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Abstract: An important component of the Web of Data is formed by data originally stored in relational databases. The
relational data along with its schemes and integrity constraints is translated into a knowledge base, that we
call arelational knowledge bas@RKB), residing on the Web. It is important to preserve semantics in data-to-
knowledge transformation, as well as in knowledge-to-knowledge exchange between two RKBs. We discuss
these issues and propose an algorithm for checking whether a mapping between two RKBs is semantics pre-
serving. The algorithm is based on the chase procedure.

1 INTRODUCTION databases and knowledge bases making the transla-
tion between them difficult: (a) databases are based

Technologies of the Semantic Web enables web-wideon CWA (Closed World Assumptigrwhile knowl-
integration of data coming from various sources. In €dge bases on OWAOpen World Assumptign(b)
this way the Web of Data is created and can be alsodatabases accept UNAJGique Name Assumptipn
perceived as a giant knowledge base. The extensionalhile knowledge bases usually do not accept it;
layer of this knowledge base consists of an RDF graph (C) integrity constraints in databases are interpreted
(or a corresponding OWL specification), and the in- @s checks while in knowledge bases all rules are
tensional layer is a set of axioms (in RDFS or OWL). deductive rules. It turns out that incorporating
Very often the data presented in the Web comes from integrity constraints into knowledge bases is the most
relational databases. Thus, the similarities and differ- challenging issue.
ences between databases and knowledge bases, and In this paper, we follow the concept of ax-
combining these technologies in data integration ac- tended DL knowledge bagEKB), where the sel’
tivities, has been an important and attractive field of of TBox axioms is divided intsstandardTBox ax-
research since many years (Abiteboul et al., 1995; Re-ioms, S, and integrity constraintTBox axioms, C
iter, 1982; Motik et al., 2009). Now, as a formal foun- (Motik et al., 2009). We will use the notion of
dation of knowledge bases serve Description Logics EKB to represent a relational database in DL. We
(DLs) (Baader et al., 2003), and DL knowledge base define adata-to-knowledge exchangdk-exchange
(or DL ontology) is a pairk = (7,4), whereT is system that defines translation of relational database
a set of axioms modeling the intensional knowledge schema, its integrity constraints and instances into
(the TBox axioms), andl is a set of assertions form- an EKD referred to as &lational knowledge base
ing the extensional knowledge (the ABox assertions). (RKB). The semantics of data should not be lost by
Some recent results of representing relational the translation, i.e. consistent (inconsistent) databases
databases in the Semantic Web are surveyed in (Se-are transformed into consistent (inconsistent) knowl-
queda et al., 2011) and some solutions were proposecedge bases. We propose and discuss an algorithm for
in (Sequeda et al., 2012; Arenas et al., 2012; Poggi checking whether a mapping between two RKBs is
et al., 2008; Pankowski, 2012b; Pankowski, 2013a). semantics preserving.
A relationship between relational databases and DL In Section 2 we introduce a running example, and
knowledge bases has been studied in (Motik et al., in Section 3 we review some basic notions of rela-
2009; Pankowski, 2012a). tional databases. Translation of databases into RKBs
There are three main differences between is discussed in Section 4. In Section 5 an algorithm
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for reasoning about data exchange between RKBs is
proposed. Section 6 concludes the paper.

2 MOTIVATING SCENARIO

As the running example we will consider ER dia-
grams in Figure 1 describing students, courses and

2. Reasoning about mappings betwegnand Xy,
and — in consequences — between,Bd DB,.
The question is whether there exists a mapping
and the corresponding data transformation that
preserves information and semantics. Intuitively,
we see that such a mapping can be defined from
DB, to DBy, but not inversely (because of differ-
ences in semantics &facultyin both databases).

exams taken by students, in databases corresponding

to two universities, namea andb, respectively. Ira
(Figure 1(a)) a student is a specialization of a person.
Farther on, all names will be prefixed by the corre-
sponding database name (eagStudentb:Sid).

Figure 1: Two ER diagrams of two university domains.

Besides syntactic differences betwearand b,
there is also an important semantic difference be-
tween them: irp, Facultyis an attribute oStudent
while in b — an attribute oExammeaning that a stu-
dent can be enrolled in many faculties. The corre-
sponding relation schemes are listed in Figure 2.

: Person(a: Pl d, a: Nane)

a: Student (a: Sld, a: Facul ty)

a: Course(a: Cl d)

a: Exan(a: El d, a: ESI d, a: Cour se, a: G ade)

a

b: St udent (b: Sl d, b: Nane)
b: Course(b: Cl d)
b: Exam( b: El d, b: ESI d, b: Cour se, b: Facul ty, b: G ade)

Figure 2: Relation schemes corresponding to ERDs.

There must be also some integrity constraints de-
fined for these relation schemes, suchaSldis the
primary key fora:Studenta:Sldis also a foreign key
referring toa:Pld in a:Person a:Facultymust be not
NULL, b:Namecan beNULL, etc.

In our scenario, we are interested in:

1. Creation of DL knowledge baség, and %, rep-
resenting databases RBnd DB,, i.e. creation of
a dk-exchangesystem, that should be semantics
preserving.

3 RELATIONAL DATABASES

A (relational)database schem@b-schempis a pair
(R,IC), whereR = {Ry,...,R,} is arelation schema
consisting of a set ofelation symbolsandIC is a

set ofintegrity constraint®verR. Eachrelation sym-

bol Re R has atype which is a nonempty finite set
att(R) of attributes Without loss of generality, we
can assume that types of relation symbols are pair-
wise disjoint.

Let Const be a countable infinite set abnstants
andNULL be a reserved symbol not (donst. An'in-
stance lof R is a finite set ofacts(or atom3 of the
form R(A1: C1,...,Am: Cm), WhereR e R, att(R) =
{A1,...,An}, andc; € ConstU{NULL}, 1<i<m.

Integrity constraints in databases play a dual role.
They can be used in data reasoning tasks, such as
checking the correctness of database data, as well as
in schema reasoning tasks, such as computing query
containment.

We assume thdC = UniqueU NotNullU PKeyu
FKeyU Inherit, where:

1. Uniqueis a set ofunique integrity constraints.e.
expressions of the formniquéR A), whereR

R, A€ att(R). Aninstancd of R is consistent with

uniqueR Ay), if for everyi, 0 <i < m, | satisfies

the formula

R(t1) AR(t2) Aty Ax = t2. AKA
t1.Ax # NULL Atp.A¢ # NULLA
t1.Aj # NULL Aty Aj £ NULL = t1. A = . A.

. NotNull is a set ofnot-null integrity constraints
i.e. expressions of the formotnull(R,Ax). An
instancel of R is consistent witmotnull(R, Ay),
if for any factR(t) € 1, t.A¢ is a constant, i.e. if
satisfies the formula

R(t) = t.Ax # NULL.

. PKeyis a set ofprimary key integrity constraints
i.e. expressions of the formkeyR Ax). An in-
stancd of R is consistent wittpkey(R, Ay) if it is
consistent withuniqug R, Ay), andnotnull(R, Ay).

FKeyis a set offoreign key integrity constraints
Let RR € R, A€ att(R), andA’ € att(R). A

4,
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foreign key integrity constrainis an expression
of the form fkeyR, A,R,A’). An instanced of R
is consistent withfkey R A R, A) if | satisfies
uniqugR,A’), and

R(t) At A#£NULL = 3t (R(t') At A =1.A)

. Inherit is a set ofinheritance integrity con-
straints i.e. pairs of the form(pkeyR A),
fkeyR,A,R,A)). Aninstancd of R is consis-
tent with (pkeyR A), fkey(R, A, R, A")), if | sat-
isfies bothpkey(R, A) and fkey(R AR, A').

Let (R,IC) be a db-schema aride an instance of
R. A database DB= (R,IC,I) is consistent, i sat-
isfies (is a model of) all integrity constraints, denoted
| = IC. Otherwise we say that DB is inconsistent.

For the database QBwith relation schema in Fig-
ure 2, we assume (the prefix is omitted):

ICa = {pkeyPersonPld), pkeyStudentSld), pkey
CourseCld), pkeyExamEld), fkeyStuden{Sld,
PersonPld), pkeyExam ESld StudentSId),
pkeyExamCourseCourseCld), notnull(Student
Faculty), notnull(Exam Grade)}.

Analogously, for DB. Note, thatNamecan beNULL
in both databases.

4 DK-EXCHANGE

4.1 Translation of a Database

While translating a relational database into a DL
knowledge base, the following should be taken into ac-
count:

1. A traditional DL knowledge base understood as a
pair(7,4) is unable to model integrity constraints
(Motik et al., 2009). The reason is two-fold: firstly,
axioms in‘T are interpreted under the standard

first-order semantics and are treated as deductive
rules and not as checks, and secondly, the UNA is

not accepted in general in DL knowledge bases, it
means that two different individual names can de-
note the same individual.

A relational knowledge basés a tuple RKB=
(N,S,C, ), where:

1. N is thevocabularyof RKB, consisting of a set
Ning Of individual namesa setN¢ of class names
(or atomic concepds a setNop of object property
namegor atomic roles.

. S is a finite set ofstandardTBox axioms, which
are treated as deductive rules and can infer new as-
sertions.

. C is a finite set ofintegrity constraintTBox ax-
ioms, which are treated as checks, and must be sat-
isfied by any minimal Herbrand model of the set of
assertions implied byz and.S. Axioms in C can-
not imply new assertions.

. A is a set of ABoxassertionsi.e. class member-
ships and properties of individual objects.

The translation is made bydata-to-knowledge ex-
change(dk-exchangesystemM = (t,%), such that
for each db-schem@, | C) and every instanckeof R,
M(R,IC,I) = (1(R,IC),Z(1)) = (N,S, C,4), where
1(R,1C) = (N,S,C), andX(l) = 4.

Creating Vocabulary Let Ay, be a countable infi-
nite set oflabeled nullsdisjoint from the set of con-
stants. Labeled nulls, denot¥dV, X;, V1, ..., are used
as "fresh” Skolem terms, which are placeholders for
unknown values, and can thus be seeveaimbles(Fa-
ginetal., 2005). The vocabulaN/= N;,gUN¢cUNop,

is created as follows: (1) The sBljq of individual
names consists of the union Gfonst and Ay, (2)
There are predefined class namisle and Val of,
respectively, individuals calletliplesand individuals
called attribute values (3) For each relation symbol
R € R, there is a class nant& € N¢), every individ-
ual inCg is a tuple. (4) For each attributec att(R),
there is a class nam@x € N¢ (every individual in
Ca is an attribute value), and an object property name
Pa € Nop; the object propertfPa connects tuples iGr
with attribute values iCa.

Creating Standard TBox Axiom$he setS of standard
TBox axioms is given in Table 1. All these axioms are
deductive rules.

Table 1: Standard TBox axioms of relational knowledge

2. Inthe translation, semantics of the database shouldbase.
be preserved, i.e. any consistent (inconsistent) Constraints of relational db_ 1 DL
database should be translated into a consistent (in- s7 T Re R CrC Tuple
consistent) DL knowledge base. S2[Acali(R,RER Ca = Val
Now, we define arelational knowledge base S3| range ofPa P, CCa
(RKB) that is a DL knowledge base adequately rep- [ S4| domain ofPa 3P, C Cr
resenting a relational database. RKB is based on the[ g5 uniqueR,A) (func Py)
concept of EKB (Motik et al., 2009). We propose and ["Sg | (pkeyR A), Tkey(R A, R, A')) | PaC Py

discuss a system of TBox axioms, which properly rep-
resents a relational database defined in the previous(Sl) and(S2) belong to translation of facts thRte R
section. and A € att(R); they say that all tuple names @k,
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and all attribute value names @, must be inserted
into classesTuple and Val, respectively. (S3) and
($4) belong to translation of the fact thate att(R),
where: (S3) says that any individual belonging to the
range ofPa must be inserted int€a, and any indi-
vidual belonging to the domain &, must be inserted
into Cr. (SH) is result of translation of a unique con-
straintuniquéR, A), and enforces equality betwegn
andxy, if all Pa(xq,v1), Pa(X2,V2), andv; = v, hold.
(S6) results of the translation of an inheritance con-
straint (pkeyR A), fkeyR, AR A’)), and says that
extension ofPy must be inserted into the extension of
Pa.

Creating Integrity Constraint TBox Axiom$he setC
of TBox ic-axioms is given in Table 2. Note that ic-

4.2 Semantics Preservation

One of the most challenging issues in dk-exchange
is to show that the semantics of the source data is
not lost by the transformation into a knowledge base.
The preservation of semantics of a dk-exchange sys-
temM = (1,%) can be understood in two ways:

1. Soundness M = (1,%) is soundw.rt. seman-
tics preservatiorif every consistent databagR,|C, )

is transformed into a consistent relational knowledge
base(N,S,C,4),i.e.

M=ICAT(R,IC) = (N, S, C)AZ(1) = A= AUS EmHmC.

2. CompletenessM = (1,%) is completew.r.t. se-

axioms are checks, so we expect that the value of suchmantics preservationf every inconsistent database

an axiom is eithefRUE or FALSE.

Table 2: Integrity constraint TBox axioms of relational
knowledge base.

Constraints of relationaldb | DL
C1 | disjointness Tuple = —=Val
C2 | Acatt(R),ReR (func Pa)
C3 | notnull(R,A) CrC 3Py
C4 | fkeyR AR A) P, C 3P,
C5 | (pkeyR A), fkeyRAR,A)) | CRECr

(C1) tests disjointness ofuple and Val. (C2) be-
longs to translation oA € att(R) and checks ifPy
has the functional property(C3) is result of trans-
lation of notnull(R,A) and tests if any tuple name in
Cr is in domain ofPa. (C4) is result of translation of
fkeyR, A R, A’), and tests the inclusion of the range
of Pa in the range oPy. (C5) belongs to the result of
the translation of pkeyR A), fkey R, A/R,A’)), and
tests the inclusion dr in Cr.

Creating ABox AssertionsABox assertions are ex-
pressions of the formC(a), P(a;,a,), anda; = ap,
whereC € N¢j, P € Nop, anda,a;,a; € Njpg. Trans-
lation of an instance of R can be performed using
Algorithm 1.

Algorithm 1. Creating ABox assertions.

Input: Instancd of R, and an empty ABox4.
Output: ABox assertions i representing.
for each R(t) €|
Urt := {A€catt(R) | t.A# NULL}
X := afresh labeled null i\,
if Urt = 0then
4:=4U{Cr(X)}
else
for each A € Ugy
4 :=4U{Pa(X,t.A)}

end

(R,IC,I) is transformed into an inconsistent relational
knowledge baséN, S, C,4), i.e.
L EICAT(R,IC) = (N,S,C0)AZ(1) = A= AU FEmHmC-

It can be shown (Pankowski, 2013b) that the dk-

exchange systeri = (1,%), is both sound and com-
plete w.r.t. semantics preservation.

5 REASONING ABOUT
KBS-MAPPING

A knowledge base schema mappifidps-mappiny

from a source kb-schemBs = (N, S5, Gs) to a tar-

get kb-schem®; = (N, %, &), is defined by a finite
setl s of source to target dependencigsTDs) (Fagin
et al., 2005), i.e. implications of the form

VX,V.(q)S(X,V) = Hxlavl'q)t (Xa X/V7V/))a

where¢s and¢; are conjunctions of atomic formulas
overNs andN;, respectively.

Example5.1. For the knowledge bases corresponding
to databases in Figure 2, we can define the following
kbs-mappings:

I-ab:{
a:p(x,v) = b: p(xV),
for p € {Sld,Cld,Eld,ESId CourseGrade},
a: Naméx,v) Aa: Studentx) = b: Naméx,v),
a: Sld(x,v1) Aa: Faculty(x,v2) Aa: Eld(y,v3)A
a: ESldy,v1) = b: Faculty(y,v2)}

rba:{
b: p(x,v)=a: p(xv), forpe{Sld,
NameCld,Eld,ESId CourseGrade},
b: ESIdx,vi) Ab: Faculty(x,v;) =
Jy.(a: Sld(y,v1) Aa: Faculty(y,v2))}

The crucial problem is if anyonsistent source
knowledge bases transformed by the given sEtof
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STDs, into aconsistent target knowledge badecan

be easily seen for our running example tRatandRy,

are not semantically equivalent — integrity constraints
for R4 are more restrictive than those Rf. Thus, we
can expect that:

e any consistent knowledge base with scheRgas
transformed vid 4, into a consistent knowledge
base with schemBy;

X, V, V. (Ds(X, V) [oon] A« A ds(X, V) [pn] AV £ V).

For eachw € Q determine a substitution, of
variables inx with a newly invented variable
namesx, denoted), = [X — X¢]. Then the
following formula is created

D = Iy, - - Xaogn s V5 V'

o there is a consistent knowledge base with schema  ¢s(Xay,, V) [W1] A -+ A Ds(Xeopn s V) [n] AV # V).

Rp that is transformed vifi,4 into an inconsistent
knowledge base with scherig.

In order to perform such reasoning, we use the

chase procedurdMaier et al., 1979; Fagin et al.,

2005). Input, output and steps of this procedure are

as follows:

1. Input. A source kb-schemBs = (Ns, Ss, Gs) repre-
senting a db-schem®s, 1 Cs), a target kb-schema
Rt = (Ni, 8, G), and a sef s; of STDs fromRs to
R:.

2. Output. The decision whethefrg; maps any con-
sistent knowledge base with the kb-schdfganto
a consistent knowledge base with the sch&na

3. Steps. (1) Construct a tableawls of assertions
such thaiNs, Ss, Gs, 4s) forms a consistent knowl-
edge base. Moreovefi; should be a "well suited”

source instance for the next steps in the chase pro-

cedure. (2) Proceed the chase frato 4; using
st and axioms from$;. (3) Verify consistency of

(Ntﬂst:C‘t:'qt)'

Algorithm 2. Constructing the tableads.
Ay = 0;
for each y € Ig.
let ¢s(x, V) be the left-hand side of
if gs(x,Vv) consists of one atorfa (X, V) then
Modify 4p in such a way that the formula

Ixq, X2, V.Pa(X1, V) A Pa(x2,V)

is satisfied in4,.
if ds(x, V) consists of one ato@iz(x) then
Modify 4p in such a way that the formula

IX.Cr(X)

is satisfied in4y.

else // there are more atoms than onepig(x, V)
Letv = (v1,...,vn) andv’ = (V,, ..., V,) be disjoint
sets of variables. By = [v1 — Wi, ..., Vn — Wp),
wherew; € {vi,V} we denote a substitution
replacingv; either with itself or withvi. The set
Q of all such substitutions ha$ 2lements.
Then, fromds(x,v) we obtain the following
formula consisting of 2conjunctions
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Modify 4y so that4y satisfiesd.
end for each Re R,A € att(R)
if notnull(R,A) ¢ IC then
Modify 4g in such a way that the formula

IX.Cr(X) A =3V.Pa(X,V)

is satisfied in4g.
end

Closing Chase with respect t§ U (s, i.e.

SUGs

Ay =—

Transformation Chase with respect 0y, i.e.

As

r
.qs—S!> .ql

Repairing Chase with respect tg, i.e.

a2 4
Verifying It must be checked if axioms ifi are satis-
fied in 4, i.e. if the following entailment holds:

)'th ):mHmG-

Example 5.2. For Ny, in Example 5.1, we have the
following formulas mentioned in Algorithm 2:

EIX:|.7XZ7V'b : p(X]_,V) Ab: p(X27V)7
for p € {Sld,NameCld,Eld,ESId CourseGrade},
EIX17X27X37X47V17V27\/17\/2'(
p:ESIdxs,vi) Ab: Faculty(xy, Vo)
p: ESIdxz,vi) Ab: Faculty(Xz, V,)
p: ESIdxs,V}) Ab: Faculty(xs, v»)
p: ESIdxs,V)) Ab: Faculty(xs,V,)
V1 £ VU A2 £ V),
Ix.b: Studentx) A —3v.b : NaméXx,v).

A
A
A
A

We start the chase procedure with the first formula
in Example 5.2. Then we have: Sld(X1,V1) and
b: SId(X2,V1). Next, using($4) and(S5), we obtain
b: StudentX;) andX; = X,. The final form of4 is
presented in Figure 3 (prefixbs are omitted), where
additionally: Vg = V1,Vi2 = V3, Vg = V15 = V15 = Vg,
andVs # Vi2,Vig # Vi1.

A fragment of the tableauy, being the result of
applyinglpa to 4y, is presented in Figure 4 (again,
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Student| Sid | Name | Course| Cld
><1 V1 V2 X4 V4
X3 V3 V2
X11 Vig

Exam | Eld | ESId | Course| Faculty | Grade |
XG V5 VG V8 VlO Vg
X8 V7 V6 Vg Vll Vg
Xo | Vis | Va2 Vis Vio Vi7

X0 | Via | Vi2 Vie Vi1 Vig

Figure 3: Tabular representation @f as an input tableau
to Mpa-

Person| PId | Name| Student| Sid | Faculty |

X1 A Vs, X1 Vi Vio
)(3 V3 V2 Xl V1 Vll
X1 Vig X3 V3 Vio

X3 V3 Vi1

Figure 4: Tabular representation of a fragmentigfbeing
the result of applyind p, against4, from Figure 3.

prefixesa : are omitted). We see that consistency
of 4, requires thav,p = Vi1. However, this equal-
ity contradicts the assumption iy, (i.e. Vig # V11).

Thus, the target knowledge base is inconsistent. We
see thatl'p, does not preserve semantics, because

a consistent knowledge base with kb-schelRpais
transformed into inconsistent knowledge base with
kb-schemaR,. In this case, the reason is that kb-
scheme®, andRy are not semantically equivalent.

6 CONCLUSIONS
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