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Abstract: An important component of the Web of Data is formed by data originally stored in relational databases. The
relational data along with its schemes and integrity constraints is translated into a knowledge base, that we
call arelational knowledge base(RKB), residing on the Web. It is important to preserve semantics in data-to-
knowledge transformation, as well as in knowledge-to-knowledge exchange between two RKBs. We discuss
these issues and propose an algorithm for checking whether a mapping between two RKBs is semantics pre-
serving. The algorithm is based on the chase procedure.

1 INTRODUCTION

Technologies of the Semantic Web enables web-wide
integration of data coming from various sources. In
this way the Web of Data is created and can be also
perceived as a giant knowledge base. The extensional
layer of this knowledge base consists of an RDF graph
(or a corresponding OWL specification), and the in-
tensional layer is a set of axioms (in RDFS or OWL).
Very often the data presented in the Web comes from
relational databases. Thus, the similarities and differ-
ences between databases and knowledge bases, and
combining these technologies in data integration ac-
tivities, has been an important and attractive field of
research since many years (Abiteboul et al., 1995; Re-
iter, 1982; Motik et al., 2009). Now, as a formal foun-
dation of knowledge bases serve Description Logics
(DLs) (Baader et al., 2003), and DL knowledge base
(or DL ontology) is a pairK = (T ,A), whereT is
a set of axioms modeling the intensional knowledge
(the TBox axioms), andA is a set of assertions form-
ing the extensional knowledge (the ABox assertions).

Some recent results of representing relational
databases in the Semantic Web are surveyed in (Se-
queda et al., 2011) and some solutions were proposed
in (Sequeda et al., 2012; Arenas et al., 2012; Poggi
et al., 2008; Pankowski, 2012b; Pankowski, 2013a).
A relationship between relational databases and DL
knowledge bases has been studied in (Motik et al.,
2009; Pankowski, 2012a).

There are three main differences between

databases and knowledge bases making the transla-
tion between them difficult: (a) databases are based
on CWA (Closed World Assumption) while knowl-
edge bases on OWA (Open World Assumption); (b)
databases accept UNA (Unique Name Assumption)
while knowledge bases usually do not accept it;
(c) integrity constraints in databases are interpreted
as checks while in knowledge bases all rules are
deductive rules. It turns out that incorporating
integrity constraints into knowledge bases is the most
challenging issue.

In this paper, we follow the concept of anex-
tended DL knowledge base(EKB), where the setT
of TBox axioms is divided intostandardTBox ax-
ioms, S , and integrity constraintTBox axioms,C
(Motik et al., 2009). We will use the notion of
EKB to represent a relational database in DL. We
define adata-to-knowledge exchange(dk-exchange)
system that defines translation of relational database
schema, its integrity constraints and instances into
an EKD referred to as arelational knowledge base
(RKB). The semantics of data should not be lost by
the translation, i.e. consistent (inconsistent) databases
are transformed into consistent (inconsistent) knowl-
edge bases. We propose and discuss an algorithm for
checking whether a mapping between two RKBs is
semantics preserving.

In Section 2 we introduce a running example, and
in Section 3 we review some basic notions of rela-
tional databases. Translation of databases into RKBs
is discussed in Section 4. In Section 5 an algorithm
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for reasoning about data exchange between RKBs is
proposed. Section 6 concludes the paper.

2 MOTIVATING SCENARIO

As the running example we will consider ER dia-
grams in Figure 1 describing students, courses and
exams taken by students, in databases corresponding
to two universities, nameda andb, respectively. Ina
(Figure 1(a)) a student is a specialization of a person.
Farther on, all names will be prefixed by the corre-
sponding database name (e.g.a:Student, b:SId).
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Figure 1: Two ER diagrams of two university domains.

Besides syntactic differences betweena and b,
there is also an important semantic difference be-
tween them: ina, Faculty is an attribute ofStudent,
while in b – an attribute ofExammeaning that a stu-
dent can be enrolled in many faculties. The corre-
sponding relation schemes are listed in Figure 2.

a:Person(a:PId,a:Name)
a:Student(a:SId,a:Faculty)
a:Course(a:CId)
a:Exam(a:EId,a:ESId,a:Course,a:Grade)

b:Student(b:SId,b:Name)
b:Course(b:CId)
b:Exam(b:EId,b:ESId,b:Course,b:Faculty,b:Grade)

Figure 2: Relation schemes corresponding to ERDs.

There must be also some integrity constraints de-
fined for these relation schemes, such as:a:SIdis the
primary key fora:Student, a:SIdis also a foreign key
referring toa:PId in a:Person, a:Facultymust be not
NULL, b:Namecan beNULL, etc.

In our scenario, we are interested in:

1. Creation of DL knowledge basesKa andKb rep-
resenting databases DBa and DBb, i.e. creation of
a dk-exchangesystem, that should be semantics
preserving.

2. Reasoning about mappings betweenKa andKb,
and – in consequences – between DBa and DBb.
The question is whether there exists a mapping
and the corresponding data transformation that
preserves information and semantics. Intuitively,
we see that such a mapping can be defined from
DBa to DBb but not inversely (because of differ-
ences in semantics ofFacultyin both databases).

3 RELATIONAL DATABASES

A (relational)database schema(db-schema) is a pair
(R,IC), whereR = {R1, . . . ,Rn} is arelation schema
consisting of a set ofrelation symbols, andIC is a
set ofintegrity constraintsoverR. Eachrelation sym-
bol R∈ R has atype, which is a nonempty finite set
att(R) of attributes. Without loss of generality, we
can assume that types of relation symbols are pair-
wise disjoint.

Let Const be a countable infinite set ofconstants,
andNULL be a reserved symbol not inConst. An in-
stance Iof R is a finite set offacts(or atoms) of the
form R(A1 : c1, . . . ,Am : cm), whereR∈ R, att(R) =
{A1, . . . ,Am}, andci ∈ Const∪{NULL}, 1≤ i ≤ m.

Integrity constraints in databases play a dual role.
They can be used in data reasoning tasks, such as
checking the correctness of database data, as well as
in schema reasoning tasks, such as computing query
containment.

We assume thatIC = Unique∪NotNull∪PKey∪
FKey∪ Inherit, where:
1. Uniqueis a set ofunique integrity constraints, i.e.

expressions of the formunique(R,A), whereR∈
R, A∈ att(R). An instanceI of R is consistent with
unique(R,Ak), if for every i, 0≤ i ≤ m, I satisfies
the formula

R(t1)∧R(t2)∧ t1.Ak = t2.Ak∧
t1.Ak 6= NULL∧ t2.Ak 6= NULL∧

t1.Ai 6= NULL∧ t2.Ai 6= NULL⇒ t1.Ai = t2.Ai .

2. NotNull is a set ofnot-null integrity constraints,
i.e. expressions of the formnotnull(R,Ak). An
instanceI of R is consistent withnotnull(R,Ak),
if for any factR(t) ∈ I , t.Ak is a constant, i.e. ifI
satisfies the formula

R(t)⇒ t.Ak 6= NULL.

3. PKeyis a set ofprimary key integrity constraints,
i.e. expressions of the formpkey(R,Ak). An in-
stanceI of R is consistent withpkey(R,Ak) if it is
consistent withunique(R,Ak), andnotnull(R,Ak).

4. FKey is a set offoreign key integrity constraints.
Let R,R′ ∈ R, A ∈ att(R), and A′ ∈ att(R′). A

Data�Exchange�between�Relational�Knowledge�Bases�in�the�Web�of�Data

305



foreign key integrity constraintis an expression
of the form f key(R,A,R′

,A′). An instanceI of R
is consistent withf key(R,A,R′

,A′) if I satisfies
unique(R′

,A′), and

R(t)∧ t.A 6= NULL⇒∃t ′.(R′(t ′)∧ t ′.A′ = t.A)

5. Inherit is a set of inheritance integrity con-
straints, i.e. pairs of the form(pkey(R,A),
f key(R,A,R′

,A′)). An instanceI of R is consis-
tent with (pkey(R,A), f key(R,A,R′

,A′)), if I sat-
isfies bothpkey(R,A) and f key(R,A,R′

,A′).

Let (R,IC) be a db-schema andI be an instance of
R. A database DB= (R,IC, I) is consistent, ifI sat-
isfies (is a model of) all integrity constraints, denoted
I |= IC. Otherwise we say that DB is inconsistent.

For the database DBa with relation schema in Fig-
ure 2, we assume (the prefixa : is omitted):

ICa = {pkey(Person,PId), pkey(Student,SId), pkey(
Course,CId), pkey(Exam,EId), f key(Student,SId,
Person,PId), pkey(Exam,ESId,Student,SId),
pkey(Exam,Course,Course,CId),notnull(Student,
Faculty),notnull(Exam,Grade)}.

Analogously, for DBb. Note, thatNamecan beNULL
in both databases.

4 DK-EXCHANGE

4.1 Translation of a Database

While translating a relational database into a DL
knowledge base, the following should be taken into ac-
count:

1. A traditional DL knowledge base understood as a
pair(T ,A) is unable to model integrity constraints
(Motik et al., 2009). The reason is two-fold: firstly,
axioms in T are interpreted under the standard
first-order semantics and are treated as deductive
rules and not as checks, and secondly, the UNA is
not accepted in general in DL knowledge bases, it
means that two different individual names can de-
note the same individual.

2. In the translation, semantics of the database should
be preserved, i.e. any consistent (inconsistent)
database should be translated into a consistent (in-
consistent) DL knowledge base.

Now, we define arelational knowledge base
(RKB) that is a DL knowledge base adequately rep-
resenting a relational database. RKB is based on the
concept of EKB (Motik et al., 2009). We propose and
discuss a system of TBox axioms, which properly rep-
resents a relational database defined in the previous
section.

A relational knowledge baseis a tuple RKB=
(N,S ,C ,A), where:

1. N is the vocabularyof RKB, consisting of a set
NInd of individual names, a setNCl of class names
(or atomic concepts), a setNOP of object property
names(or atomic roles).

2. S is a finite set ofstandardTBox axioms, which
are treated as deductive rules and can infer new as-
sertions.

3. C is a finite set ofintegrity constraintTBox ax-
ioms, which are treated as checks, and must be sat-
isfied by any minimal Herbrand model of the set of
assertions implied byA andS . Axioms in C can-
not imply new assertions.

4. A is a set of ABoxassertions, i.e. class member-
ships and properties of individual objects.

The translation is made by adata-to-knowledge ex-
change(dk-exchange) systemM = (τ,Σ), such that
for each db-schema(R,IC) and every instanceI of R,
M (R,IC, I) = (τ(R,IC),Σ(I)) = (N,S ,C ,A), where
τ(R,IC) = (N,S ,C ), andΣ(I) = A .

Creating Vocabulary. Let ∆Var be a countable infi-
nite set oflabeled nullsdisjoint from the set of con-
stants. Labeled nulls, denotedX,V,X1,V1, ..., are used
as ”fresh” Skolem terms, which are placeholders for
unknown values, and can thus be seen asvariables(Fa-
gin et al., 2005). The vocabularyN=NInd∪NCl∪NOP,
is created as follows: (1) The setNInd of individual
names consists of the union ofConst and ∆Var. (2)
There are predefined class namesTuple andVal of,
respectively, individuals calledtuplesand individuals
calledattribute values. (3) For each relation symbol
R∈ R, there is a class nameCR ∈ NCl, every individ-
ual inCR is a tuple. (4) For each attributeA∈ att(R),
there is a class nameCA ∈ NCl (every individual in
CA is an attribute value), and an object property name
PA ∈NOP; the object propertyPA connects tuples inCR

with attribute values inCA.

Creating Standard TBox Axioms. The setS of standard
TBox axioms is given in Table 1. All these axioms are
deductive rules.

Table 1: Standard TBox axioms of relational knowledge
base.

Constraints of relational db DL
S1 R∈ R CR ⊑ Tuple

S2 A∈ att(R),R∈ R CA ⊑ Val

S3 range ofPA ∃P−
A ⊑CA

S4 domain ofPA ∃PA ⊑CR

S5 unique(R,A) (func P−
A )

S6 (pkey(R,A), f key(R,A,R′
,A′)) PA ⊑ PA′

(S1) and(S2) belong to translation of facts thatR∈ R
and A ∈ att(R); they say that all tuple names inCR,
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and all attribute value names inCA must be inserted
into classesTuple and Val, respectively. (S3) and
(S4) belong to translation of the fact thatA ∈ att(R),
where: (S3) says that any individual belonging to the
range ofPA must be inserted intoCA, and any indi-
vidual belonging to the domain ofPA must be inserted
into CR. (S5) is result of translation of a unique con-
straintunique(R,A), and enforces equality betweenx1

andx2, if all PA(x1,v1), PA(x2,v2), andv1 = v2 hold.
(S6) results of the translation of an inheritance con-
straint (pkey(R,A), f key(R,A,R′

,A′)), and says that
extension ofPA must be inserted into the extension of
PA′ .

Creating Integrity Constraint TBox Axioms. The setC
of TBox ic-axioms is given in Table 2. Note that ic-
axioms are checks, so we expect that the value of such
an axiom is eitherTRUE or FALSE.

Table 2: Integrity constraint TBox axioms of relational
knowledge base.

Constraints of relational db DL
C1 disjointness Tuple⊑ ¬Val
C2 A∈ att(R),R∈ R (func PA)
C3 notnull(R,A) CR ⊑ ∃PA

C4 f key(R,A,R′
,A′) ∃P−

A ⊑ ∃P−
A′

C5 (pkey(R,A), f key(R,A,R′
,A′)) CR ⊑CR′

(C1) tests disjointness ofTuple and Val. (C2) be-
longs to translation ofA ∈ att(R) and checks ifPA

has the functional property.(C3) is result of trans-
lation of notnull(R,A) and tests if any tuple name in
CR is in domain ofPA. (C4) is result of translation of
f key(R,A,R′

,A′), and tests the inclusion of the range
of PA in the range ofPA′ . (C5) belongs to the result of
the translation of(pkey(R,A), f key(R,A,R′

,A′)), and
tests the inclusion ofCR in CR′ .

Creating ABox Assertions. ABox assertions are ex-
pressions of the form:C(a), P(a1,a2), anda1 = a2,
whereC ∈ NCl, P ∈ NOP, anda,a1,a2 ∈ NInd. Trans-
lation of an instanceI of R can be performed using
Algorithm 1.

Algorithm 1: Creating ABox assertions.

Input: InstanceI of R, and an empty ABoxA .
Output: ABox assertions inA representingI .
for each R(t) ∈ I

UR,t := {A∈ att(R) | t.A 6= NULL}
X := a fresh labeled null in∆Var
if UR,t = /0 then

A := A ∪{CR(X)}
else
for each A∈UR,t

A := A ∪{PA(X, t.A)}
end

4.2 Semantics Preservation

One of the most challenging issues in dk-exchange
is to show that the semantics of the source data is
not lost by the transformation into a knowledge base.
The preservation of semantics of a dk-exchange sys-
temM = (τ,Σ) can be understood in two ways:

1. Soundness. M = (τ,Σ) is soundw.r.t. seman-
tics preservationif every consistent database(R,IC, I)
is transformed into a consistent relational knowledge
base(N,S ,C ,A), i.e.

I |= IC∧τ(R,IC)= (N,S ,C )∧Σ(I)=A ⇒A∪S |=mHmC .

2. Completeness. M = (τ,Σ) is completew.r.t. se-
mantics preservationif every inconsistent database
(R,IC, I) is transformed into an inconsistent relational
knowledge base(N,S ,C ,A), i.e.
I 6|= IC∧τ(R,IC)= (N,S ,C )∧Σ(I)=A ⇒A∪S 6|=mHmC .

It can be shown (Pankowski, 2013b) that the dk-
exchange systemM = (τ,Σ), is both sound and com-
plete w.r.t. semantics preservation.

5 REASONING ABOUT
KBS-MAPPING

A knowledge base schema mapping(kbs-mapping)
from a source kb-schemaRs = (Ns,Ss,Cs) to a tar-
get kb-schemaRt = (Nt ,St ,Ct), is defined by a finite
setΓst of source to target dependencies(STDs) (Fagin
et al., 2005), i.e. implications of the form

∀x,v.(ϕs(x,v)⇒∃x′
,v′

.ϕt(x,x′v,v′)),

whereϕs andϕt are conjunctions of atomic formulas
overNs andNt , respectively.

Example 5.1. For the knowledge bases corresponding
to databases in Figure 2, we can define the following
kbs-mappings:

Γab = {
a : p(x,v)⇒ b : p(x,v),

for p∈ {SId,CId,EId,ESId,Course,Grade},
a : Name(x,v)∧a : Student(x)⇒ b : Name(x,v),
a : SId(x,v1)∧a : Faculty(x,v2)∧a : EId(y,v3)∧

a : ESId(y,v1)⇒ b : Faculty(y,v2)}

Γba = {
b : p(x,v)⇒ a : p(x,v), for p∈ {SId,

Name,CId,EId,ESId,Course,Grade},
b : ESId(x,v1)∧b : Faculty(x,v2)⇒
∃y.(a : SId(y,v1)∧a : Faculty(y,v2))}

The crucial problem is if anyconsistent source
knowledge baseis transformed by the given setΓ of
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STDs, into aconsistent target knowledge base. It can
be easily seen for our running example thatRa andRb

are not semantically equivalent – integrity constraints
for Ra are more restrictive than those ofRb. Thus, we
can expect that:

• any consistent knowledge base with schemaRa is
transformed viaΓab into a consistent knowledge
base with schemaRb;

• there is a consistent knowledge base with schema
Rb that is transformed viaΓba into an inconsistent
knowledge base with schemaRa.

In order to perform such reasoning, we use the
chase procedure(Maier et al., 1979; Fagin et al.,
2005). Input, output and steps of this procedure are
as follows:

1. Input. A source kb-schemaRs = (Ns,Ss,Cs) repre-
senting a db-schema(Rs,ICs), a target kb-schema
Rt = (Nt ,St ,Ct), and a setΓst of STDs fromRs to
Rt .

2. Output. The decision whetherΓst maps any con-
sistent knowledge base with the kb-schemaRs into
a consistent knowledge base with the schemaRt .

3. Steps. (1) Construct a tableauAs of assertions
such that(Ns,Ss,Cs,As) forms a consistent knowl-
edge base. Moreover,As should be a ”well suited”
source instance for the next steps in the chase pro-
cedure. (2) Proceed the chase fromAs to At using
Γst and axioms fromSt . (3) Verify consistency of
(Nt ,St ,Ct ,At).

Algorithm 2: Constructing the tableauAs.

A0 := /0;
for each γ ∈ Γst.

let ϕs(x,v) be the left-hand side ofγ;
if ϕs(x,v) consists of one atomPA(x,v) then

Modify A0 in such a way that the formula

∃x1,x2,v.PA(x1,v)∧PA(x2,v)

is satisfied inA0.
if ϕs(x,v) consists of one atomCR(x) then

Modify A0 in such a way that the formula

∃x.CR(x)

is satisfied inA0.
else // there are more atoms than one inϕs(x,v)

Let v=(v1, ...,vn) andv′ =(v′1, ...,v
′
n) be disjoint

sets of variables. Byω = [v1 7→ w1, ...,vn 7→ wn],
wherewi ∈ {vi ,v′i} we denote a substitution
replacingvi either with itself or withv′i . The set
Ω of all such substitutions has 2n elements.
Then, fromϕs(x,v) we obtain the following
formula consisting of 2n conjunctions

∃x,v,v′.(ϕs(x,v)[ω1]∧·· ·∧ϕs(x,v)[ω2n]∧v 6= v′).

For eachω ∈ Ω determine a substitutionνω of
variables inx with a newly invented variable
namesxω, denotedνω = [x 7→ xω]. Then the
following formula is created

Φ ≡ ∃xω1, . . . ,xω2n ,v,v′.(
ϕs(xω1,v)[ω1]∧·· ·∧ϕs(xω2n ,v)[ω2n]∧v 6= v′).

Modify A0 so thatA0 satisfiesΦ.
end for each R∈ R,A∈ att(R)

if notnull(R,A) 6∈ IC then
Modify A0 in such a way that the formula

∃x.CR(x)∧¬∃v.PA(x,v)

is satisfied inA0.
end

Closing. Chase with respect toSs∪Cs, i.e.

A0
Ss∪Cs−→ As

Transformation. Chase with respect toΓst, i.e.

As
Γst−→ A1

Repairing. Chase with respect toSt , i.e.

A1
St−→ At

Verifying. It must be checked if axioms inCt are satis-
fied in At , i.e. if the following entailment holds:

At |=mHm Ct .

Example 5.2. For Γba in Example 5.1, we have the
following formulas mentioned in Algorithm 2:

∃x1,x2,v.b : p(x1,v)∧b : p(x2,v),
for p∈ {SId,Name,CId,EId,ESId,Course,Grade},

∃x1,x2,x3,x4,v1,v2,v′1,v
′
2.(

p : ESId(x1,v1)∧b : Faculty(x1,v2)∧
p : ESId(x2,v1)∧b : Faculty(x2,v′2)∧
p : ESId(x3,v′1)∧b : Faculty(x3,v2)∧
p : ESId(x4,v′1)∧b : Faculty(x4,v′2)∧
v1 6= v′1∧v2 6= v′2),

∃x.b : Student(x)∧¬∃v.b : Name(x,v).

We start the chase procedure with the first formula
in Example 5.2. Then we haveb : SId(X1,V1) and
b : SId(X2,V1). Next, using(S4) and(S5), we obtain
b : Student(X1) andX1 = X2. The final form ofAb is
presented in Figure 3 (prefixesb : are omitted), where
additionally:V6 =V1,V12 =V3, V8 =V15 =V16 =V4,
andV6 6=V12,V10 6=V11.

A fragment of the tableauAa, being the result of
applyingΓba to Ab, is presented in Figure 4 (again,
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Student SId Name
X1 V1 V2
X3 V3 V2
X11 V19

Course CId
X4 V4

Exam EId ESId Course Faculty Grade
X6 V5 V6 V8 V10 V9
X8 V7 V6 V8 V11 V9
X9 V13 V12 V15 V10 V17
X10 V14 V12 V16 V11 V18

Figure 3: Tabular representation ofAb as an input tableau
to Γba.

Person PId Name
X1 V1 V2
X3 V3 V2
X11 V19

Student SId Faculty
X1 V1 V10
X1 V1 V11
X3 V3 V10
X3 V3 V11

Figure 4: Tabular representation of a fragment ofAa being
the result of applyingΓba againstAb from Figure 3.

prefixesa : are omitted). We see that consistency
of Aa requires thatV10 = V11. However, this equal-
ity contradicts the assumption inAb (i.e. V10 6= V11).
Thus, the target knowledge base is inconsistent. We
see thatΓba does not preserve semantics, because
a consistent knowledge base with kb-schemaRb is
transformed into inconsistent knowledge base with
kb-schemaRa. In this case, the reason is that kb-
schemesRa andRb are not semantically equivalent.

6 CONCLUSIONS

In this paper we discuss the problem of semantics
preservation in data exchange between two relational
knowledge bases (RKBs) in the Web of Data. RKBs
are important components of Web of Data since they
arise as results of translation relational databases
along with their integrity constraints into knowledge
bases. In this paper we adapt the concept of DL ex-
tended knowledge bases (Motik et al., 2009). Data
exchange between RKBs is a vital problem in data
integration over the Web (Brzykcy et al., 2008). We
sketch an algorithm that checks whether a given map-
ping between two RKBs is semantics preserving, that
is whether it maps a consistent source RKB into a
consistent target RKB.
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