs, we propose to search for a 
suboptimal belief by means of a genetic algorithm. 
For doing that, we assume that each organism within 
it has its genome constituted by a belief, which, 
results into genomes of equal size U  containing 

interpretations  uX  of all utterances from U . The 

task of coherent belief generation is to generate 
beliefs, which are coherent with the observed reality. 
In our genetic algorithm, the genomes’ generation is 
a belief generation process generating genomes (e.g. 
beliefs) as follows. For each interpretation  uX  the 

process explores whole the set O . For each 
observation Oo

q
 , if 

Hq
Uu  then features 

qq
Ii  (with II

q
 ) are extracted. As described in 

(1), the extracted set of features contains as well 
pertinent as impertinent features. 

The coherent belief generation is done by 
deciding, which features 

qq
Ii   may possibly be the 

pertinent ones. The decision is driven by two 
principles. The first one is the principle of 
“proximity”, stating that any feature i  is more likely 
to be selected as pertinent in the context of u , if its 
distance to other already selected features is 
comparatively small. The second principle is the 
“coherence” with all the observations in O . This 
means, that any observation Oo

q
 , corresponding 

to 
Hq

Uu , has to have at least one feature assigned 

into 
q

I of the current    
q

IuuX , . 

To evaluate a given organism, a classifier is 
trained, whose classes are the utterances from U  
and the training data for each class Uu are those 
corresponding to    

q
IuuX , , i.e. the features 

associated with the given u in the genome. This 

classifier is used through whole set O of 
observations, classifying utterances Uu  

describing each Oo
q
  accordingly to its 

extracted features. Such a classification results in the 
set of utterances 

Rq
U  (meaning that a belief B  is 

tested regarding the qth observation). Block-diagram 
of described genetic algorithm’s workflow is given 
by figure 9. 

 

Figure 9: Bloc diagram of described genetic algorithm’s workflow. The left part describes the genetic algorithm itself, while 
the right part focuses on the fitness evaluation workflow. 
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 






1

1
D

 
(4)

RqHqRqHq
UUUU    (5)

5.3 Role of Human-machine 
Interaction 

In our approach, the learning by interaction is 
carried out in two kinds of interactions: human-to-
machine and machine-to-human. The human-to-
machine interaction is activated anytime the 
machine interprets wrongly a given word world. 
When the human receives a wrong response, he 
provides the machine a new observation by uttering 
the desired interpretation. Then system searches for 
a new interpretation of the world conformably to this 
new observation. The machine-to-human interaction 
may be activated when the robot attempts to 
interpret a particular feature classified with a very 
low confidence. Led by the epistemic curiosity, the 
machine asks its human counterpart to make an 
utterance about the uncertain observation. If 
machine’s interpretation is not conforming to the 
utterance given by the human, this observation is 
recorded as a new knowledge and a search for the 
new interpretation is started. 

6 VALIDATION 
AND EXPERIMENTAL 
RESULTS 

The validation of the proposed system has been 
performed on the basis of both simulation of the 
designed system as by an implementation on a real 
humanoid robot. A video capturing different parts of 
the experiment may be found online on: 
http://youtu.be/W5FD6 zXihOo. As real robot we 
have considered NAO robot (a small humanoid 
robot from Aldebaran Robotics) which provides a 
number of facilities such as onboard camera 
(vision), communication devices and onboard 
speech generator. The fact that the above-mentioned 
facilities been already available offers a huge save of 
time, even if those faculties remain quite basic in 
that kind of robots. 

Although the usage of the presented system is 
not specifically bound to humanoid robots, it is 
pertinent to state two main reasons why a humanoid 
robot is used for the system’s validation. The first 
reason for this is that from the definition of the term 

“humanoid”, a humanoid robot is aspired to make its 
perception close to the human’s one, entailing a 
more human-like experience of the world. This is an 
important aspect to be considered in context of 
sharing knowledge between a human and a robot. 
The second reason is that humanoid robots are 
specifically designed to interact with humans in a 
“natural” way by using e.g. a loudspeaker and 
microphone set in order to allow for a bi-directional 
communication with human by speech synthesis and 
speech analysis and recognition. This is of 
importance when speaking about a natural human-
robot interaction during learning. 

6.1 Simulation based Validation 

The simulation based validation finds its pertinence 
in assessment of the investigated cognitive-system’s 
performances. In fact, due to difficulties inherent to 
organization of strictly same experimental protocols 
on different real robots and within various realistic 
contexts, the simulated validation becomes an 
appealing way to ensure that the protocol remains 
the same. For simulation based evaluation of the 
behaviour of the above-described system, we have 
considered color names learning problem. In 
everyday dialogs, people tend to describe objects, 
which they see, with only a few color terms (usually 
only one or two), although the objects in itself 
contains many more colors. Also different people 
can have slightly different preferences on what 
names to use for which color. Due to this, learning 
color names is a difficult task and it is a relevant 
sample problem to test our system. 

In the simulated environment, images of real-
world objects were presented to the system 
alongside with textual tags describing colors present 
on each object. The images were taken from the 
Columbia Object Image Library (COIL) contains 
1000 color images of different views of 100 objects 
database. Five fluent English speakers were asked to  

 

 

Figure 10: Original WCS table (upper image), its system’s 
made interpretation (lower image). 
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describe each object in terms of colors. We restricted 
the choice of colors to “Black”, “Gray”, “White”, 
“Red”, “Green”, “Blue” and “Yellow”, based on the 
color opponent process theory (Schindler, 1964). 

The tagging of the entire set of images was 
highly coherent across the subjects. In each run of 
the experiment, we have randomly chosen a tagged 
set. The utterances were given in the form of text 
extracted from the descriptions. The object was 
accepted as correctly interpreted if the system’s and 
the human’s interpretations were equal. The rate of 
correctly described objects from the test set was 
approximately 91%. Figure 10 gives the result of 
interpretation by the system of the colors of the 
WCS table. 

6.2 Real Robot based Validation 

The designed system has been implemented on NAO 
robot (from Aldebaran Robotics). It is a small 
humanoid robot which provides a number of 
facilities such as onboard camera (vision), 
communication devices and onboard speech 
generator. The fact that the above-mentioned 
facilities been already available offers a huge save of 
time, even if those faculties remain quite basic in 
that kind of robots. If NAO robot integrates an 
onboard speech-recognition algorithm (e.g. some 
kind of speech-to-text converter) which is sufficient 
for “hearing” the tutor, however its onboard speech 
generator is a basic text-to-speech converter. It is not 
sufficient to allow the tutor addressing the robot in 
natural speech. To overcome NAO’s limitations 
relating this purpose, the TreeTagger tool was used 
in combination with robot's speech-recognition 
system to obtain the part-of-speech information from 
situated dialogs. Developed by the ICL at University 
of Stuttgart, available online at: http://www.ims.uni-
stuttgart.de/projekte/corplex/ TreeTagger. Standard 
English grammar rules were used to determine 
whether the sentence is demonstrative, descriptive or 
an order. To communicate with the tutor, the robot 
used its text-to-speech engine. 

A number of every-day objects have been 
collected for purposes of the experiment. They have 
been randomly divided into two sets for training and 
for testing. The learning set objects were placed 
around the robot and then a human tutor pointed to 
each of them calling it by its name. Using its 
640x480 monocular color camera, the robot 
discovered and learned the objects around it by the 
salient object detection approach we have described 
earlier. Here, this approach has been extended by 
detecting the movement of the tutor's hand to 

achieve joint attention. In this way, the robot was 
able to determine what object the tutor is referring to 
and to learn its name. Figure 11 shows two 
photographs of the above-reported experimental 
validation. Figure 12 shows examples of two extracted 
objects and the robot’s interpretation of the concerned 
objects. 

  

Figure 11: Experimental setup showing the tutor pointing a 
yellow chocolate box which has been seen, interpreted and 
learned (by the robot) in term of colors then asking the robot to 
describe the chosen object (lower left-side) and the ground truth 
detected objects as the robot perceives them (lover right-side). 

    

Figure 12: Two objects extracted from robot's 
surroundings. Right: the original image, left: features 
interpreted. For the “apple”, the robot's given description 
was “the object is red”. For the box, the description was 
“the object is blue and white”. 

During the experiment, the robot has been asked to 
learn a subset among the 25 considered objects: in 
term of associating the name of each detected object 
to that object. At the same time, a second learning 
has been performed involving the interaction with 
the tutor who has successively pointed the above-
learned objects describing (e.g. telling) to the robot 
the color of each object. Here-bellow an example of 
the Human-Robot interactive learning is reported: 
 Human [pointing a red aid-kit]: “This is a first-aid-kit!” 
 Robot: “I will remember that this is a first-aid-kit.” 
 Human: “It is red and white”. 
 Robot: “OK, the first-aid-kit is red and the white.” 

After learning the names and colors of the 
discovered objects, the robot is asked to describe a 
number of objects including as well some of already 
learned objects but in different posture (for example 
the yellow box presented in reverse posture) as a 
number of still unseen objects (as for example a red 
apple or a white teddy-bear). The robot has 
successfully described, in a coherent linguistics, the 
presented seen and unseen objects. Here-bellow is 
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the Human-Robot interaction during the experiment:  
 Human [pointing the unseen white teddy-bear]: 

“Describe this!” 
 Robot:: “It is white!” 
 Human [pointing the already seen, but reversed, yellow 

box]: “Describe this!”  
 Robot: “It is yellow!” 
 Human [pointing the unseen apple]: “Describe this!”  
 Robot: “It is red!” 

7 CONCLUSIONS 

This paper has presented, discussed and validated a 
cognitive system for high-level knowledge 
acquisition based on the notion of artificial curiosity. 
Driving as well the lower as the higher levels of the 
presented cognitive system, the emergent artificial 
curiosity allow such a system to learn in an 
autonomous manner new knowledge about unknown 
surrounding world and to complete (enrich or 
correct) its knowledge by interacting with a human. 
Experimental results, performed as well on a 
simulation platform as using the NAO robot show 
the pertinence of the investigated concepts as well as 
the effectiveness of the designed system. Although it 
is difficult to make a precise comparison due to 
different experimental protocols, the results we 
obtained show that our system is able to learn faster 
and from significantly fewer examples, than the 
most of more-or-less similar implementations. 

Based on obtained results, it is thus justified to 
say, that a robot endowed with such artificial 
curiosity based intelligence will necessarily include 
autonomous cognitive capabilities. With respect to 
this, the further perspectives will focus integration of 
the investigated concepts in other kinds of machines, 
such as mobile robots. There, it will play the role of 
an underlying system for machine cognition and 
knowledge acquisition.  
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