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Abstract: The French Emergency Medical services, known as SAMU, are public safety systems responsible for the 
coordination of pre-hospital care under emergency conditions throughout a given geographic region. The 
goal of such systems is to respond timely and adequately to population calls by providing first aid services 
and transferring patients, when needed, to the appropriate care facility. In this paper, we propose a multi-
period version of the Maximum Expected Covering Location Problem applied to the case of the SAMU 94 
responsible for the Val-de-Marne department (France). The assumption that the busy fractions are identical 
for all demand points is relaxed by adopting an iterative method to compute a priori estimates of these 
parameters in the model using an ARENA discrete-event simulation model of the SAMU 94. The solutions 
obtained from the mathematical model are then assessed by simulation regarding the time required to 
respond to an emergency call by getting to the patient location, known as response time, which is a critical 
aspect for the SAMU providers. Experimental results showed that the proposed method increased average 
percentage of most serious calls responded to within the target time of 15 minutes up to 15% compared to 
the current system performance. 

1 INTRODUCTION 

Pre-hospital care refers to first aid services provided 
to patients under emergency conditions from 
incident reporting, i.e. an incoming call via an 
emergency number, to definitive care, involving 
facilities, equipment and personnel trained to 
provide phone support, stabilization of patient’s 
condition and transportation to an appropriate care 
facility. In France, the emergency medical service 
(EMS) system responsible for providing such 
services is known as the SAMU system which 
stands for the French acronym of “Urgent Medical 
Aid Service”. It was established in 1968 to 
coordinate the activity of the “Mobile Emergency 
and Resuscitation Services”, named SMUR teams, 
which are mobile response vehicles staffed with 
qualified personnel and operated by public hospitals. 
The SAMU rescue process is organized according to 
two types of operations: Central operations, 
performed in a reception and regulation (R&R) 
centre, that aim to provide phone support and to 
decide the proper response for each call received 
depending on its degree of urgency, and External 

operations that aim at sending one or several SMUR 
team(s) to perform pre-hospital care for two types of 
rescues: primary rescues which are related to major 
injuries or illnesses that require immediate medical 
assistance outside of the hospital (e.g., cardiac arrest, 
trauma, childbirth...) and secondary rescues which 
correspond to the transport of patients from one 
hospital to another, in case medical staff assistance 
is needed during the transfer. Between rescues, 
SMUR teams are placed in fixed positions, called 
bases that are currently located in public hospitals. 
The SAMU system is managed at a department level 
(i.e. a French administrative division corresponding 
to a median area of about 6 000 km²) in order to 
provide a 24-hour service for each department.  

One of the critical performance measures for the 
SAMU providers, particularly in case of life-
threatening emergencies, is the response time, 
defined as the period between the receipt of a call 
and the first arrival of a SMUR team at the scene of 
incident. Several authors observed the association 
between low response time and high survival rate of 
patients (Cummins, 1989); (Vukmir, 2006); (White 
et al., 1996). Hence, having a high coverage, i.e. 
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percentage of calls responded to within a specific 
bound, is a commonly expressed objective for the 
SAMU managers. Another concern of the SAMU 
system is to reduce the significant expense involved 
in its management, including capital (acquisition of 
physical plant, vehicles, equipment, communication 
etc.) and operating costs (salaries, training, 
maintenance, etc.).  

Both timeliness and economical goals can be 
achieved through the optimization of several design 
and operation decisions that are highly interrelated 
and may be classified according to the following 
classical operations management hierarchical 
decision framework: 
 Long term decisions such as setting service level 

objectives, identifying the location and the 
capacity of the fixed facilities needed to perform 
central operations as well as a set of potential 
locations for SMUR teams bases throughout the 
covered department ; 
 Mid-term decisions: such as allocating SMUR 

teams to bases selected among those specified in 
the long term level so as to ensure a brief delay in 
reaching every call location (known as the 
deployment problem) and scheduling shifts for 
human resources; 
 Short-term decisions: such as determining the rules 

of assigning one or several available SMUR teams 
to a call (known as the dispatching problem), 
allocating SMUR teams to bases in order to 
improve coverage of future requests under 
temporal and geographical fluctuations of demand 
pattern (known as Multi-period redeployment) or 
depending on the number of SMUR teams 
available following the allocation or release of a 
team (known as dynamic redeployment); 

In literature, several operations research tools have 
been used to improve the performance of EMS 
systems through the optimization of these decisions. 
The current research addresses the multi-period 
redeployment problem as an improvement 
opportunity to develop service coverage 
performances of the SAMU system in the Val-de-
Marne department (south east of the city of Paris), 
named SAMU-94, under limited number of 
resources. In this regard, we propose an iterative 
method that combines the use of a probabilistic 
mathematical covering model to find the optimal 
locations of the existing SMUR teams throughout 
the service area for different periods of time, with 
the use of a discrete-event simulation model of the 
system, implemented in ARENA software, in order 
to evaluate the busy fraction parameter (i.e. the 
probability for a SMUR team of being unavailable to 

answer a call) required to solve the analytical model 
as well as to analyze the performance of the system 
under the redeployment solutions obtained from this 
model. 

The paper is organized as follows: Section 2 
briefly describes the literature review on the use of 
simulation and mathematical models in EMS 
management. Section 3 describes the detailed 
methodology used to build the SAMU-94 simulation 
model, including the process description, the data 
collection and the validation of the initial 
configuration of the model. In Section 4, we present 
the probabilistic covering model and the iterative 
approach to estimate the busy fraction parameters. 
Experimental results are described in Section 5. 
Finally, Section 6 provides conclusions and presents 
some directions for future research. 

2 LITERATURE REVIEW 

In literature, mathematical programming is one of 
the most studied analytical tools used to improve the 
performance of EMS systems. Mathematical models 
have been focused mainly on the decision of 
assigning rescue teams to bases, in both mid-term 
(deployment problem) and short term (dynamic and 
multi-period redeployment) settings. Research on 
this area has been largely derived from two early 
deterministic models: The Location Set Covering 
Problem (LSCP), developed by (Toregas et al., 
1971), which aims to minimize the number of rescue 
teams needed to cover all demand points within a 
target distance (time), and the Maximal Covering 
Location Problem (MCLP), proposed by (Church 
and ReVelle, 1974), which maximizes the 
population coverage within a target distance (time) 
using a limited number of available rescue teams. 
These two basic models overestimate coverage since 
they ignore some stochastic aspects such as the fact 
that dispatched rescue teams become unavailable to 
answer incoming calls. Two extensions have 
therefore been proposed to provide more robust 
location solutions. One extension is to consider the 
deterministic covering problem with an extra 
coverage, i.e. to maximize the demand covered by 
more than one rescue team to serve simultaneous or 
close calls (Daskin and Stern, 1981); (Eaton et al., 
1986); (Gendreau et al., 1997); (Hogan and ReVelle, 
1986). The other extension consists of probabilistic 
models that explicitly consider rescue teams’ 
potential unavailability through the use of the busy 
fraction parameter. These models include the 
expected covering location models that aim to 
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maximize the expected demand covered, expressed 
as a function of the busy fraction, such as the 
MEXCLP (Maximum Expected Covering Location 
Problem) of (Daskin, 1983) and its applications and 
extensions (Bianchi and Church, 1988); (Fujiwara et 
al., 1987); (Goldberg et al., 1990b); (Repede and 
Bernardo, 1994). Another probabilistic approach 
consists of the formulation of the deployment 
problem as a chance constrained stochastic program 
that incorporates the unavailability aspect as a linear 
constraint. This constraint uses the busy fraction to 
compute a lower bound of rescue teams required to 
achieve a given reliability level α in serving each 
demand point (ReVelle and Hogan, 1989); (ReVelle 
and Marianov, 1991). These models typically 
assumed that all rescue teams operate independently 
and have the same busy fraction q, estimated by 
dividing their total workload by their total operating 
time, regardless of their location and the overall 
number of teams servicing each demand point. 
These assumptions are obviously not valid since the 
team’s location affect the travel time to the call 
location and therefore the total workload. Moreover, 
the larger is the fleet size covering an area, the lower 
is the probability of a team to be busy. The difficulty 
of estimating the busy fraction parameters which are 
related to the location of teams is that this location is 
precisely the solution obtained from the optimization 
model, while the latter requires these parameters to 
be known a priori in order to provide a solution. 
Yet, for a specific deployment plan, several authors 
used descriptive tools such as hypercube queuing 
models (Batta et al., 1989); (Larson, 1974); 
(Marianov and Revelle, 1994) and computer 
simulation (Ingolfsson et al., 2003); (Su and Shih, 
2003) to pre-compute more accurate estimations of 
these parameters.  

Apart from the mathematical programming 
approach mentioned above, computer simulation has 
been one of the most widely used technique to 
identify potential areas of improvement in EMS 
systems without considering simplifying 
assumptions needed to solve analytical models. 
Indeed, the main advantage of simulation in dealing 
with such problems is its ability to describe the 
system in a high degree of detail, to estimate several 
performance measure predictions and to handle 
several sources of uncertainty such as time-
dependent arrival rate and location of calls, available 
capacity and location of rescue teams, duration of 
service time depending upon the medical needs of 
patient and bed availability of definitive care 
facilities. Research that is available in this area may 
be classified into two groups: 

 Simulation models used to estimate the impact of 
several scenarios (i.e. changes applied to 
simulation model assumptions, algorithms and/or 
data) on some selected performance outputs. 
 Simulation models primarily developed to assess 

the performance of solutions that are obtained 
from analytical models in a more realistic 
framework 

The scenarios considered in the first group are 
typically related to the design and operation 
decisions described in Section 1. The most explored 
long term decisions related scenarios consist of 
adding more rescue teams or new potential bases. 
These two scenarios are usually explored 
concurrently to be compared in terms of cost and 
quality performance (Gunes and Szechtman, 2005); 
(Inakawa et al., 2010); (Ingolfsson et al., 2003); 
(Savas, 1969). Another scenario tested consists of 
assessing the effect of an increase in demand 
following for instance the growth of population or 
the enlargement of the scope of EMS system 
(Lubicz and Mielczarek, 1987); (Silva and Pinto, 
2010). As for the mid-term decisions related 
scenarios considered in EMS literature, they mainly 
focused on the deployment problem which is usually 
evaluated jointly with the long term scenario of 
considering new potential bases in order to assess 
the relocation of rescue teams close to high demand 
areas (Fitzsimmons, 1971); (Goldberg et al., 1990a); 
(Henderson and Mason, 2005). Finally, the available 
literature in the area of short term decisions related 
scenarios addresses changes either in dispatching 
rules (Koch and Weigl, 2003); (Su and Shih, 2003), 
destination hospital assignment policies (Wang et 
al., 2012); (Wears and Winton, 1993), multi-period 
redeployment strategy (Peleg and Pliskin, 2004), 
dynamic redeployment strategy (Ingolfsson et al., 
200)3; (van Buuren et al., 2012) and travel speeds of 
emergency vehicles (Aringhieri et al., 2007); (Liu 
and Lee, 1988).  

The second use of simulation with analytical 
models has also largely been adopted in EMS 
literature. Typically, this combined approach 
involves using a location or a relocation 
mathematical programming model first, in order to 
determine sets of optimal locations, given the set of 
feasible locations, and then using simulation to 
estimate system performance under the resulting 
deployment/redeployment plan. In the literature, the 
mathematical programming models proposed in such 
approach include deterministic models with simple 
coverage (Berlin and Liebman, 1974); (Uyeno and 
Seeberg, 1984), deterministic models with multiple 
coverage (Aringhieri et al., 2007) and probabilistic 
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models (Fujiwara et al., 1987); (Harewood, 2002); 
(Repede and Bernardo, 1994). 

In this paper, we propose to apply this combined 
approach to the EMS of Val-de-Marne department 
(SAMU-94) in order to improve the response time 
performance of the system. For this purpose, we 
proposed a multi-period extension of the MEXCLP 
(Daskin, 1983) that integrates some specificities 
related to call priorities as well as site-specific busy 
fraction parameters depending on the number of 
rescue teams serving each site and the time period. 
Busy fraction parameters are estimated using an 
iterative method, derived from (Lee et al., 2012), 
that uses a discrete event simulation model of the 
system in each step to update the busy fraction 
estimates based on the location solution obtained 
from the optimization model in the previous step. 
The updated estimates are subsequently used in the 
optimization model to provide updated location 
solution. This iterative process continues until the 
location solution converges. 

3 SIMULATION MODEL 

3.1 Problem Description 

This simulation study used the discrete event 
simulation software ARENA (Rockwell 
Automation, Milwaukee, Wisconsin) to build a 
model that takes the SAMU 94 system as its subject 
and seeks to compute credible estimates of busy 
fraction and response time performance measures. A 
first step in the methodology of performing the study 
consists of conducting meetings and interviews with 
the SAMU-94 experts in order to clarify the input 
parameters and the detailed process associated with 
the system which involves various types of human 
and material resources which are:  
 Operators: Located in the R&R centre, they are 

responsible for answering calls, identifying 
inappropriate calls, creating a medical file and 
recording the basic information relative to the 
nature of the request; 
 Regulators: Located in the R&R centre, they are 

responsible for performing medical evaluation of 
calls and deciding on the best solution for the 
patient. There are two types of regulators: 
emergency physicians, named “SAMU regulators”, 
responsible for high priority calls, and general 
practitioners, named “PDS regulators”, responsible 
for remaining calls; 
 SMUR teams: consisting of a vehicle staffed by 

one physician, one driver, one nurse and/or one 

emergency medical technician. There are two 
types of vehicles: well-equipped ambulances, 
called Mobile Intensive Care Units (MICU), and 
medical vehicles (MV) which are usually 
dispatched for the most serious calls because they 
are faster than MICU but do not allow for the 
transport of the patient. The SMUR teams are 
currently located in two bases: one central base 
located at Henri-Mondor Hospital (HM) and one 
auxiliary base located in Villeneuve-Saint-Georges 
Hospital (VSG); 
 Rescue physician: an emergency physician who 

can either operate as a SAMU regulator or as a 
physician in a SMUR team. 

The SAMU-94 central operations are triggered when 
a call is first received by an operator in the R&R 
centre which is located in the central base HM. 
Depending on the potential severity of the call, the 
operator chooses to redirect the call to a SAMU or a 
PDS regulator. The regulator performs a medical 
evaluation which can lead to several possible 
decisions: In the case of primary rescues, if the call 
is not urgent, a simple advice is given to the patient 
or a private ambulance is dispatched. If the request 
is a relative emergency, the call is transferred to a 
basic life support or BLS system such as fire-
fighters or red-cross. However, if the incident turns 
out to be more urgent than the first evaluation, the 
BLS calls back an operator to ask for the dispatch of 
a SMUR team. These calls are referred to as primary 
rescues with sending BLS as first effector. 
Otherwise, if the request is an absolute emergency, a 
SMUR team is immediately dispatched to the call 
location, which is known as primary rescues with 
sending SMUR team as first effector. 

In the case of a secondary call, an appointment is 
taken with the origin hospital in order to send a 
SMUR team when more than one team is available 
in the central station.  

Once the regulator decides to send a SMUR 
team, he evaluates the availability and the 
geographical location of the fleet and notifies the 
closest available unit. This is the beginning of 
external operations. The interval between the arrival 
of the call until a SMUR team is notified is referred 
to as the dispatching time. The selected rescue team 
prepares the rescue by gathering any necessary 
equipment that may not be available on the vehicle, 
inquiring information concerning the incident and 
rushing to the vehicle. The interval between the time 
the SMUR team receives the notification to the time 
it leaves for rescue is called preparation time. Note 
that this step is only performed if the SMUR team is 
located at a base when notified of a call. The SMUR 
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team then leaves for rescue. The travel time is the 
time elapsed from the initial movement of the 
vehicle until the arrival at the scene.  

The SMUR team spends some time to stabilize 
the patient. If more advanced care is deemed 
necessary, the SAMU regulator determines the 
appropriate destination hospital and communicates 
this decision to the SMUR team. The choice of a 
primary rescue’ destination hospital may depend on 
several factors such as the proximity of hospital, its 
available capacity and appropriate facilities for the 
patient (specialists, particular equipment...) or 
patient choice. The SMUR team therefore prepares 
the patient for transportation and leaves the scene. 
The interval between the time the rescue team 
arrives at the scene and the time it leaves is usually 
called on-site time. Before the transport to the 
destination hospital, the patient may need a 
diagnostic or therapeutic radiography (DTR) such as 
MRI, X-ray (if the destination hospital does not have 
the appropriate equipment or have long waiting 
times). In this case, the SMUR team takes the patient 
to the medical service where the DTR is performed. 
The time interval between the SMUR team arrives at 
the DTR medical service and the time it leaves is 
called diagnostic or therapeutic radiography time. 
After arriving at the destination hospital, the rescue 
team transfers the patient to the hospital staff and 
spends some time completing paperwork. The time 
needed to perform these tasks is called drop-off time. 
Finally, the SMUR team becomes available and can 
travel for another rescue or return to the base to 
which it is assigned to wait for the next mission. 

3.2 Data Collection and Analysis 

The rescue records of the SAMU 94 were collected 
for a period of 15 months of operations. This 
database, hereafter referred to as “regulation 
database”, included for each call the following data: 
(1) The time and date of each call; (2) The origin of 
the call; (3) The type of call (primary/secondary); 
(4) The first effector if primary call (SMUR team or 
BLS); (5) The priorities assigned to the call, by the 
regulator and by the SMUR team once at call 
location. Priority 1 is assigned to life-threatening 
emergencies (e.g. cardiac arrests, serious trauma, 
etc.) and priority 2 is assigned otherwise; (6) The 
response team that performs the rescue; (7) The 
destination hospital; (8) The timing of the different 
steps in the rescue process: SMUR team notified, 
SMUR team leaves for the rescue, SMUR team 
arrives at the scene, SMUR team leaves the scene, 
SMUR team arrives at the diagnostic or therapeutic 

radiography service, SMUR team leaves the 
diagnostic or therapeutic radiography service, 
SMUR team arrives at the hospital, SMUR team 
finishes the rescue. 

This database was first analysed to exclude any 
record (call) containing missing data or errors in 
measures. Only 2.1% of the logged calls were 
therefore removed, resulting in a database of 9836 
calls.  

From the verified records, we extracted the 
empirical distributions of the following: 
 The arrival rate of calls per hour of the day, day of 

the week and type of call (primary/secondary); 
 The priority of each type of call: These priorities 

are used in the developed simulation model to 
establish a hierarchy in responding to simultaneous 
calls or calls waiting for the dispatch of a SMUR 
team; 
 The first effector (SMUR team or BLS) for 

primary calls; 
 The location of calls and hospitals: In order to 

accurately model this geographical distribution, we 
aggregated the network road nodes based on their 
proximity in a zone structure corresponding to 
basic units of approximately 2000 residents, 
developed by the French National Institute for 
Statistics and Economic Studies (INSEE) and 
known as “IRIS” for the French acronym of 
“aggregated units for statistical information”. The 
Val-de Marne department is composed of 527 
IRIS. This division is a reasonable computational 
trade-off that aggregate the large amount of calls 
into small areas without having a significant travel 
time within a given area; 
 The processing times per type and priority of calls: 

These times include the dispatching time, the 
preparation time, the on-site time, the diagnostic or 
therapeutic radiography time and the drop-off time 
for primary rescues. As for secondary rescues, they 
are considered as low priority calls which aim to 
provide transport of patient when possible without 
timeliness constraints. Therefore they were 
implemented in the model as an aggregated service 
time so as to properly size the utilization rate of 
resources ; 

The historical data were first fitted to theoretical 
distributions, using Kolmogorov-Smirnov and Chi-
Square goodness-of-fit tests, which provided low p-
values (less than 0.05). Therefore, we chose to use 
the empirical distributions that allow to better 
capture the characteristics of the data (Kelton et al., 
2008). 

Unlike processing times, there are no empirical 
travel times’ data available for currently unexplored 
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road networks due to different deployment 
strategies. Hence, in cooperation with the National 
Geographic Institute (IGN), we used a shortest path 
algorithm to pre-compute travel times for every 
possible origin, destination, time period and priority 
of call. The origins and destinations correspond to 
the 527 IRIS of the service area that include all 
demand points, bases and hospitals. The time 
periods represent the degree of traffic load at various 
times of the day according to six shifts that  
distinguish between weekdays (6:00-10:00, 10:00-
15:00, 15:00-21:00 and 21:00-6:00) and weekends 
(12:00-21:00 and 21:00-12:00). Based on the GPS 
traces database of the SAMU-94 vehicles, an 
average travel time per time period was assigned to 
each section of the road network of the Val-de-
Marne department according to its typology 
(motorway, main road, minor road, local street). For 
any given combination of origin IRIS, destination 
IRIS and time period, a sample of 10 pairs of exact 
addresses were randomly chosen within the two 
IRIS. For each pair, travel time was computed by 
summing up the average travel times associated with 
the sections that form the shortest path between the 
two addresses. The average of the 10 pairs’ travel 
times provided a good approximation of the 
combination travel time compared to the common 
assumption of computing travel times between the 
centres of the zones. Finally, as SMUR teams are 
allowed to travel at all possible speed when 
responding to primary calls of priority 1, related 
travel times were weighted by a multiplicative factor 
estimated at 0.937 to decrease them compared to 
standard travel times. 

 
 

3.3 Simulation Model Implementation 
and Validation 

The previously described SAMU-94 rescue process 
and data were summarized in a computerized model 
implemented using ARENA. The outcome variables 
of the model included the response time of each 
priority/effector of primary calls and the utilization 
rates of each SMUR team for each time 
period/priority. Different random number seeds were 
used to replicate the model 20 times. Each 
replication length corresponds to 15 months of 
operations and 1 day as a warm up period. 

We performed a historical data validation by 
comparing the system’s empirical data to the 
corresponding simulation-derived distribution. An 
example of response time measure validation for 
primary rescues, shown in Figure 1, indicates that 
model’s outputs are quite close to the observed 
distributions as the differences do not exceed 5.7%. 

4 OPTIMISATION MODEL 

In order to optimally locate SMUR teams close to 
primary demand so as to improve the corresponding 
response time performance, we propose the use of a 
probabilistic multi-period model that seeks to 
maximize the expected primary demand covered 
using a limited number of SMUR teams. The model, 
which is derived from the Maximum Expected 
Covering Location Problem (MEXCLP) of (Daskin, 
1983), is as follows: 

ݔܽܯ ߙ݀௧ሺ1 െ ௧ݕ௧ିଵݍ௧ሻݍ

ே

ୀଵ௧∈்∈∈

 (1) 
 
 
 

 
Figure 1: The cumulative distributions of real and simulated response time for primary rescues. 
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	ሺ݅ ∈ ܸሻ		ሺݐ ∈ ܶሻ	ሺ ∈ ܲሻ (2)

ݔ௧
∈ௐ

 ௧ܰ		 ሺݐ ∈ ܶሻ (3)

௧ݔ ∈ ሺ݆															ܰܫ ∈ ܹሻ		ሺݐ ∈ ܶሻ (4)

௧ݕ ∈ ሼ0,1ሽ							ሺ݅ ∈ ܸ, ݇ ൌ 1,……… . . , ௧ܰ , ݐ
∈ ܶ,  ∈ ܲሻ (5)

Set of Index 
V   is the set of all demand nodes. 
W  is the set of all potential bases. 
T   is the set of all periods of time.  
P   is the set of primary calls’ priorities. 
 

Parameters 
rijt is the travel time from the base j to the demand 
point i during the period t. 
Wpit = {j∈W : rijt ≤ Sp} is the set of all potential bases 
eligible to serve calls of priority p located in the 
demand node i within a target travel time Sp. 
ditp is the total number of calls of priority p received 
in the period t associated with the demand node i.  
Nt  is the number of SMUR teams scheduled in the 
time period t. 
αp is the weight associated with the priority p 
demand coverage.  
qikpt is the average busy fraction of k SMUR teams 
eligible to serve demand of priority p located at node 
i during the time period t.  
 

Decision variables 
xjt  is an integer variable that corresponds to the 
number of SMUR teams assigned to the base j 
during the time period t. 
yikpt is a binary variable equal to 1 if demand of 
priority p located in demand node i is covered by at 
least k SMUR teams during time period t. 
 

The objective function (1) aims to maximize the 
total expected demand covered over all nodes and all 
time periods. The weight ߙ assigned to priority p 
demand allows emphasizing the importance of high-
priority demand coverage and balancing the effect of 
a more restrictive target travel time for high priority 
calls. Constraint (2) ensures that for each time 
period, a demand of priority p located in node i is 
assigned to base j only if a team is located at j. 
Constraint (3) restricts the number of SMUR teams 
to be located to their scheduled capacity per time 
period. 

For the application of the model, 47 locations 
corresponding to the centre of the 47 districts of the 
Val-de-Marne department were selected as potential 

bases. The 527 IRIS of the department were 
considered as demand nodes. There are between 3 
and 5 available SMUR teams during weekdays and 3 
SMUR teams during weekends. Ten periods of time 
were chosen corresponding to the six travel time 
periods described in section 3.2 which are 
subdivided whenever a change in the scheduled 
number of SMUR teams occurs within a given travel 
time period. The model was solved using different 
weights (α1,α2)={(1,0); (0.75,0.25); (0.5,0.5)} and 
different target travel times in minutes 
(S1,S2)={(5,10); (10,10); (10,15)}. For each target 
travel time, the vector of nodes that can cover each 
demand of a given priority at a time period Wpit was 
computed. 

The probability that a randomly selected SMUR 
team is busy is estimated using the following 
equation: 

௧ݍ ൌ
∑ ௧ܶ

௪ௗ
∈ௐ



௧ܶ
௧௧ ൈ ݇

൫݅ ∈ ܸ, ݇ ൌ 1,… , ௧ܰ, ݐ ∈ ܶ, 

∈ ܲ, ሺ݀ݎܽܥ ܹ௧	ሻ ൌ ݇൯ 
(6)

where T୲୮୨
୵୭୰୩ୣୢ is the average amount of time 

worked to serve demand of priority p in time period 
t by all SMUR teams located at base j ∈ W୧୲

୮, T୲
୲୭୲ୟ୪ 

corresponds to the total work time available at 
period t for each SMUR team and k is the total 
number of SMUR teams located at bases in ܹ௧. In 
case the number of SMUR teams located within Sp is 
different from k, we used the mean of the existing 
estimates over the set of demand nodes to 
approximate the busy fraction parameter, i.e. (6) is 
replaced by: 
 

௧ݍ ൌ
∑ ೖ∈ೇ

ௗሺሻ
൫݅ ∈ ܸ, ݇ ൌ 1,… , ௧ܰ, ݐ ∈

ܶ,  ∈ ܲ, ݐܸ݅ ൌ ൛݅ ∈ ܸ: ൫݀ݎܽܥ ܹ௧	൯ ൌ ݇ൟ൯			
(7)

We intuitively believe that this assumption will 
provide good estimates for ݍ௧ that will avoid any 
excessive underestimation or overestimation of the 
ability of the system to cover a demand node under a 
given number of vehicles, which will lead to fast 
convergence of the iterative method.   

We then apply the iterative method described in 
(Lee et al., 2012) that consists of using the integer 
program to obtain optimal location solution for a 
given estimation of q୧୩୮୲ and then running the 
simulation model with the obtained location solution 
to tune the estimates of q୧୩୮୲ using (6) and (7). The 

initial values of q୧୩୮୲
ሺሻ  were computed based on the 

"initial scenario” model that represents the current 
SAMU-94 system. Using this initial estimation, the 
integer program is solved to provide the optimal 
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location solution (y୧୩୮୲
ሺଵሻ , x୨୲

ሺଵሻሻ , which is in turn used 
as an input in the simulation model. The resulting 
simulated service time worked allows updating the 

estimates of q୧୩୮୲
ሺଵሻ for the next iteration. This process 

is repeated until the location solution converges, i.e.  
remains the same for two successive rounds of 

iterations, i.e. (y୧୩୮୲
∗ , x୨୲

∗ ሻ ൌ ൫y୧୩୮୲
ሺ୬ሻ , x୨୲

ሺ୬ሻ൯ ൌ

ሺy୧୩୮୲
ሺ୬ିଵሻ, x୨୲

ሺ୬ିଵሻሻ	. 	
For each value of weight/target travel time 

parameters, the model has been solved at each 
iteration using CPLEX 12.5 on an Intel Core i3, at 
2,30 GHz, with 4Go of RAM memory. Solution 
times ranged from 3.2 to 9.7 minutes. The obtained 
redeployment solution was then fed in the simulation 
model and run for twenty 15 months-replications in 
order to re-compute the corresponding busy 
fractions per time period and priority of calls. 

5 EXPERIMENTAL RESULTS 

As the purpose of this study is to achieve a 
substantial improvement in response time 
performance for primary rescues with SMUR team 
as first effector, the percentage of calls responded to 
within target times of 15 minutes and 20 minutes 
were set as the main performance measures used to 
compare simulation results for priority 1 and 2 
respectively. The optimal redeployment policies 
resulting from the alternatives of weight/target travel 
time combination, described in Table 1, were 
analysed in sequence.  

We were first interested in analysing how the 
system performances behave through the steps of the 
iterative method. In all eight tested alternatives, the 
method converged within few iterations ranged from 
4 to 7. Examples of the expected coverage 
performances obtained from the optimization model 
and the response  time performances obtained  from 
the simulation model for each iteration step of 
alternatives 1 to 3 are  shown in Figure 2.  The green  

Table 1: Description of the alternatives. 

Alternatives S1 S2 α1 α2 
Alt. 1 5 10 0.5 0.5 
Alt. 2 5 10 0.75 0.25 
Alt. 3 5 10 1 0 
Alt. 4 10 10 0.5 0.5 
Alt. 5 10 10 0.75 0.25 
Alt. 6 10 15 0.5 0.5 
Alt. 7 10 15 0.75 0.25 
Alt. 8 10 15 1 0 

boxes show the 95% confidence interval for the 
percentage of calls responded to within the target 
response time metric, and the whiskers show the best 
and worst cases of the 20 independent runs of each 
alternative. As illustrated in the figure, the larger 
marginal differences in performances are achieved 
between the initial scenario (iteration 0) and iteration 
1 solution, achieving an absolute difference of 
14,8% ± 0,3% and 9,3% ± 0,2% in the simulated 
percentage of calls responded to within the target 
response time for priority 1 and 2 respectively. The 
results obtained from the subsequent iterations 
showed no significant marginal differences that do 
not exceed 0,9% ± 0,3% in the percentage of calls 
reached within the target response time for both 
priorities.  

Now we examine the iterative method solution 
quality by comparing the converging points’ 
performances of all the eight alternatives with each 
other and with the initial scenario model (See Table 
2). The converging redeployment solution 
performances obtained from the optimization model 
indicated that the expected coverage of priority 1 
rescues could be improved by increasing the value 
of the weight α1. This improvement is more 
significant for low values of target times and 
achieved up to 13%, while the corresponding 
priority 2 expected coverage showed either a slight 
or no decrease. This was however not supported by 
the simulation framework. Indeed, simulation results 
showed that fair coverage weights for both priority 1 
and 2 rescues, associated with small target times 
seem to significantly positively impact the response 
time performance. Thus, implementing the 
redeployment policy resulting from alternative 1 
improved the percentage of calls responded to within 
15 and 20 minutes by 15,0% ± 0,3% and 9,1% ± 
0,1% for priority 1 and 2 respectively when 
compared to the current SAMU-94 performances, 
which represents an average relative improvement of 
29,7% and 13,7%. 

Differences between the simulation 
performances and the optimization model coverage 
seem to derive from the fact that the latter ignores 
several aspects. First, a part of primary demand may 
be served by the rescue physician who is necessarily 
located in HM base since he also operates as a 
SAMU regulator in the R&R centre. Thus, the 
location of this resource cannot be considered as a 
decision variable in the linear program, but yet 
affects the response time performance in the 
simulation  model.   Second,   unlike  the  simulation 
model, the temporal dimension of the arrival rate as 
well as the service  time  distribution  are  ignored in 
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Figure 2: Iterative method performance measures for the (S1,S2)=(5min,10min) alternatives. 

model, the temporal dimension of the arrival rate as 
well as the service time distribution are ignored in 
the optimization model as it uses the total number of 
calls received in each time period and an estimation 
of the average busy fractions. At this point, the 
performances obtained from the simulation model 
can be said to be more relevant and reliable. 

 Further comparisons between the best solution 
(alternative 1) and the initial scenario were made by 
using the distribution of response time in order to 
test the robustness of the redeployment solution by 
insuring that the responses that occur within larger 
target times’ performances are not decreased 
compared to the actual performances. The results 
depicted in Figure 3 show that up to a target time of 
50 minutes, the redeployment plan based on the 
alternative 1 solution always provided better 

response time performances than those obtained 
from the initial model for both priorities 1 and 2. 
The larger differences are obtained for a target time 
of 15 minutes (15% ± 0,3% for priority 1 and 13,9% 
± 0,1% for priority 2).  

6 CONCLUSIONS 

This research used a multi-period probabilistic 
mathematical model for the location of rescue teams 
and a discrete event simulation model embed in an 
iterative method to help the SAMU-94 managers in 
improving the system response time performances. 
The optimization model aims to maximize the 
demand covered within a target time under limited 
resources, while the simulation model is used both to 
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Response time distribution of primary calls of priority 1 – 
SMUR as 1st effector 

Response time distribution of primary calls of priority 2 – 
SMUR as 1st effector 

  

Figure 3: Comparison between the initial scenario and the alternative 1 response time distribution. 

Table 2: Comparison of performance measures between 
the initial scenario and the converging points for the 
different alternatives. 

Alternative 

Number 
of 

iterations 
to 

convergenc
e 

Priority 1 Priority 2 

Optimal 
expected 
coverage 
within S1 

Simulat
ed 

response 
time 

within 
15 min 

Optimal 
expecte

d 
coverag
e within 

S2 

Simulat
ed 

response 
time 

within 
20 min 

Alt. 1 7 47,4% 
65,3% ±  

0,9% 
88,0% 

75,8% ±  
0,3% 

Alt. 2 6 54,0% 
64,7% ±  

0,7% 
86,3% 

75,0% ±  
0,3% 

Alt. 3 5 60,4% 
63,1% ±  

0,7% 
- 

72,2% ±  
0,3% 

Alt. 4 6 96,7% 
63,4% ±  

0,8% 
89,0% 

75,7%±  
0,3% 

Alt. 5 6 97,6% 
63,7%±  

0,6% 
89,1% 

75,8%±  
0,4% 

Alt. 6 4 98,2% 
63,5% ±  

0,8% 
98,3% 

74,8% ±  
0,3% 

Alt. 7 7 98,5% 
62,3% ±  

0,9% 
98,5% 

74,7% ±  
0,4% 

Alt. 8 4 99,0% 
63,2% ±  

0,8% 
- 

73,8% ±  
0,3% 

Initial 
scenario 

- - 
50,3% ± 

0,9% 
- 

66,6% ± 
0,3% 

estimate the busy fractions needed as input data in 
the analytical model and to obtain reliable estimates 
of the system performances given the location 
solutions obtained from the optimization model. The 
experimental results suggested that the iterative 
method could increase the percentage of the demand 
covered within 15 minutes up to 29,7% and 43,3% 
compared to the current SAMU-94 system for 
priority 1 and 2 respectively. 

One shortcoming of the proposed redeployment 
solution is that it is obtained from the historical 
demand data of the SAMU-94. One possible 
extension of this work can therefore be based on 
forecasting the number of expected emergency calls 
so as to derive sufficiently robust relocation strategy 
of SMUR teams that covers future demand at the 
desired service level. Another area of improvement 
for this study is to combine the iterative method 
solutions with other scenarios such as increasing the 
number of the SAMU-94 resources or implementing 
efficient dispatching policies so as to achieve more 
considerable improvements in response time 
performances. 
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