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Abstract.  Software testing is particularly expensive in the case of legacy sys-
tems such as mainframes. Critical to many large enterprises, these systems are 
perpetually in maintenance where even small changes usually lead to an end-to-
end regression test. This is called the “retest-all” approach and is done to ensure 
confidence in the functioning of the system, but this approach is impractical 
primarily due to resource needs and user stories generated within the agile sys-
tem that require rapid changes to the system. This research is aimed at reducing 
the required regression testing and its costs associated with the system. The im-
provements are achieved by identifying only those tests needed by assets 
changed and others that are ‘impacted’. The impact analysis leverages the 
availability of modern static code analysis tools and dedicated test environ-
ments for mainframes. By using our proposed impact technique on a real-world 
mainframe application, the test savings can be about 34%. 

1 Introduction 

The legacy systems such as mainframes are still being used by many enterprises, but 
constantly changing to meet the evolving modern enterprise models. Typically any 
system goes through a certain evolution activities which can be divided into three 
categories [3] maintenance, modernization, and replacement. As for the mainframe 
systems that have been modernizing to keep up, reducing the testing costs would 
immediately benefit.  

Software testing is the most critical and expensive phase of any software devel-
opment life cycle. According to Rothermel et al. [5], a product of about 20,000 lines 
of code requires seven weeks to run all its test cases and costs several hundred thou-
sands of dollars to execute them. Software maintenance activities, on an average, 
account for as much as two-thirds of the overall software life cycle costs [1]. Among 
activities performed as part of maintenance, regression testing takes large amounts of 
time as well as effort, and often accounts for almost half of the software maintenance 
costs [2]. Regression testing by definition (also referred to as program revalidation) is 
carried out to ensure that no new errors (called regression errors) have been intro-
duced into previously validated code (i.e., the unmodified parts of the program) [2]. 
With mainframe systems containing several thousands of programs, usually an end to 
end regression test is carried out using test cases from system tests. This black box 
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testing technique is the only practical way of assuring compliance; and owing to the 
lack of knowledge of dependence among components, it is not possible for the system 
testers to test only the affected components of the system resulting from a change. 

There have been many studies to reduce the cost associated with regression test-
ing. Three techniques, test case reduction, test case prioritization and regression test 
selection are most prevalent. Test case reduction techniques are aimed to compute a 
small representative set of test cases by removing the redundant and obsolete test 
cases from test suites [6], [7], [8], [9], [10], [11]. These techniques are useful when 
there are constraints on the resources available for running an end to end regression. 
Test case prioritization techniques aim at ranking the test cases execution order so as 
to defect faults early in the system [5]. It provides a way to find more bugs under a 
given time constraint, and because faults are detected earlier, developers have more 
time to fix these bugs and adjust the project schedule. Khan et al. in [12] have given 
comparison of both the techniques and the effect on software testing. Test case priori-
tization techniques only prioritize the test cases but do not give a subset of cases 
which would reveal all the faults in the changed system. Test case reduction tech-
niques do give a reduced number of test cases but the coverage of the reduced test 
cases spans across the entire system including the parts which were not changed. Also 
these techniques have been proven to reduce the fault detection capacity of the suites 
[2]. Regression test selection (RTS) techniques select a subset of valid test cases from 
an initial test suite (T) to test that the affected but unmodified parts of a program 
continue to work correctly. Use of an effective RTS technique can help reduce the 
testing costs in environments in which a program undergoes frequent modifications. 
Our technique, Impact-Driven Regression Test Selection (ID-RTS) builds on this idea 
and aims at reducing test costs for mainframe systems and is proposed as a replace-
ment for the retest-all regression tests. It is expected to be safe (i.e. the tests selected 
should reveal all the modifications done to the system), save costs and increase sys-
tem availability.  

The rest of the paper discusses RTS techniques and ID-RTS. Section 2 discusses 
the different regression test selection techniques.  Section 3 of this paper analyzes the 
structures of the assets and the dependencies among them. Section 4 describes test 
case selection through impact analysis. Section 5 analyzes the efficiency of the RTS 
technique using standardized metrics. Section 6 describes an experiment carried out 
to gauge the savings from using this technique. Section 7 analyzes the results from 
the experiment and extrapolates savings for a year for an actual enterprise using real 
data for changes in that period. 

2 Regression Test Selection Techniques 

Rothermel and Harrold [13] have formally defined the regression test selection prob-
lem as follows: Let P be an application program and P´ be a modified version of P. 
Let T be the test suite developed initially for testing P. An RTS technique aims to 
select a subset of test cases T´ ⊆ T to be executed on P´, such that every error detect-
ed when P´ is executed with T is also detected when P´ is executed with T´.  

There have been  many techniques presented for regression  test  selection.  Code 
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based techniques (also called program based techniques) look at the code of programs 
and select relevant regression test cases using control flow, data or control depend-
ence analysis, or by textual analysis of the original and the modified programs.  

Dataflow analysis-based RTS techniques [17], [18] are not safe due to their ina-
bility to detect the effect of program modifications that do not cause changes to the 
dataflow information. Also, they do not consider control dependencies among pro-
gram elements for selecting test cases. Hence, these techniques are unsafe [16], [4]. 

Control flow techniques [21], [22] have been proven safe and the graph walk ap-
proach suggested in [22] is the most precise work for procedural languages [16] and 
most widely used control flow technique [27]. However they do not include non-code 
based components of the system such as DB and files. 

Dependence based RTS techniques [19], [20] were proved to be unsafe as they 
omit tests that reveal deletions of components or code [4].  

Differencing technique [19] is safe, but it requires conversion of programs into a 
canonical form and is highly language dependent. Also the complexity of this ap-
proach is too high to be feasible for a mainframe system with several thousand pro-
grams [16]. 

Slicing based techniques [23] are precise, but have been shown to omit modifica-
tion-revealing tests, hence are not safe [16]. 

The most relevant research to ID-RTS is the firewall based approach in [24]. A 
firewall is defined as a set of all modified modules in a program along with those 
modules which interact with the modified modules. Within the firewall, unit tests are 
selected for the modified modules and integration tests for the interacting modules. 
This technique is safe as long as the test suite is reliable [4]. 

Research has also been done on specification based regression test selection tech-
niques which look at the specification of a program by modeling the behavior [14] 
and/or requirements of a system [15]. These techniques do not employ the dependen-
cy extracted from static code analysis of programs and hence are not precise or safe 
[16].  

Impact-Driven Regression Test Selection (ID-RTS) is a control flow and data de-
pendence based, intra-procedural regression test selection technique designed for 
mainframes. It filters out test cases based on the following steps 

1. Comprehensively representing the inter-asset dependencies in a dependence 
graph by static code analysis.  

2. Analyzing the types of changes to the system. This involves accounting for in-
sertion, modification or deletion of an asset.  

3. Filtering out the affected interfaces and associated test cases for a system 
through impact analysis for a particular change. 

3 Mainframe Asset Structures and Dependencies 

In order to make a safe dependence based RTS, all dependencies within the main-
frame system must be represented. The main language that runs on mainframes is 
COBOL (COmmon Business-Oriented Language). It originally consisted of source 
programs, copybooks, JCLs, PROC files and record oriented files. Mainframe sys-
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tems have evolved overtime to support many modern features such as relational data-
bases, multiple file systems and layouts, transaction and information management 
systems etc. The source for all components would form assets of the system, which 
consist of files, source programs, database tables and batch jobs. This section would 
highlight the dependencies that would exist among the various assets.  

N. Wilde in [26] has listed out all the possible dependencies that can exist among 
and within programs. The concepts mentioned can be extended to represent the de-
pendencies amongst the assets in mainframes.  

The following topics would describe the data and control dependencies that exist 
among the assets to form the dependence graph. This graph would then be used to 
analyze the impact of a change on any assets. In general, assets would be represented 
by the nodes in the graph and the dependencies by the edges between them.  

Copybooks contain data structure variables that would be used in the source pro-
grams. COPY statements are used inside the programs to include and use these data 
structures inside COBOL programs. The compiler expands the copybooks inline 
inside the programs, in order to resolve the references. To establish source – copy-
book dependencies among the copybooks and programs the definition-usage model 
proposed by the dataflow methods [17], [18] is used. To minimize the impact of 
change in copybooks on programs that would not use all the variables inside the cop-
ybook, the dependencies are established at the data structure level, i.e. instead of the 
entire copybook, the data structures inside it would form nodes in the graph. An edge 
is drawn from the source program to a node if that data structure is used by the pro-
gram (E.g. PGM1 – VAR2 dependency in Figure 1). 

 
Fig. 1. The Dependencies amongst Various Assets in a Mainframe System. The Batch Jobs and 
Online Screens Form the Interfaces to the System. the System Tests Test These Assets. 
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Source – source dependencies exist when COBOL programs can call other pro-
grams through the CALL statement. The programs can be called by directly using the 
program name as a literal or using an identifier contained in a constant or variable. If 
a program A calls another program B it creates a dependency on B which is repre-
sented by an edge in the graph (E.g. PGM3 – PGM4 dependency in Figure 1).  

If a program is called using its name stored in a variable whose value is dynamical-
ly populated during the execution of the calling program, the dependencies amongst 
the programs cannot be determined through static analysis. For the scope of this re-
search, coding best practices should be established to avoid dynamic calls. We have 
verified that the system under test does not have any such dynamic calls. 

However, a program might not use all the attributes from the table. The dependen-
cy has to be classified into two types. One dependency when the program accesses all 
attributes from the table using a ‘*’ in the SQL statement, in which case the program 
is dependent on the entire table (E.g. TABLE2-PGM4 dependency in Figure 1). Any 
change in the structure of the table would affect these programs. Other dependency 
arises when the program accesses limited attributes from the table. Such dependency 
relations have to be maintained at the attribute level (E.g. the dependency between 
ATTR1 and PGM2 in Figure 1). DDL queries do not create any dependencies as they 
are not executed along with the transactions in the system. Hence, execution of DDLs 
is treated as changes to the database and impact analysis is carried out on the affected 
tables and attributes as discussed later in Section 4. 

Stored procedures can be treated as programs that have SQL statements to manip-
ulate the DB, hence creating a source to DB dependency. Source to source dependen-
cies would exist between the calling program and the stored procedures.  

JCLs are used to run COBOL programs in batch mode, creating a JCL – source 
dependency. JCLs are dependent on a program if in any step they are executing that 
program (E.g. BATCH1 – PGM2 dependency in Figure 1). If a PROC is executed in 
any step the JCL is then dependent on the PROC, and in turn the PROCs are depend-
ent on the programs they execute.   

Screens are like programs, but can be executed online in a transaction. They can 
call other programs creating a screen – source dependency (E.g. SCREEN1 - PGM1 
dependency in Figure 1). 

Copybook - copybook dependencies exits when COPY statements are used within 
copybooks. If a copybook A is copied by another copybook B, all variables in B 
using variables in A are dependent on the used variables. To preserve the variable 
level granularity in copybooks, the dependency is mapped between the variable’s 
definition and declaration.   

There are several other types of assets that can exist in the mainframe system, for 
e.g. report writer programs, assembler programs etc. These assets can be categorized 
into types that were discussed and dependency rules of that type can be applied to 
them. In general, i) if an asset A uses code from or transfers control to an asset B, 
then A is said to be dependent on B, ii) If an asset A writes data into an asset B, then 
B is dependent on A. On the other hand, if an asset A reads data from an asset B, then 
A is said to be dependent on B.  

To any mainframe system, batch jobs and online transactions on screens act as in-
terfaces. These batch jobs and screens give a certain output based on the input pro-
vided. The output can be written to the screen of the transaction or to a file or data-

59



base changing the state of the system. System test cases are run against all these inter-
faces to poll for the outputs corresponding to the inputs to be tested (see Figure 1). 

4 Filtering Interfaces and Tests  

With the static code analysis of all the assets in the system a system dependence 
graph G is created. Changes to the system are then analyzed to filter any impacts on 
the interfaces. This is done by graph traversal starting from the seed/s of change/s to 
the interfaces on the inverse (G-1) of the graph G. The interfaces touched by the graph 
traversal will form the set of affected interfaces. The system tests associated with the 
interfaces are filtered as part of test selection (see Figure 2). These tests are run on the 
updated system to check for compliance in a test environment. Prior to the filtering, 
the test cases must be updated to reflect the change. Once all the tests pass, the graph 
G is updated according to the changes made to the assets.  

CPY1

PGM 1
FILE 1

TABLE1

TABLE2

SCREEN 1

BATCH 1

CPY2 CPY3

PGM 2

PGM 3 PGM 4
BATCH 2
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2
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3
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4

VAR
5
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6

VAR
7

ATTR
1

ATTR
2

ATTR
1

ATTR
2

System tests 
written against 

these interfaces is 
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Fig. 2. A depiction of impact of change. The VAR3 data structure variables changed, whose 
impact is carried over the interfaces through graph traversal on the inverse graph G in Figure 1. 

Addition of code to existing programs can be dealt as modification of that asset, and 
the graph traversals can be started from the changed asset as a seed. However, new 
assets created (or new attributes for tables or new variables for copybooks), does not 
affect the system unless they are used. E.g. If a new program A is added, it will not 
affect the system unless it is called by some other programs, JCLs or PROCs. The 
assets where the new additions are used form the seeds of change for graph traversal 
and the affected interfaces are then filtered.  

Like the firewall technique in [24], ID-RTS filters out test cases based on the mod-
ules that interact with the change. However, instead of filtering out integration tests 
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on the first level modules that interact with the change, ID-RTS filters the system test 
cases at the entry points to the system that directly or transitively interact with the 
change. With mainframes, at least with the system in test, the unit or integration test 
cases are not properly defined as these test techniques were not widespread at the 
beginning of mainframe development. Moreover, programs cannot be tested 
standalone without a batch job submitting them. Today, mainframes are being tested 
against the designed system tests which mandate the behavior of the system. If tests 
and techniques enable fine grained tests (like unit or integration), ID-RTS can be 
extended to analyze impact on the assets that have tests available for and select test 
cases accordingly. 

5 Analysis 

Harrold et al. in [5] have given analysis metrics to gauge the effectiveness of any RTS 
techniques. They have defined a test t to be modification-revealing if the output of the 
case differs in the original (P) and the modified system (P´). The metrics identified 
were Inclusiveness, Precision, Efficiency and Generality.  

Inclusiveness measures the extent to which an RTS technique selects modifica-
tion-revealing tests from the initial regression test suite T. A safe RTS technique 
selects all those test cases from the initial test suite that are modification-revealing. 
Therefore, an RTS technique is said to be safe, iff it is 100% inclusive. Harrold et al. 
in [5] have also defined a test to be modification-traversing. A test t is modification-
traversing if it executes all the modified and deleted code, irrespective of the output 
given. A set of modification-traversing tests is the superset of modification-revealing 
tests. The ID-RTS approach filters out test cases that traverse more than the modified 
assets, giving 100% inclusiveness and safety. Like the firewall technique [24], ID-
RTS needs the system tests to be reliable for it to be safe. And, for mainframes, they 
are reliable as the same tests are used to guarantee compliance with the existing re-
test-all approach.  

Precision measures the extent to which an RTS algorithm ignores test cases that 
are non-modification-revealing.  Due to the coarse inter-procedural level filtering that 
ID-RTS employs, it is not precise. Rothermel in [25] has shown that the savings ac-
quired from fine grained intra-procedural techniques may not justify the costs associ-
ated. For a typical mainframe system the large number of programs would have even 
higher costs for using intra-procedural techniques. Also, precision varies with the 
modularity of the system. If the system is designed such that there are more number 
of small programs, copybooks and transactions, inter-procedural techniques can be 
more precise.  

Efficiency measures the time and space requirements of the RTS algorithm. Let P 
denote programs and PROCs, V denote sum of all data variables in all copybooks (a 
record structure counts as a single variable), A denote all database table attributes, F 
denote files, J denote JCLs and screens, the complexity can be given as O(P2 + VP + 
AP + JP + FP). The space complexity is also of the same order.  

Generality is the ability of the technique to work in various situations. ID-RTS 
was designed to work only in the mainframe environment and cannot be generically 
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applied to other systems as is. However, it provides a basis for designing a framework 
for other business oriented languages.  

6 Experiment Setup 

To calculate the savings from using ID-RTS, we conducted a small experiment to 
analyze a real world mainframe application for dependencies and impacts of changes.  
IBM’s Rational Asset Analyzer (RAA), a static analysis tool available for main-
frames, was used. RAA statically analyzes all the assets imported into the RAA server 
and establishes dependencies among them as described earlier. From the dependen-
cies established, it also analyzes impact of a change in source programs, data ele-
ments in copybooks, other files and DB2 DB. As a contribution, this is one of the few 
studies to have been actually designed and tested in an enterprise environment [27].  

As only the interfaces are tested in systems tests for an application, for the experi-
ment, the impacted interfaces were filtered for each change, instead of filtering the 
actual test cases. This also assumes that tests are evenly distributed across the inter-
faces. Also, as CICS screens and transactions were not imported into RAA for the 
application under test, only batch jobs were considered. But this does not affect the 
generality of the research, for RAA analyzes impact of a change on all assets of the 
system including screens and transactions.  

The nature of the applications under test is similar to the depiction in Figure 1. 
App A has around 6,707 assets in all containing 2,287 source programs, 1,554 JCL 
batch jobs and 1,823 copybooks. The rest form the control and data files. This ex-
cludes the CICS transactions and screens that the application might use. As this appli-
cation does not use any database, we tested another application, App B, for impact of 
database changes. App B has 48,210 assets in all with 109 DB2 database tables and 
5,393 JCL batch jobs.  

To calculate the savings from implementing ID-RTS we have taken a two step ap-
proach,  

1) We identify the impact of last 2 changes in each asset type in set A (namely JCLs, 
programs, copybooks, files and DB tables) on the interfaces of the system.  From 
the data collected, the mean impact by asset type (MIT) is calculated as % of the 
1,554 (5,393 for App B) interfaces affected. As the impact of an asset change de-
pends on the number of other assets dependent (directly or transitively) on it, we 
expect the number of impacted interfaces per asset type to be in the decreasing or-
der for copybooks, programs, files, DB and JCLs for this particular system.  

2) To calculate the actual savings, we first calculate the frequency of occurrence of 
changes by asset type (FT) as % in an agile iteration and then extrapolate impacts 
using the weighted mean of MIT with respect to FT for each asset type in A. 
Weighted mean impacted interfaces (WMI) is calculated as 





A

FTMITWMI  

This would give us the % interfaces we need to test for each change in an itera-
tion. Savings in % would be 100 – WMI. 

62



7 Results 

We ran the impact analysis of last 2 production changes of each asset type, in order to 
gauge the efficiency of ID-RTS in real world scenarios. We then filtered out the af-
fected batch jobs from the impact analysis report and calculated the Mean Impact by 
type as shown in Table 1. As we found that the other RTS techniques as described in 
section 2 were infeasible or not safe for mainframes, we compare ID-RTS with the 
existing retest-all technique. 

The order of the impacts amongst the asset types was found to be as expected, with 
the exception of copybooks and source programs. Contrary to our expectations, the 
impact of the copybook changes was found to be less than that of source programs, 
however with a close difference. This could be attributed to the nature of assets that 
were changed; the source programs changed were called by more assets than the 
programs that used the changed copybooks. This outcome is highly peculiar and 
moreover, we expected the difference in impacts of changes in copybooks and source 
programs to be minimal, which was exemplified. 

Table 1. Mean Impact by Type for last 2 changes. 

Asset Type Mean Impact by Type (%)
JCL 0.06 
Database 0.93 
Files  43.59 
Copybooks 65.54 
Source Programs 65.95 

 

Between files and databases, the outcome of the order was in compliance with the 
expectations. The order could vary from application to application. For applications 
under test, the DB2 database tables were introduced in App B much later than the 
usage of files in App A, accounting to files being used significantly more than the 
databases. The impact of change is proportional.  

The time required for impact analysis varied by asset type, with copybooks and 
source programs taking the longest, approximately 2 hours on an average, files took 1 
hour and 10 minutes and database tables took 10 minutes. JCL impact analysis is not 
supported in RAA as there are no dependencies on them. For the purpose of the ex-
periment we assumed the impact of a JCL batch job change on interfaces as 1 to ac-
count for the same JCL changed. RAA’s impact analysis gives a thorough report of 
all impacted assets, not just the interfaces. This adds to the total time required for 
impact analysis. Tools that would solely report the impacted interfaces would have 
significant time savings.  

To calculate actual savings from ID-RTS, we first recorded changes for the period 
of March 2012 to February 2013 by asset type. The findings are tabulated in table 2. 
We then extrapolated impacts on App A by taking weighted mean of MIT with re-
spect to the frequency of change. The results are shown in ID-RTS column of table 2. 
As in all iterations programs were changed the most, the impacted interfaces were 
around 65% of the total 1,554 interfaces. As per ID-RTS, these are the interfaces to 
be tested for each change while the retest-all technique tests all of them. For the entire 
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period the average impacted interfaces per change were 1,023.3 (65.85% of the 1,554 
interfaces). Thus, the ID-RTS technique can save approximately 34% of testing ef-
forts. 

This result can vary by the nature of dependencies within the application and the 
types of changes that are done. If for App A, there are more changes to DB, files and 
JCLs than copybooks and programs the savings would be proportionally more. Also, 
the impact might change in assets of the same type, depending on the nature of de-
pendencies. E.g. Program A has more dependencies than program B, the impact of 
change of A would be proportionally more. This experiment was conducted to find 
out if the impact of actual production changes span to a subset of the system and 
estimate savings for ID-RTS. Hence we also limited the test to last 2 changes to each 
asset type. Also, a learning phase can be planned, where the impacts of production 
changes are monitored to gauge the inter-dependency among the assets of the system. 
If all the changes impact significant percentage of interfaces, the retest-all technique 
can be employed for that system, saving the time required for impact analysis.  

Table 2. The changes done to the App A by type for the period of March 12 - February 2013. 
Column ID-RTS gives the extrapolated impacted interfaces using data from Table 1 and Re-
test-all gives the total interfaces in App A to be tested with that technique. 

 Period 
Source 

Pro-
grams 

Files 
Copy

- 
books 

JCLs/ 
Screens 

DB 
To-
tal 

ID-
RTS 

Re-
test 
-all 

Mar-12 877 5 32 0 0 914 1022.7 1554 

Apr-12 297 0 20 0 0 317 1024.5 1554 
May-
12 178 0 0 0 0 178 1024.9 1554 

Jun-12 324 1 12 0 0 337 1023.6 1554 

Jul-12 390 2 6 0 0 398 1023 1554 

Aug-12 152 0 0 0 0 152 1024.9 1554 

Sep-12 117 0 0 0 0 117 1024.9 1554 

Oct-12 656 4 23 0 0 683 1022.6 1554 

Nov-12 445 0 21 0 0 466 1024.6 1554 

Dec-12 127 0 3 0 0 130 1024.7 1554 

Feb-13 141 3 13 0 0 157 1017.7 1554 

Total 3704 15 130 0 0 3849 1023.3 1554 

8 Conclusion and Future Work 

The retest-all system test technique which tests all components of the system for re-
gression test can be replaced by our proposed Impact-Driven RTS. Modern analysis 
tools such as IBM’s RAA can be used to draw dependencies among assets of the 
system and analyze impact of a change. The impact of a change spans to a subset of 
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the system, providing significant savings in the test cycle times which reduces associ-
ated costs and increases system availability. 

As future work, the various studies on the object oriented RTS techniques can be 
integrated to design the framework for object oriented COBOL. Also, the current 
framework can be extended to include other business oriented systems such as SAP-
ABAP. Similar to mainframes these systems use batch jobs, online transactions, DBs 
and files within a single system boundary.   
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