
Towards Devising an Architectural Framework for Enterprise
Operating Systems

Sérgio Guerreiro1, Steven van Kervel2 and Eduard Babkin3
1Universidade Lusófona de Humanidades e Tecnologias, Escola de Comunicação, Artes, Arquitetura e Tecnologias da

Informação, Campo Grande, 376, 1749-024, Lisbon, Portugal
2Formetis BV, Hemelrijk 12 C, 5281PS Boxtel, Netherlands

3National Research University Higher School of Economics, B. Pechorskaya 25/12, Nizhny Novgorod, 603155, Russia

Keywords: Control, DEMO, Enterprise Engineering, Framework, Generation, Operating System.

Abstract: One often observes that despite the efforts involved on information systems development, many times the
achieved solutions do not comply well with the needs of the organization and lack in change agility to face
new emerging requirements. This paper conceptualizes about an architectural framework specifically
designed for explaining and representing the working environment of enterprise operating systems (EOS)
and non-EOS information systems (IS) that depend on it. With these concerns in mind, the goal of EOS is to
capture and control all phenomena that occur in an organization and then to provide all the required data for
all IS for that organization. Using a computer engineering metaphor, this paper defines the theoretical
foundations, and the methodology to design and implement an operating system for organizations. To
achieve this, EOS is a model-driven dynamically. The models are based on domain ontology with C4-ness
qualities and expressed in ontological language. It will be shown that the theory of enterprise ontology and
the DEMO methodology provide a high degree of ontological appropriateness for this domain. This paper,
outline a framework with its foundations, concepts, principles and stratification of IS, which is a radical new
approach, useful to discussion this solution among the practitioners. A methodology to apply this
architectural framework is discussed using a professional production case management.

1 INTRODUCTION

Much similar to explosion of design space after
introduction of reinforced concrete into the practice
of civil engineering, deep penetration of Information
and Communication Technologies (ICT) into our
everyday activities leads to enormous inflation of
design possibilities of software architects and
engineers during design and implementation of
complex software and hardware artifacts which are
usually called information systems. This unwanted
and inflated design space leads to unmanageable
complexity in design and results in bad engineering.
Now there is a great demand to produce mental
techniques and tools, which will make design and
development of information systems intellectually
manageable.

Various proposals were offered to aim such goal,
which are called architectural frameworks. The main
purpose of architectural frameworks is to offer such
architectural principles, which curb this unwanted

design freedom as much as possible, but in such a
way, that good engineering is supported as much as
possible.

To the moment, there are plenty of architectural
frameworks in use. Some of them like TOGAF,
MODAF (Open Group, 2011) (Ministry Defense,
2010) encompass not only ICT aspects, and they are
actively applied for engineering of enterprises as a
whole. Despite a high level of conceptualization
achieved in these frameworks researchers (Dietz,
2006) argued serious critical statements (Teka et al.,
2012). For example, all of the mentioned
frameworks lack consistent definition of the key
concept of architecture, mixing in the same concept
high-level design principles and reusable design
constraints.

In our research, we reduce ambiguity in
definitions of architecture following a strict
definition of architecture (Hoogervorst, 2004),
which defines it as “a consistent set of design
principles and standards that guide design”.

578 Guerreiro S., van Kervel S. and Babkin E..
Towards Devising an Architectural Framework for Enterprise Operating Systems.
DOI: 10.5220/0004597805780585
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-PT-2013), pages 578-585
ISBN: 978-989-8565-68-6
Copyright c
 2013 SCITEPRESS (Science and Technology Publications, Lda.)

However, even in that case, we claim, that there are
other principal drawbacks in current theory and
practice of architecture for information systems.
Known approaches: (1) do not take into account
human-centric foundations of enterprises for which
the information systems are produced; (2) at the
same time they insufficiently use generic and
reusable formal methods and practices of
engineering sciences (for example, clear distinction
between function-construction perspectives, support
for design- and life-cycles); (3) they do not take into
account immanent stratification of abstraction levels
of information systems, if we consider them in the
global scope of the enterprise. The later drawback
has great influence if we take maturity and strategy
of particular enterprise during engineering of
information systems seriously.

In this work, we propose several foundational
concepts, which can be used for creating a radically
new kind of architectural framework, which focuses
on engineering of information systems, but
simultaneously takes into account critical issues of
Enterprise Engineering (EE) (Dietz and
Hoogervorst, 2012).

Our conceptualization is based upon
stratification of the various kinds of information
systems. Traditional Information Technologies
Systems (IT-S) occupy the bottom level of our
classification. Above the notion of IT-S we put a
stratification layer for the significant notion of
Information Systems (IS) which refers to systems
that capture some part or some aspect of the
enterprise in a truthful and appropriate way. The
third layer of stratification consists of Enterprise
Information Systems (EIS), which specify systems
capturing the enterprise as a group of individuals
that cooperate to achieve some common goal, a
product or service for a customer. It appears that
Enterprise Information System gives a practical
opportunity to integrate common IT concepts and
intrinsic characteristics of human being (like
responsibility, authority, sincerity and
competencies). The fourth level is the new concept
of Enterprise Operating system (EOS), an EIS,
which controls the business transactions operation in
an organization. Using a computer engineering
metaphor, this paper defines the theoretical
foundations, and the methodology to design and
implement an operating system for organizations.
Hence, the EOS controls the human enterprise in a
prescriptive way (similar to workflow) and provides
all atomic data to the information system that run on
top of this EOS.

From a theoretical perspective, to specify some

phenomenon in the world of phenomena using an
ontology we need a conceptual language. Therefore,
the proposed architectural framework is intended to
design and implement EOS, considering the
following aspects, which constrain the design space
of EOS:
1.Epistemological foundations.

2.Ontological foundations.

3.Enterprise Modelling.

4.Software Development.

In order to prove relevance and consistency among
all four aspects we propose to apply the concept of
C4-ness (Dietz, 2006). In our case it means that, the
proposed framework uses minimal, but complete,
number of concepts, which cover principal aspects
of EOS development.

In this framework, as any other engineering
domain, we use models. We define a model here as a
formal specification of some system that is being
used to study some other system. For EE we study
social systems (Dietz and Hoogervorst, 2012). This
applies for the defined information systems, IS's,
EIS's and EOS's that capture some domain of the
world of phenomena. Within that domain, there is a
specific phenomenon or aspect, which must be
represented by a specific formal model. The term
'formal' refers to the representation of a model in a
formal language and rules out any informal
illustrations, such as boxes and arrows or ambiguous
natural language.

In addition to the functional definition of a
model, - a model represents a system to study some
other independent system -, there are two commonly
used meanings of the term `model` in general
parlance. The first is that a model is a
conceptualization of a phenomenon in some domain
in the real world; a model references objects in the
real world. The second meaning is the use of the
term `model` also for a formal representation, a
specification S, expressed using symbols and their
relations in a formal language. If the modeling
language is being used for software generation then
the terms 'software primitive' and 'software
construct' are also being used often. Though the use
of the term 'model' for a conceptualization and for a
symbolic specification S may be potentially
confusing, it is clear from the context what is meant.
To capture some domain in the world of phenomena
in a truthful and appropriate way we need an
ontology (Dietz and Hoogervorst, 2012). To specify
models in a language we need conceptual languages.
The notions of ontology, conceptual languages,
models expressed in conceptual languages and the

Towards�Devising�an�Architectural�Framework�for�Enterprise�Operating�Systems

579

Figure 1: The GSDP-MDE framework (simplified), derived from Guizzardi's framework.

quality of models, related to phenomena in the real
world, are closely related.

The Generic Systems Development Process
(GSDP) (Dietz, 2006) approach for engineering of
systems of any kind is compliant with the
technological theories for designing and
implementing things (Dietz and Hoogervorst, 2012).
The GSDP is a generic model for developing any
kind of artifact, including software systems, and is
followed here. In (Van Kervel,2012) is described
how the GSDP applied to software engineering,
using the Guizzardi framework, provides the
Generic Systems Development Process for Model
Driven Engineering (GSDP-MDE) framework for a
model-instance driven software engine, a simplified
version shown in Fig. 1.

The Guizzardi framework is extended with a
software engine E, with systems ontology. The
ontology C is the Using System (US) ontology of the
GSDP framework, in our case Enterprise Ontology.
The ontology C captures the real world in a truthful
and appropriate way and provides models with C4-
ness qualities. We design a modeling language L
with a meta model (software primitives and software
constructs) that is isomorphic to the ontology C. In
this way any models expressed in L offer the
advantages mentioned before. We may design a
model executing software engine of which the
systems ontology is isomorphic to the meta-model of
L (and the ontology C).

We present the approach to devising the
architectural framework for EOS as follows. In
Section 2, we introduce the detailed conceptual
structure of the proposed framework. In Section 3
describes the professional production case of
application of the proposed architectural principles
to development of complex information systems.
Finally, we discuss the results of research and make
a conclusion in Section 4.

2 DESCRIPTION OF THE
PROPOSED FRAMEWORK

This section describes the framework for the

enterprise operating system using textual
explanations and the conceptual map depicted in
Fig. 2. The definitions are divided into 3 clusters: (i)
scientific solution grounding, (ii) solution enterprise
environment and (iii) core solution. The aim of
presenting these definitions is to ease the
communication and discussion between the EE
researchers and practitioners / engineers. A formal
ontology using DEMO is expected to be further
developed accordingly with the ongoing research
activities of this proposal. At this point, it represents
the knowledge acquired by the research team and
configures the mandatory set of definitions to
explain its scope and goals.

Regarding the scientific solution grounding the
following definitions are, Architectural framework
(Greefhorst and Proper, 2011), Epistemological
foundations, Ontological foundations (Dietz, 2006),
Enterprise Modeling methodology, Software
Development of EIS and Model Driven
Environment (Kent, 2002); (Schmidt, 2006).

In the proposed architectural framework we wish
to explicitly introduce stratification among the
different kinds of information systems of modern
organizations. Such stratification facilitates
systematic assessment of information assets of the
organization, as well as helps in determining such
strategy development, which correlates with a
current level of IT-maturity. The definitions related
with the solution enterprise environment aims at
locating the scope and context where this proposal is
applicable. The proposed definitions of recognized
types of information systems are:

Information Technology System (IT) – is the
whole body of systems to get computers doing
something, not specifying some functional purpose
in the "world of phenomena". It encompasses, for
instance, disc drives, operating systems, languages,
databases. It encompasses systems that fulfill a
functional purpose within this scope.

Information System (IS) - refers to systems, built
on IT systems, which capture in a truthful and
appropriate way some part of the “world of
phenomena”. In most cases, IS's are known in the
form of Management information systems (MIS)

Software
engine
E

MDE
approach

Modeling
Language

L

truthfulness &
appropriateness

qualities

C4-ness quality
model specifications

Ontology
Conceptualization

C

Real World
Phenomena

R

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

580

Figure 2: Framework overview. The definitions to operate EOS are inside the box in the right side. In the left side, are the
concepts related with EOS solution grounding.

(Laudon and Laudon, 2012). In our case
organizations, social systems that operate in a part of
the world of phenomena are of specific interest.
Since organizations, companies, legal entities etc.,
are complex entities with many different appropriate
views (finance, personnel, inventory, etc), typically
many different IS's are needed to capture an
organization well. The term ‘truthful’ refers to the
requirement that the representation provided by the
IS is at any point in time, completely and in detail,
true. The term ‘appropriate’ refers to a functional
quality; the requirement that the IS should support
the enterprise and its stakeholders well and in a
useful way. IS's may capture also dynamic
phenomena, phenomena that exhibit state transitions
within a defined and allowed discrete state space
must be represented in a truthful way. In practice,
such dynamic phenomena represent agile
enterprises; we observe in general that these
phenomena evolve over time in a unpredictable way.
To meet definitions, IS's should evolve also
smoothly over time in such a way that the evolving
phenomenon of agile enterprise is always captured

in a truthful and appropriate way.

IT and IS relationship has significant importance.
Actually, by the literature review it is consensual
that enterprises require alignment between its IT
systems and the business definition (Hoogervorst,
2009) whereas this alignment demands the
consideration of aspects such as human,
organizational, informational and technological
(Mulder, 2007). In line, a well-known industrial
standard: Archimate 2.0 (Open Group, 2013) uses
three core aspects to model and align the enterprise:
(i) the business architecture, (ii) the Information
Systems (IS) architecture and (iii) Information
Technology (IT) architecture. IS are defined by
(Laudon and Laudon, 2012) as a set of interrelated
components that collect (or retrieve), process, store,
and distribute information to support decision-
making and control in an organization. In addition,
IS’s may also help managers and workers analyze
problems, visualize complex subjects, and create
new products. On the other hand, IT systems are
referred in (Laudon and Laudon, 2012) by the set of
hardware, software, database, networking along with

Towards�Devising�an�Architectural�Framework�for�Enterprise�Operating�Systems

581

the tools and techniques for security and control,
existing in the enterprise. Hence, a clear conceptual
separation is understood in the literature regarding
IS and IT. However, IS and IT are related because IS
is built using IT and strictly depends on it.

Enterprise Information System (EIS) - refers to
systems, built on IS's, that capture specifically an
enterprise. An enterprise is defined as a social
system, a group of human individuals – actors - that
cooperate and communicate to achieve some
common goal, a product or service for an external
customer (Dietz and Hoogervorst, 2012). This
definition is narrower than the notion of an
organization, for example a company, with
production facilities, bookkeeping etc. The notions
of enterprise, actors, communication and production
are precisely defined in the EE manifesto (Dietz and
Hoogervorst, 2012). EIS's provide two distinct
perspectives on an enterprise. The first is a
descriptive perspective that provides a complete,
detailed truthful representation of the operating
enterprise. Since enterprises exhibit a discrete
dynamic behavior, actors are communicating, there
are acts and facts, the states and state transitions that
have to be represented also. The second is a
prescriptive perspective. An EIS is based on a model
of the enterprise and prescribes the behavior of the
enterprise to act according to the model (Dietz,
2006). The EIS is a software engine that executes a
business transactions model instance; for each
specific production instance there is a specific model
instance under execution. An EIS prescribes,
enforces all actors of the enterprise to act, the so-
called communication acts (Dietz, 2006), within the
allowed state space and state transition space of the
model under execution. There is no possibility for
any actor to deliver communication acts outside the
allowed state space. This is called enforced
compliance of an enterprise to a model. The allowed
state space is defined by and calculated from the
business transaction models under execution. This
prescriptive capability is functionally equivalent to
state of the art workflow systems; there is enforced
compliance of all actors to a model. Unlike state of
the art workflow systems, the workflow capability is
here calculated from the enterprise model under
execution, not specifically modelled. The purpose of
EIS's is to capture working, implemented enterprises
in full detail. To achieve this, the ontological model
of the enterprise is – after validation and acceptance
by the stakeholders – extended with all relevant
info-logical and data-logical transactions. This
modeling process is called fine-grained business
transactions modeling and is an implementation of

an ontological model. There are typically more
possible implementations of an ontological business
transaction model and finding the optimal
implementation for a specific enterprise is an
important process. The support of business
transaction is DEMO (Dietz, 2006), which is a
model under execution that provides a complete,
detailed truthful representation, including the current
state, of the operating enterprise.

Enterprise Operating System (EOS) -
encompasses an EIS, a software engine that executes
a (fine-grained) DEMO model and in addition (to an
EIS) provides support for all non-EIS IS's in an
organization, company, entity etc. In software
engineering an operating system of a computer
system monitors and controls all hardware
subsystems and provides a generic, abstracted and
hardware independent interface to the subsystems
for all software applications. Similarly, an EOS
captures and controls (Guerreiro et al., 2012) all
phenomena in an enterprise and provides all required
data for all IS's for that organization.

The theory of enterprise ontology, EO, the operation
axiom (Dietz, 2006), specifies three worlds of an
organization; the A-world of actors, the C-world of
communication between actors, and the P-world of
productions. An EIS provides – as described before
– control of all communication acts, which is the C-
world, for all actors, which is the A-world. The
theory of EO captures also the P-world of
productions; the composition axiom specifies the
hierarchical structure and the aggregation of
productions that are performed by specific actors.
DEMO models define the productions and those
actors with their communication acts about their
productions. The actual production, the so-called
production facts, is explicitly not executed by an
EIS; only the sequence of the production facts is
controlled. If an IS is required for specific
production facts, for example the calculation of
some specific data, or the measurement of quality,
then an independent IS, specifically designed for
that purpose, is needed. The operation of these
production oriented IS's is however monitored and
controlled by the EOS. An EOS controls and
monitors all atomic elementary communication and
production acts and facts (which is the EIS
capability). An EOS has “total factual knowledge”
about “anything that is controllable, until the finest
details, that happens in the enterprise”. An EOS
therefore provides the perfect bridge between the
organization as phenomenon in the real world and
all IS's that capture some aspect or view of that
organization (finance, inventory control, personnel

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

582

information etc).

Adaptive Case Management Systems (ACMS) –
as one of many different kinds of IS’s for production
systems, ACMS's are a combination of an EOS and
one or more (non-EIS) IS's, supported by the EOS,
that capture together some parts of an operating
organization. The EOS captures, as described
already before, the operation of the enterprise. The
operation of the enterprise involves the actors, their
communication, all precisely specified, enforcing
compliance to the enterprise model being executed.
The IS's for ACMS's are typically document-
oriented production environments, for the creation of
documents, forms, decisions, datasets from legacy
applications, etc. ACM's are typically aimed at the
production of services, where the customer of the
organization is an active co-producer. The services
are tailor-made and adapted to the needs and
requirements of the customer, as opposed to mass
production. The production is subjected to so-called
business rules derived from legal regulations,
contracts etc.

Almost all defined kinds of systems in our
framework represent complex socio-technical
systems where involvement of human factors is
highly influential. Many analysts and system
thinkers argued that for achieving the design goals
of such systems developers need much more higher
levels of epistemological truth guarantors in
comparison with traditional technical systems
(rephrase of the words by Eric Maskin, Nobel Prize
Laureate in Economics Design). Including into the
proposed framework several hierarchically
structured foundations reflects this aspect. In our
particular case, we suggest to narrow a generic
concept of guarantor towards specific definition of
C4-guarantor. Further, in Section 3 we will describe
in details the proposed principles.

Notion and interrelations of these foundations
correspond to the core principles of inquiring
systems design by (Churchman, 1971).
Epistemological foundations are needed to align and
verify IS, EIS and EOS solutions with expectations,
values and norms of enterprise stakeholders. In the
particular case of our framework, we offer to use the
(Habermas, 1984) (Habermas, 1987) theory of
communicative action. Ontological foundations
determine cornerstone concepts of IS, EIS and EOS
which can be treated as meta-models. As ontological
foundations we suggest to exploit the PSI-theory of
Enterprise Ontology by J. Dietz (Dietz, 2006) which
is tightly connected with the chosen epistemological
foundations of (Habermas, 1984) (Habermas, 1987).
In own turn, Enterprise Modeling aspect determines

concrete stages and outcomes which comprise
concise and coherent description of all relevant parts
of IS, EIS and EOS. On that stage, we suggest to use
in our framework such modeling methodology as
DEMO (Dietz, 2006) for which Enterprise Ontology
naturally becomes a truth guarantor.

The major part in the framework is the
architectural aspect of Software Development,
which determines generic requirements and shapes
how executable software artefacts can be produced
on the basis of the enterprise models. To elaborate
that aspect we propose to revise too generic OMG
principles of model-driven design and development
and replace them by the GSDP-MDE methodology
(Van Kervel, 2012) (Van Kervel et al.,
2012)supported by a number of specialized system
components. The components include (1) run-time
executor of DEMO models; (2) run-time rule
executing engine; (3) Control component; (4) Policy
enforcement component; (5) Argumentation and
collective work component. For each component we
propose to use the following architectural principles
and solution core definitions.

Operation – “the collective activity of the elements
in the composition and the environment is called the
operation of the system. Thus, one could also say
that the operation of a system is the manifestation of
its construction in the course of time. It encompasses
both the productions as performed by the elements
in the composition and the interactions through the
structural bonds. The operation of a system can be
described by specifying (for every element in the
composition) the action rules that guide or prescribe
the activity of the element” (Dietz, 2006).

Actor - specify a role who is responsible for each
part of the transaction, who initiates it and who
executes it (Dietz, 2006).

DEMO Business Transaction - follows the
definition given for a transaction in Enterprise
Ontology (Dietz, 2006), where a transaction is the
set of coordination acts that are performed as steps
in a universal pattern, always involving two actor
roles (the initiator and the executor) and are aimed at
achieving a particular result. Here the enterprise
models, by the mean of DEMO business transaction
models may capture much more than the strictly
ontological DEMO models that are fully
implementation independent

State Space and State Transition Space (C-world)
– The state space is the set of allowable states of a
system. The transition space is the set of allowable
sequences of transitions of a system. Every state
transition is only dependent on the actual state

Towards�Devising�an�Architectural�Framework�for�Enterprise�Operating�Systems

583

(Dietz, 2006).

Fine-grained Model – A model stands for the
definition given by (Apostel, 1960), where: “Any
subject using a system A that is neither directly nor
indirectly interacting with a system B, to obtain
information about the system B, is using A as a
model for B”. Fine-grained model stands for the
concern of specifying all the minor details in respect
to the stratification that is being considered at each
time, but using as starting point the ontological
models that have the advantage of being
implementation independent. In practise,
implementation is the extension of the
implementation-independent ontological model with
implementation-specific transactions and actors, also
called fine-grained modeling.

Observe (capture) Business Transactions – the
collection of steps and facts within DEMO business
transactions that actors are performing during
operation are observable. There are parts of a
business transaction that are observable, while others
are unobservable (Guerreiro et al., 2012). Hence, not
all the state space and transition space of the
enterprise is observable directly in the operation of
an enterprise.

3 ADAPTIVE CASE
MANAGEMENT SYSTEM:
PROFESSIONAL CASE STUDY

The first EOS, now in industrial production,
supports an adaptive case management system
(ACMS) for a Dutch semi-public company that
delivers energy and utility services, such as water
and electricity, for citizens. The complex tailor-
made contract for a specific individual customer
covers issues such as type of services provided,
costs, costs calculation methods, conditions for
payments, instructions for subcontractors,
correspondence etc. The contract should comply
with external legal regulations and internal business
policies, conditions, procedures. This compliance
should be enforced to the staff and its compliance
has to be proven for each individual customer and
contract for legal reasons. The quality of the
contracts should be high; errors are unacceptable,
incomplete transactions, deadlocks, deadline
overflow, violation of procedures etc, must be
eliminated. This is a very complex business process
with 33 production steps / transactions. The EOS
(Enterprise Operating System) executes fine-grained
DEMO models, enforces compliance to business

rules, and supports the ACMS. The ACMS is an IS
for the production and management of documents,
technical drawings, interfaces to legacy IT systems,
including an ERP production control system. The
contract contains documents originating from
various sources and several subcontractors.

The project started with DEMO modeling with
the knowledgeable staff, which delivered the so-
called ontological or essential DEMO model of the
enterprise. Extensive shared reasoning with the staff
has been done to validate that this ontological
DEMO model implements properly the service of
the enterprise delivered to the customer. The second
step involved a fine-grained DEMO modeling step,
starting from the ontological DEMO model, to
model the optimal detailed implementation of the
ontological model. The result is a DEMO model
with 33 ontological, 'infological' and 'datalogical'
transactions that has been subjected to extensive
simulations with the staff for acceptance. No
software programming was done yet. The accepted
DEMO model provides C4-ness quality
specifications for the ACMS. Specifically it
provided a constructional decomposition of the
ACMS with a high degree of granularity. The
ACMS consists of some 30 independent software
components with a minimized complexity and a
minimized interdependency. The C4-ness quality
specifications resulted in low efforts of software
implementation and good support of validation. The
acceptance of the ACMS was straightforward and
the functional quality, the business-IT alignment,
was found to be high.

This first case, in line with the proposed
framework, shows the technical feasibility of the
EOS for ACMS, applied for complex governmental
services, financial services etc. The design and
implementation of these type of IS's is highly
structured, systematic and provides good
opportunity to validate the business-IT alignment
before implementation of any software
programming.

4 CONCLUSIONS

In this work, a new conceptual structure of software
architectural framework is proposed. Such
framework allows reducing complexity and
ambiguity during engineering of several classes of
information systems. In particular, the framework is
expected for using during engineering of Enterprise
Operating systems (EOS). Authors argue that the
whole framework satisfies the C4 principles and

ICSOFT�2013�-�8th�International�Joint�Conference�on�Software�Technologies

584

follows the course of Enterprise Engineering. The
EOS controls and monitors all atomic elementary
communication and production acts and facts that
are observable, in order to assess the “world of
phenomena” occurring in the organization against
the predefined fine-grained enterprise models that
are consensual agreed between the stakeholders,

Using proposed architectural principles, we
envision continuing in developing a specific kind of
EOS, which has major characteristics of Adaptive
Case Management systems supported by the
requited architectural framework components. This
particular set of systems will be used to boot the
research of a Generic Systems Development for
Model-driven engineering (GSDP-MDE) of
Information systems. It is expected that the GSDP-
MDE help in eliminating ambiguity, absence of
anomalies, constructs overload and constructs
excess. In addition, we will seek alternative sets of
constraints for proposed aspects of our architectural
framework, for instance, full observation of business
transactions operation.

In our opinion, future results from this research
could be applied to other Information Systems
domains, since EOS conforms to a very consistent,
harmonious and congruent architectural framework.

REFERENCES

Dietz J. L. G., 2006. Enterprise Ontology: Theory and
Methodology / J. L. G. Dietz — B., Heidelberg, N. Y.:
Springer, ISBN-10 3-540-29169-5.

Laudon K. and Laudon J., 2012. Management Information
Systems, 12th edition, Prentice Hall.

D. Greefhorst and E. Proper, 2011. Architecture
Principles, The Enterprise Engineering Series, DOI
10.1007/978-3-642-20279-7_2, Springer-Verlag
Berlin Heidelberg.

Hoogervorst, J., 2004. Enterprise Architecture: Enabling
Integration, Agility and Change. IJCIS 13(3), pp. 213–
233.

The Open Group:, 2011. TOGAF Version 9.1; available at
http://www.opengroup.org/architecture/togaf9--doc/
arch/; The Open Group.

J. Hoogervorst, 2009. Enterprise Governance and
Enterprise Engineering, The Enterprise Engineering
Series, Springer-Verlag Berlin Heidelberg.

Dietz, J. and Hoogervorst, J., 2012. The Principles of
Enterprise Engineering, Springer-Verlag Berlin
Heidelberg, Volume 110, Part 2, series Lecture Notes
in Business Information Processing, Enterprise
Engineering Working Conference 2012 (EEWC 2012),
DOI: 10.1007/978-3-642-29903-2, Delft, Netherlands,
pp. 15-30.

Apostel, L., 1960. Towards the formal study of models in

the non-formal sciences. Synthese 12.
Kent, 2002. S. Model-driven engineering. Proc. 3rd Int.

Conf. on Integrated Formal Methods, pp. 286–298.
Schmidt, D. C., 2006. ‘Model-Driven Engineering’. IEEE

Computer, 39 (2), pp. 25–31
Mulder, J., 2007. Rapid Enterprise Design, ISBN-10:

9081048015
The Open Group, 2013. Archimate version 2.

http://www.opengroup.org/subjectareas/enterprise/arch
imate.

Churchman, C. W., 1971. The Design of Inquiring
systems: Basic concepts of Systems and Organization.
Basic Books, Inc. Publishers.

Habermas, J., 1984. Reason and the Rationalization of
Society, Volume 1 of The Theory of Communicative
Action, English translation by Thomas McCarthy.
Boston: Beacon Press (originally published in German
in 1981).

Habermas, J., 1987. Lifeworld and System: A Critique of
Functionalist Reason, Volume 2 of The Theory of
Communicative Action, English translation by
Thomas McCarthy. Boston: Beacon Press (originally
published in German in 1981).

Kervel, S. J. H. van, Dietz, J. L. G., Hintzen, J., Meeuwen,
T. van, Zijlstra, B., 2012. Enterprise Ontology driven
Software Engineering. Proceedings of ICsoft 2012 –
7th International Conference on Software Paradigm
Trends. SciTePress.

Kervel, S. J. H. van, 2012. Ontology driven enterprise
information systems engineering. Ph.D. Thesis, ISBN:
978-90-9027133-0, Formetis.

Guerreiro, S., Vasconcelos, A., and Tribolet, J., 2012.
Enterprise dynamic systems control enforcement of
run-time business transactions, Springer-Verlag Berlin
Heidelberg, Volume 110, Part 2, series Lecture Notes
in Business Information Processing, Enterprise
Engineer-ing Working Conference 2012 (EEWC 2012)
Delft, Netherlands, pp. 46-60.

Ministry of Defence, 2010. Ministry of Defence
Architecture Framework version 1.2.004.

Teka, A., Condori-Fernández, N., Kurtev, I., Quartel, D.
and Engelsman, W. 2012. Change impact analysis of
indirect goal relations: Comparison of NFR and
TROPOS approaches based on industrial case study.
Procs. of the 2nd IEEE International Workshop on
Model-Driven Requirements Engineering, MoDRE
2012. pp. 58-67.

Towards�Devising�an�Architectural�Framework�for�Enterprise�Operating�Systems

585

