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Abstract: The H loop-shaping controllers have proven their efficiency to solve problems based on complex industrial 
specifications. However, the design is based on the tuning of weighting filters to reformulate all the 
specifications, which is a time consuming task requiring know-how and expertise. This paper deals with the 
use of Particle Swarm Optimization (PSO) algorithm for tuning the weighting filters. Whereas this topic has 
already been investigated in lots of works especially using evolutionary algorithms, we propose here to 
enhance the optimization process by working on the definition of a generic fitness function from a general 
high-level specification, and by relaxing constraints on weights structure. The developed methodology is 
tested using a real industrial example and leads to satisfactory results. 

1 INTRODUCTION 

H synthesis is an efficient tool in robust control. 
Among several design methodologies, the loop-
shaping procedure (McFarlane and Glover, 1992) 
has strong advantages in the industrial framework. It 
is based on the definition of weighting filters to 
reformulate the desired specifications of the closed- 
loop. An optimization step, based on the H theory, 
is then used to compute the final controller. The 
main advantage of this design procedure is that the 
weighting filter selection step allows the use of 
linear transfer functions with decoupled intuition 
and classical considerations on the open-loop gain 
(bandwidth, low-frequency gain, etc). However, 
choosing the “best” filters to capture as well as 
possible complex specifications (mixing for instance 
linear and nonlinear considerations) is difficult and 
often time-consuming. Indeed, the classical 
approach relies on an oriented “try and error” 
procedure: the design problem is first simplified by 
neglecting some nonlinear or disturbance 
phenomena and/or some specifications. The 
controller is then validated using time-domain 
simulations of a full model. Several iterations are 
thus generally needed in the development process. 
Further, some expertise is often required to 
reformulate specifications and to define well suited 
weighting filters. This issue is worsened when the 

final goal is not only to satisfy some specifications, 
but also to optimize the closed-loop performance. 

Since the emergence of H theory, lots of works 
have been done to optimize the weight selection 
process. In (Lanzon, 2005) weighing functions are 
set by a quasi-convex optimization problem. 
Although effective, the main difficulty of such 
approaches is related to the necessary open-loop 
frequency specification framework used for the 
optimization process. This is usually not 
straightforward to obtain from a complex high-level 
specification and the efficiency of the method often 
relies on the expertise of the designer.  

To avoid the frequency declination task, other 
approaches based on stochastic optimization have 
been considered. For instance in (Chipperfield, 
Dakev, Fleming and Whidborne, 1996), weighing 
functions of low order are selected with an 
evolutionary algorithm. Based on stochastic 
optimization, such works prove that complex criteria 
can be considered in the Automatic control field 
even if their gradients are not available, the only 
requirement being the capability of evaluating the 
fitness function.  

The main improvements proposed in this paper 
rely on: 

 the definition of the fitness function. This is of 
course a crucial point in the optimization procedure. 
For that purpose, we propose a method to build a 
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generic cost function from a general high-level 
specification.  

 the structure of the weighting filters. Lot of 
works consist in tuning all these filters in terms of 
pole / zero / damping / natural frequency of their 
transfer functions. Using this particular structure, 
and looking only for positive parameters, the 
corresponding filters are stable with stable inverses. 
Although this is not mandatory for H loop-shaping 
synthesis, it is well known that stability of the 
weighting filters is required in the standard 
approach. However, for a given order, choosing the 
best structure (poles / zeros / dampings) for the 
weights to get the best solution to the design 
problem is a difficult task. Unfortunately, the final 
value of the fitness may clearly depend on this 
structure. That is why we propose in this paper to 
determine weighting functions without any 
assumption on their structure; this can be done by 
tuning directly the state-space representation. In that 
case, we show that the optimization becomes fast 
and efficient if the “tridiagonal form” for the state-
space matrix is used (McKelvey and Helmersson, 
1996).  

In section 2, the classical automatic control 
formulation is briefly reminded and the advanced 
tuning methodology called “H loop-shaping” is 
described. In section 3, we introduce the PSO 
algorithm together with the variant used in this 
work. In section 4, we enhance the optimal weights 
tuning first with a generic method to construct the 
fitness from a general specification, and then with 
the tuning of unstructured weight filters. Section 5 
shows the optimization procedure. Finally, we 
illustrate our work with a concrete industrial 
example in section 6, exhibiting much than 
satisfactory results. 

2 PLANT CONTROL USING H 
LOOP-SHAPING SYNTHESIS 

2.1 Controller Design Framework 

Consider the generic closed-loop framework of 
figure 1 (where s is the Laplace variable).  
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Figure 1: Classical closed-loop framework. 

A plant modelled by its transfer function )(sG  

has to be controlled to get the best performances. 
The control input of the system is v  and its output 
is y . The controller is denoted by the transfer 

function ),( sK . This controller depends of some 

tuning parameters   which have to be chosen to get 
this optimal behaviour. Roughly speaking, the goal 
of the closed loop is to assure that the output of the 
system y  tracks the reference r  and is not much 

influenced by the disturbance d  which should be 
rejected. 

For this closed-loop system, any performance 
criterion (potentially complex (see example in 
section 6) and based on the responses of y, u and/or 
 to some particular test signals applied on inputs r 
or d) is a function of the controller parameters. 

2.2 H∞ Loop-shaping Design 

Very often, a Proportional Integral Derivative (PID) 
controller is used to achieve satisfactory 
performance (Åström and Hägglund, 1995). 
However, when the system to control has Multi-
Inputs / Multi-Outputs or high and various 
performances in terms of reference tracking, low 
energy controls or disturbance rejection, this 
classical approach may fail, and advanced control 
methods such as H∞ loop-shaping (McFarlane and 
Glover, 1992) have to be used. 

Considering the classical scheme of figure 1, the 
basic problem of the H loop-shaping method is the 
following: for a given 0 , find a controller K(s) 

such that the H-norm of the transfer function 
between inputs r, d and outputs e, u is less than , 
that is :  
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where Txy(s) denotes the closed-loop transfer 
between input x and output y. 

As an advantage, the minimal attainable value of 
 can be a priori computed from the solution of 2 
Riccati equations: let  CBA ,,  be a state-space 

realization of )(sG ; one obtains: 
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where )(YXi  denotes an eigenvalue of YX, and 
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Furthermore explicit formulae are available to 
construct any controller achieving a value of  
arbitrarily close to its minimal value: 
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In order to tune the performance, a loop-shaping 
procedure is included in the design, which can be 
summarized as follows: 
 At first, the open-loop gain is shaped by 

choosing a precompensator )(sWi  and a 

postcompensator )(sWo , following the classical 

rules of Automatic control;  
 A controller )(sK p  is then computed by solving 

(1) where )(sG  is replaced by the loop-shaped 

plant:  
 

)()()()( sWsGsWsG iop   (6)
 

 The final controller )(sK  is obtained by merging 

the pre- and postcompensators with the previous 
controller: 
 

)()()()( sWsKsWsK opi  (7) 
 

However the tuning of the post and precompensators 
is a crucial point in the design procedure which 
requires expertise to reformulate any high-level 
specifications. The optimization of this tuning to 
squeeze the reformulation step and to achieve better 
performances is explained in the sequel. 

3 THE PSO ALGORITHM 

3.1 The Standard Version (Bratton and 
Kennedy, 2007) 

PSO is a metaheuristic optimization method inspired 
by the social behavior of bird flocking or fish 
schooling. Consider the following optimization 

problem:  
 

)(min xf
x 

 
(8)

 

P particles are moving in the search space. Each of 
them has its own velocity, and is able to remember 
where it has found its best performance. For a given 
particle, we define a neighborhood as a subset of 
particles it is able to communicate with. So at any 
time each particle knows the best position achieved 
so far by a particle of its own neighborhood. The 
following notations are used:  

 k
px (resp. k

pv ): position (resp. velocity) of particle 

p at iteration; 

     k
p

k
p

k
p xfxfb ,minarg 1 : best position found 

by particle p until iteration k; 

    PxV k
p ,...,2,1 : set of “friend neighbors” of 

particle p at iteration k; 

 
  

)(minarg
,

xfg
k
p

k
i xVibx

k
p


 :  best position found by 

the friend neighbours of particle p until iteration 
k.  

The particles move in the search space according to 
the following transition rule: 
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  is the element wise product; 

 w is the inertia factor; 
 c1 and c2 are accelerator coefficients, chosen as 

random numbers generated by a uniform 
distribution on some intervals    21 ,0,,0 cc  

respectively. 

We use the following standard settings (Clerc,  
2012) for this work:  

 swarm size P = 10+ n , where n is the 
dimension of the optimization problem; 

 )2ln(5,021  cc ; 

   3)(dim k
pxV  

 

Several topologies exist for the design of subsets 

)( k
pxV . We use the social ring topologies (Bratton 

and Kennedy, 2007) in which the neighborhood of a 
particle is composed by the 3 other following ones; 
this set does not depend on iteration k and is done at 
the initialization. The inertia factor is defined using 
the variant below. 
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3.2 TVRandIW Custom Version 

We use the Time Varying Random Inertia Weight 
version of PSO defined in (Eberhart, 2001) in which 
the inertia weight is a random number generated by 
a uniform distribution on the interval  1,5.0 . Note 

that the mean value of the inertia factor is 0.75 
which is the value used in (Clerc, 2012). By 
randomizing w at each iteration, we create diversity 
that makes this PSO version powerful for high 
dimensional optimization problems. 

4 ENHANCING OPTIMAL 
WEIGHT TUNING 

4.1 A Generic Fitness Function from a 
General Specification 

As said above a robust controller K(s) that satisfies 
complex specifications of the form 11 yy  , 

22 yy  , …, mm yy   has to be found. Given a loop 
structure (for instance figure 1) and assuming that all 
specified signals can be evaluated e.g. by simulation, 
the previous constrained problem can be 
transformed into a non-constrained one by 
introducing penalty functions, and reducing the 
fitness function: 
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m

j

yy
cc

jjjexfxfxf
1

'
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Tuning these penalty functions, i.e. the coefficients 
),'( jjy  , is a crucial point in the optimization 

process. To satisfy the specification, we have to 
choose:  

 

1,'  jjj yy  (11)
 

However, there is no sense to change a problem of 
filter parameter tuning into a problem of 
optimization parameter tuning. That is why we 
propose in this work a systematic tuning rule, where 
no parameter has to be chosen.  

Consider the jth constraint. We note:  
 

jjj yy '  (12)
 

where j  can be regarded as a security margin to 

satisfy the specification jy  more easily. At the end 

of the optimization, the order of magnitude of the 

penalty function   'jjj yy
e

  has to be close to opt  

and jy  has to be at most jy . Thus: 
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(13) 
 

Generally, it is efficient to choose 

jjj yy 3.01.0   whereas for a loop-shaping 

design problem, we expect the optimal   value to be 
3opt . 

4.2 General Filter Formalism for 
Optimization 

In this section, we want to relax any structural 
constraint on weighting functions. Consider a 
weighting filter, represented by its transfer function 
given by (for a Single Input / Single Output system 
(SISO)): 
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This filter can also be represented by its state space 
representation, given by:  
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where A is a nn  matrix and Wx  is the state vector. 

The following notation is used:  
 






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
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BA
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As an advantage, it is well known that such a 
representation is numerically better conditioned than 
the transfer function. Further, it can be easily 
extended to Multi-Input / Multi-Output (MIMO) 
systems. 

However the main drawback of such a 
representation is the high number of parameters to 
be determined. Indeed if n is the order of a SISO 
filter W(s), the number of unknowns is (n+1)2 in 
comparison with 2n+1 for the transfer function 
representation. Furthermore, the choice of the 
matrices A, B, C, D is not unique. 

A better approach consists in using the 
tridiagonal matrix form for the state-space matrix. A 
real tridiagonal matrix is a square real matrix having 
non-zero elements only on the main, first super and 
first sub diagonals: 
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It is shown in (McKelvey and Helmersson, 1996) 
that for any MIMO representation (A,B,C,D), there 
exists a state-space representation (A’,B’,C’,D’) with 
A’ in tridiagonal form such that (A,B,C,D) and 
(A’,B’,C’,D’) are similar, that is they lead to the 
same transfer function. Thus for the optimization 
problem, we can assume the state-space matrix to be 
tridiagonal without loss of generality, which reduces 
the number of unknowns to 5n-1 in the SISO case, 
that is the same order of magnitude than for the 
transfer function representation. 

For a nuny MIMO filter W(s) of order n, the 
unknown parameters can be collected into a vector x 
defined by: 
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with:  
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and:  
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Note that we cannot say anything about the stability 
of W(s) or W(s)-1 because all the coefficients can 
take any real values. This problem will be dealt with 
in the sequel. 

4.3 Search Space Transformation 

If all parameters were strictly positive, a 
transformation on the initial search space interval 
could be used as follows:  
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This transformation enhances the sensitivity of the 
algorithm because the smallest values of x have the 
same weights than the highest due to the logarithm 
function. Doing that it is possible to choose a large 
search space interval for x. 

However, because structural constraints on 
weights have been previously relaxed, unknowns 
can be positive or negative. With the same idea, a 
change of variable can be done by adapting the 
previous logarithmic transformation with the 
following functions: 
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Thus, the following transformation on the initial 
search space interval can be computed: 
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The function ash10(x) is close to log10(x) for high 
values of x ; but these functions are quite different 

when x  is close to 0. To make the smallest values 

of x  having the same weights than the highest ones 

a scaling factor M >> 1 has to be used. 

5 OPTIMIZATION PROCEDURE 

The optimization consists in tuning the weighting 
functions Wi(s) and Wo(s) defined as follows: 
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The decision variables are the corresponding 
coefficients of their tridiagonal state-space 
representation. The optimization can be done using 
PSO. 

As for a classical Automatic control design, we 
constraint the weights filters to be stable and their 
inverses too. For that purpose, the first task of the 
optimization process consists in insuring these 
stability constraints, as explained below.  

Denote A  the eigenvalues of A. Assuming that 
D-1 exists, the state space matrix A  of the inverse of 
the system (A,B,C,D) is: 

 

CBDAA 1  (25) 
 

At the iteration k after moving the swarm according 
to (9), do for each particle k

px : 

 Build  oooo DCBA ,,,  and  iiii DCBA ,,,  
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px ; 

 Evaluate ooooo CDBAA
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 Evaluate:  
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 Else: 
 build Wi(s) and Wo(s) according to (16); 
 build the loop-shape according to (6); 
 compute Kp(s) satisfying criterion (1); 

 evaluate ; 
 build the controller K(s) according to (7); 
 evaluate fc according to (10);  

 evaluate 
c

k
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Before moving the swarm at next iteration, the best 
neighbor of each particle has to be identified:   
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and go to next step. 
 

The fitness function has been adapted to take into 

account the stabilization task of the weights and 
their inverses, which consists in rendering the real 
part of the eigenvalues strictly negative using hard 
penalty functions. When the weights and their 
inverses just become stable, their poles are close to 
the imaginary axis such that the  values obtained 
with the corresponding controllers are high and so 

  1 cfγ  is negative but close to 0. Thus, there is 

continuity in the fitness function between the 
stabilization task where the fitness is positive close 
to 0 and the optimization task with an existing 
controller where the fitness is negative close to 0. 

6 INDUSTRIAL EXAMPLE: 
INERTIAL LINE OF SIGHT 
STABILIZATION 

6.1 Problem Statement 

To illustrate that work we choose a two axis Line Of 
Sight (LOS) stabilization platform. The goal is to 
maintain the LOS orientation fixed in an inertial 
space, by rotating the gimbals via a gyrometric 
feedback loop with inertial measures of the gimbals 
motion, in spite of environmental conditions. For 
further details in gyrostabilized viewfinder, refer to 
(Masten, 2008) and (Hilkert, 2008) which give an 
exhaustive description of the different possible 
architectures. One considers the azimuth axis as a 
SIMO transfer function (figure 2) whose input is the 
motor voltage u(t) and outputs are the inertial 
velocity (t) measured by a gyrometer and the 
motor current i(t): 
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The inertial LOS stabilization problem consists in 
rejecting two types of disturbances: 
 The first one is the friction torque f(t) induced 

by the rotational movements of the vehicle 
supporting the platform. In this work, friction 
torque is modeled by a Coulomb step: 
 

0)( 0  t,ΓtΓ f  (27)
 

 The second one is the structural flexure 
disturbance induced by the vehicle vibrations 
that can make the LOS be chattering. In this 
work, this disturbance is modeled by the 
following noisy sine:  

 

  0,sin)()( 00  ttωVtvtΓv  (28)
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The control scheme is depicted in figure 3. Denoting 
the angular performance (t), the goal is to find a 
robust controller K(s) that guarantees the following 
specifications: 
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(29)

 

where   is the standard deviation of (t). Due to 
confidentiality reasons, all the frequencies, 
magnitudes of disturbances and specifications have 
been normalized. 

 

Figure 2: SIMO plot responses. 

 

Hmot(s) Hmec(s) 

K(s) 
(t) 

s

1 (t)

i(t)
f(t) 

v(t) 

u(t) 

 

Figure 3: LOS control scheme. 

6.2 Controller Synthesis 

A SISO controller is designed with the H loop-
shaping procedure. Thus an unstructured weight 
W(s) is chosen with order 12. 

Because PSO is a stochastic algorithm, it has to 
be run several times to get a statistical validation and 
evaluation of its performance (10 times in our case, 
each of them involving 500 iterations). Note that an 
optimization using 500 iterations needs 2 hours on a 
CPU E7200 2.53 GHZ which is quite reasonable for 
an off-line design of controllers. The best results 
found are presented in table 1. As we can see, the 

specification is entire satisfied. Note that with the 
classical approach, an expert might find a controller 
which achieves similar performances, but the 
oriented ‘try and error’ approach based on 
specifications reformulations would require several 
days in comparison to the 20 hours of our 
optimization (2 hours for each run). 

Further, it exists some efficient methods to 
compute low-order H controllers (Apkarian, 2002), 
(Gumussoy, 2008), but to our knowledge none of 
them avoid the reformulation step and the definition 
of well suited filters. 

Table 1: Optimization results. 

Specification Optimizing W(s) 
opt 3.9 

max(|(t)|) 0.32max 
max(|i(t)|) 0.9imax 

 1.1max 

max(|(t)| / t>tf) θ  

7 CONCLUSIONS 

In this paper, we proposed to control a plant using 
the H loop-shaping method by tuning directly the 
weighting filters according to the required 
specifications using a PSO algorithm. Several 
advantages have to be noticed. First, the use of an 
optimization procedure provides a controller which 
is supposed to be better than a controller tuned “by 
hand”. Then the try and error classical procedure has 
no more to be done, leading to less time-consuming 
design process. Finally, the use of generic tuning 
strategies of penalty functions leads to a zero 
parameter methodology. 

The proposed methodology has been tested on an 
industrial problem. Our work showed the impact of 
structural considerations on weighting filters: no 
structural assumption is needed for the filter tuning 
problem, allowing more degrees of freedom in the 
design. Our future works consist in merging this 
weighting filter selection problem with the problem 
of finding a fixed order controller by the same way. 
Note that all considerations of this work can also be 
extended to other design methods such as the H 
standard synthesis problem for example. 
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