
Implementing Organizational Self Awareness
A Semantic Mediawiki based Enterprise Ontology Management Approach

David Aveiro1,2,3 and Duarte Pinto1
1Exact Sciences and Engineering Centre, University of Madeira, Caminho da Penteada 9020-105 Funchal, Portugal

2Madeira Interactive Technologies Institute, Caminho da Penteada, 9020-105 Funchal, Portugal
3Center for Organizational Design and Engineering, INESC-INOV Rua Alves Redol 9, 1000-029 Lisboa, Portugal

Keywords: Enterprise Engineering, Model, Meta-Model, Abstract Syntax, Concrete Syntax, Wiki, Semantic Web,
DEMO.

Abstract: In this paper we present a solution currently being developed to enable collaborative enterprise ontology
model management using the Semantic MediaWiki as a base tool. This solution is solidly grounded on the
theoretical foundations of Organizational Self-Awareness and φ-theory of enterprise ontology and is a
valuable contribution to facilitate general and distributed enterprise model management and also concrete
and abstract syntax specification, i.e., the specification of a language's meta-model. This allows flexibility
and ease of use in creation and adaptation of organizational models and also the use of semantic queries as
to detect and inform users on any violation of meta-model rules.

1 INTRODUCTION

A large amount of time is lost, in organizations, in
the handling of unknown exceptions causing
dysfunctions as exception handling can sometimes
take almost half of the total working time, and the
handling of, and recovering from, exceptions is
expensive (Saastamoinen and White, 1995). On
another hand, current Enterprise Engineering (EE)
approaches seem to lack in concepts and method for
a continuous update of organizational models, so
that they are always up to date and available as a
more useful input for the process of continuous
change of organizational reality and decision on
possible evolution choices. It seems that the root
problem is an absence of concepts and method for
explicit capture, and management of information of
exceptions and their handling, which includes the
design and operationalization of organization
artifacts (OA) – e.g., actor role pizza deliverer – that
solve caused dysfunctions. Not immediately
capturing this handling and the consequent resulting
changes in reality and the model of reality itself, will
result that, as time passes, the organization will be
less aware of itself than it should be, when facing the
need of future change due to other unexpected
exceptions. The lack of awareness of organizational
reality has been addressed with the coining of the

term “Organizational Self-Awareness” (OSA),
presented and refined in (Magalhaes et al., 2007)
and (Zacarias et al., 2007). OSA stresses the
importance and need of continuously available,
coherent, updated and updateable models of
organizational reality. With our research work we
aim to facilitate distributed awareness of
organizational reality and also coordinated
distributed change of models of the enterprise's
reality using adequate methods and software tools as
a support. In our tool development efforts a
necessity arose of allowing a precise way of
conceptualizing and implementing the separation of
several concerns, while keeping coherence and
integration between them, namely: organizational
reality; models of reality; and their representations,
while also having adequate flexibility for the
specification of model and meta-model evolution.

2 RELATED WORK

We ground our research in a particular
Organizational Engineering approach, namely, the
Design & Engineering Methodology for
Organizations (DEMO) (Dietz, 2006). Our research
– presented in this and the next sections – are
heavily based in DEMO so, while proceeding, the

453Aveiro D. and Pinto D..
Implementing Organizational Self Awareness - A Semantic Mediawiki based Enterprise Ontology Management Approach.
DOI: 10.5220/0004550404530461
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (SSEO-2013), pages 453-461
ISBN: 978-989-8565-81-5
Copyright c 2013 SCITEPRESS (Science and Technology Publications, Lda.)

reader which is unfamiliar with this methodology is
advised to also consult (Dietz, 2006) or (Dietz and
Albani, 2005) or other publications in:
www.demo.nl. From several approaches to support
EE being proposed, DEMO seems to be one of the
most coherent, comprehensive, consistent and
concise (Dietz, 2006). It has shown to be useful in a
number of applications, from small to large scale
organizations – see, for example, (Dietz and Albani
2005) and (Op’ t Land, 2008) (p. 39). Nevertheless,
DEMO suffers from the shortcoming referred in the
introduction. Namely, DEMO models have been
mostly used to devise blueprints to serve as
instruments for discussion of broader scale
organizational change or development/change of IT
systems (Op’ t Land, 2008) (p. 58) and does not, yet,
provide modeling constructs and a method for a
continuous update of its models as reality changes.
Current software tools supporting DEMO also suffer
from the same shortcoming.

Having in mind the needs of: (1) generalized
access and awareness of organizational reality; and
(2) facilitating incremental and coherent changes to
models of organizational reality, as well as meta-
model evolution and model migration; we are
developing an EE tool based on the Semantic
MediaWiki software. This tool intends to facilitate
communication of organizational models, online
editing and change of models while also providing
dynamic diagram generation in the Wiki pages
representing an organization. In the next sections we
present other related work that serves as a theoretical
foundation for the contributions presented in this
paper.

2.1 Basic Ontological Notions

We adopt the ontological system definition from
(Dietz 2008) (citing (Bunge, 1979)) which concerns
the construction and operation of a system. The
corresponding type of model is the white-box model,
which is a direct conceptualization of the ontological
system definition presented next. Something is a
system if and only if it has the next properties: (1)
composition: a set of elements of some category
(physical, biological, social, chemical etc.); (2)
environment: a set of elements of the same category,
where the composition and the environment are
disjoint; (3) structure: a set of influencing bonds
among the elements in the composition and between
these and the elements in the environment; (4)
production: the elements in the composition produce
services that are delivered to the elements in the
environment. From (Dietz, 2008) we find that in the

Figure 1: The meaning triangle.

Figure 2: The ontological parallelogram.

Figure 3: The model triangle.

Figure 4: Model triangle applied to organizations.

Figure 5: Meaning triangle applied to a transaction OA.

Figure 6: Model triangle applied to the organization space.

 Ψ-theory based DEMO methodology, four aspect
models of the complete ontological model of an
organization are distinguished. The Construction

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

454

Model (CM) specifies the construction of the
organization: the actor roles in the composition and
the environment, as well as the transaction kinds in
which they are involved. The Process Model (PM)
specifies the state space and the transition space of
the coordination world. The State Model (SM)
specifies the state space and the transition space of
the production world. The Action Model (AM)
consists of the action rules that serve as guidelines
for the actor roles in the composition of the
organization.

In Figures 1 and 2, respectively, the meaning
triangle and the ontological parallelogram, taken
from (Dietz, 2005) which explain how (individual)
concepts are created in the human mind. We will
also base our claims in the model triangle, taken
from (Dietz, 2006) and presented in Figure 3. We
find that the model triangle coherently overlaps the
meaning triangle. This happens because a set of
symbols – like a set of DEMO representations
(signs) that constitute a symbolic system – allows
the interpretation of a set of concepts – like a set of
DEMO aspect models, part of the ontological model,
constituting a conceptual system. This conceptual
system, in turn, consists in the conceptualization of
the “real” inter-subjective organizational self, i.e.,
the set of OAs constituting the concrete organization
system's composition structure and production.
Figure 4 is an adaptation from the model triangle of
Figure 3 and depicts our reasoning. We call the set
of all DEMO diagrams, tables and lists used to
formulate the ontological model as ontological
representation.

Now relating with the meaning triangle, we can
verify that a particular sign (e.g., a transaction
symbol with label membership fee payment), part of
an ontological representation (e.g., actor transaction
diagram, representing a library's construction model)
designates (i.e., allows the interpretation or is the
formulation) of the respective concept of the
particular transaction part of the respective
ontological model (e.g., construction model). This
subjective concept, in turn, refers to a concrete
object of the shared inter-subjective reality of the
organization's human agents (e.g., the particular OA
transaction T02). Figure 5, an adaptation from the
meaning triangle depicts this other reasoning.

Another example of an OA related with T02
would be the transaction initiation OA, relating T02
with actor role registrar (also designated by A02)
and formulated by a line connecting the transaction
and actor role symbols of T02 and A02. Actor role
registrar is, in turn, another OA of the construction
space of the library. Once such role is communicated

to all employees of a library, it becomes a “living”
abstract object part of the shared inter-subjective
reality of the library's human agents. Such object,
along with other OAs of the organizational inter-
subjective reality, give human agents a way to
conceptualize their organizational responsibilities –
in this case, requesting membership fee payments to
aspirant members. We name this set of all abstract
objects living in the inter-subjective reality of an
organization's members as the organizational self.
By explicitly formalizing this set of abstract objects
that we call organization artifacts and making this
formalization and their representation available and
changeable in a distributed way we aim to achieve
organizational self-awareness, described in more
detail in (Aveiro and Pinto, 2013).

2.2 EE Tools Supporting DEMO

To generalize the access and awareness of the
organizational reality is not a trivial task. Such tool
must not only enable the collection of distributed
and coherent organizational knowledge aligned with
the organizational reality but also be understandable
and of easy use by any of the organization's
collaborators. This collection of organizational
knowledge should be in an integrated repository of
both the conceptual understanding and the symbolic
understanding in the form of diagrams and tables.
There are some solutions for DEMO modeling like
Visio (Microsoft 2010) (only diagrams), Xemod
(MPRISE 2010) and ModelWorld (Hommes, 2013),
but we found ourselves facing the same issues with
all of them. For our objectives Visio would be the
less helpful, as it offers no support for anything but
diagram specification, and even that support is
achieved by custom made stencils that until now
have a very limited way of enforcing the rules and/or
restrictions of the modeling language. Visio also
fails to help us with our needs of generalized access
and awareness of organizational reality and
facilitating incremental changes to models of
organizational reality, as it does not present a way of
offering a generalized access to the knowledge nor it
facilitates any kind of coherent incremental change.
A change in a diagram is exclusively a change in
that diagram, it does not propagate to other diagrams
that share the same organizational fact.

Xemod is a tool built exclusively for DEMO
modeling and as such offers another level of support.
This support comes at a cost, as this is also a far
more expensive tool than a basic license of Visio.
But even though in Xemod we have a set of rules to
help us model and support for the whole

Implementing�Organizational�Self�Awareness�-�A�Semantic�Mediawiki�based�Enterprise�Ontology�Management�Approach

455

Figure 7: Overview of the SMW Pages and their Relation with DEMO Models and UEAOM.

methodology and not only the diagrams, Xemod also
has its issues: (1) it is impossible to change the pre-
existing stencils, so if the standards change, you are
most likely having to pay once more to upgrade your
tool to the newer version; (2) ineffective way offered
to propagate knowledge – unless you have Xemod
installed on every workstation, the way of sharing
your organizational knowledge is by exporting it to a
far more complex Access database or Excel
spreadsheet; (3) we find another flaw that is shared
with Visio, although in Xemod there is some sort of
change propagation, as your changes in a
Transaction Result Table reflect in all diagrams, it
still doesn't provide a full support in the changes as,
for instance, changing an Object Fact Diagram class
name, does not reflect neither in the name of related
fact types nor in the name of related result type
name.

ModelWorld is an online modelling and
diagramming tool for business architecture models
and, unlike the previous two, is free. As it runs on
the browser it has the advantages of being platform
independent and allowing for collaborative
modelling and validations. Just like in Xemod,
ModelWorld has a set of rules on how diagram
shapes in DEMO modelling relate, but in the same
way it does not allow for the stencils change either,
leaving you at the mercy of the updates, in this case
however, free of charge. But all three tools fail to
meet the needs; in facilitating the incremental and
integrated changes. ModelWorld too offers very
little support in this important aspect and, for a
generalized access and awareness, like Visio,
ModelWorld only allows to export the information
in diagram form.

These problems encountered in current state-of-

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

456

the-art tools led us to developing our own tool as to
fully support and implement our notion of
organizational self-awareness and the evolution of
the meta-models governing such awareness.

3 REALIZING OSA WITH A WIKI

The Wikipedia article on Berlin article contains
many links to other articles, such as «Germany» and
«European Union». However, the link to
«Germany» has a special meaning: it was put there
since Berlin is the capital of Germany. To make this
knowledge available to computer programs, one
would like to «tag» the link [[Germany]] in the
article text, identifying it as a link that describes a
«capital property». With Semantic MediaWiki
(SMW), this is done by putting a «property name»
and «::» in front of the link inside the brackets, thus:
[[Is capital of::Germany]]. In the article, this text
still is displayed as a simple hyperlink to
«Germany». The additional text «capital of» is the
name of the property that classifies the link to
Germany. Information that was provided in an
article is now provided in a formal way accessible to
software tools. We foresaw that SWM could be an
adequate base to develop an EE tool supporting and
facilitating OSA. For that we took some
implementation decisions described next.

3.1 Fundamental Patterns Used

As a theoretical base for the realization of OSA with
a SMW we have specified in (Aveiro and Pinto
2013) the Universal Enterprise Adaptive Object
Model (UEAOM). This model is represented in a
diagram in the World Ontology Specification
Language (Dietz, 2005), a derivative of the Object
Role Modelling (ORM) language (Halpin, 1998).
Due to the inherent preciseness and first order logic
predicate behind ORM, also WOSL is a very
adequate language for our goal to specify in a
powerful and precise way all aspects of models, the
respective meta-models, their representations as well
as their evolution. The classes of our UEAOM
follow the type square and the adaptive object model
patterns (Yoder et al., 2001), usually applied to
software engineering to allow dynamic and runtime
evolution of a software system's services, but here
applied to the enterprise engineering context,
precisely to allow dynamic and runtime evolution of
not only organization systems, but also of the meta-
models governing the structure and instantiation of
the elements of organization systems. Following

Figure 7, certain wiki pages will be the specification
of objects that are instances of the following classes
of our UEAOM: ORGANIZATION ARTIFACT
KIND (OAK) – for the specification of meta-model
elements; SHAPE KIND – whose pages specify
shape kinds whose instances will represent instances
of OAKs; ORGANIZATION ARTIFACT – whose
pages specify OAs – at model level – that are
instances of certain OAKs; and SHAPE, whose
pages specify particular shapes – at diagram level –
representing particular OAs. A similar reasoning is
followed for the classes ORGANIZATION
ARTIFACT RELATION KIND (OARK) – relation
kinds between OAKs; CONNECTOR KIND;
ORGANIZATION ARTIFACT RELATION; and
CONNECTOR. An example of a SHAPE that
represents – at diagram level – an OA (itself, in turn,
at model level) consists in the page titled: «A01-
rental_starter_shape». A page called «A01-
rental_starter» will be an OA represented by the
before-mentioned shape. This OA, in turn, is an
instance of the OAK, itself specified by the page
«ACTOR ROLE». This page, in turn relates to page
«ACTOR ROLE SHAPE KIND» specifying the
characteristics of a shape to represent the OAK
specified by the page «ACTOR ROLE». As we can
see by these examples, one of the advantages of
using the adaptive object model (AOM) and type
square patterns is that they allow a systematic and
precisely organized instantiation at several levels
and concerns, namely: AOM classes level, meta-
model, model and representation concerns – while
keeping all relevant relationships between objects.

On each page one has to specify semantic wiki
properties to provide semantics to the respective
object of the UEAOM, relating it with all other
relevant objects. In the example, by adding to the
page «A01-rental_starter» the link: [[is_instance
_of::ACTOR ROLE]], we specify with the property
is instance of that A01 is an instance of the meta-
model level OAK specified by the page «ACTOR
ROLE». All pages that are instances of OAKs or
OARKs need to specify the property
[[is_instance_of::ORGANIZATION ARTIFACT
KIND]] or [[is_instance_of::ORGANIZATION
ARTIFACT RELATION KIND]] respectively.
Following this method we can, for example, use the
SMW mechanism of semantic queries and
automatically obtain a list of all OAs, OARs and
also the respective SHAPEs and CONNECTORs
that represent them. We can also execute queries to
dynamically obtain the current version of the meta-
model, specified by the pages instances of OAKs
and OARKs.

Implementing�Organizational�Self�Awareness�-�A�Semantic�Mediawiki�based�Enterprise�Ontology�Management�Approach

457

3.2 Creating Models and Diagrams

Our implementation based in a SMW serves the
purpose of not only formally specifying the meta-
model behind models and diagrams, but also of the
organizational self and its change and to visualize
and edit diagrams automatically and dynamically
generated from the pages and their semantic
properties. Each ORGANIZATION ARTIFACT
page makes no sense by themselves, and need to be
contextualized in a user friendly way. This
contextualization is achieved in two steps, the first is
to establish relations between the OAs by creating
ORGANIZATION ARTIFACT RELATIONS and
the second is representing such OAs in a
DIAGRAM. Just like OAs and OARs are instances
of certain OAKs and OARKs, DIAGRAMS will be
instances of a certain DIAGRAM KIND. A page
specifying a DIAGRAM KIND, in turn allows the
formalization of which SHAPE KINDs are allowed
in a certain DIAGRAM. For example the «ACTOR
TRANSACTION DIAGRAM KIND» page specifies
that only the presence of SHAPE KINDs «ACTOR
ROLE SHAPE» and «TRANSACTION KIND
SHAPE» is allowed in instances of this diagram
kind. Concrete diagrams of an organization like, for
example, the EU-Rent Actor Transaction Diagram
(ATD), are pages specifying instances of the
UEAOM class DIAGRAM and these pages, in turn,
have to contain the property is_instance
_of_diagram_kind::ACTOR TRANSACTION
DIAGRAM KIND. These wiki pages that specify
concrete diagrams have a special behavior
implemented by an extension to SMW. These pages
output a DIAGRAM generated in run time
environment using those OA pages and their
semantic properties, automatically generating an
image implemented in the Scalable Vector Graphics
(SVG) format: an open format allowing easy
import/export operations and also zoom operation
without losing resolution quality. The page «A01-
rental_starter_shape» is an example of an instance of
a SHAPE and the page «CA02-Driver.is_
the_executor_of.T03-car_drop-off_connector» is an
example of an instance of the UEAOM class
CONNECTOR, and semantically associated with the
page «transaction_execution_connector_kind», itself
an instance of CONNECTOR KIND. At meta-model
level, instances of classes SHAPE KIND and
CONNECTOR KIND will be associated with
instances of classes SHAPE PROPERTY like, for
example, «actor_id» and of CONNECTOR
PROPERTY like, for example, «line_color». At
model level these properties are instantiated as

objects instances of classes SHAPE PROPERTY
VALUE and CONNECTOR PROPERTY VALUE.
For example, «A01» and «Black», respectively.
These are more examples of the application of the
type square pattern, also applied in the case of
OAKs and OAKRs furthermore showing the
immense power to our approach. Instances of
properties and values could have been also
implemented as wiki pages but the most appropriate
approach was to use the mechanism of semantic
properties already present in SMW.

Thus, classes of our UEAOM that include the
name property are usually implemented as properties
in the respective pages and classes including the
term VALUE, as values of the semantic properties
themselves in the respective wiki pages. The
dynamic power of type square power is kept as we
can dynamically change properties that can be
associated with kinds by editing the special wiki
pages of templates.

To facilitate the process of creation of models
and their representations, and also make the changes
directly made in SVG diagrams reflect in SMW
pages and their properties, a java script based
diagram editor is currently under development to
implements all the functionality deemed convenient
like ones present in well known modeling tools such
as Microsoft Visio.

3.3 Page Names and Semantic
Properties

A standard specification is an explicit set of
requirements for an item, material, component,
system or service. The need to define a standard
nomenclature for wiki pages is crucial to create a
homogeneous model and ensure compatibility with
other projects that may be developed and integrated
with this. A wiki page representing a
ORGANIZATION ARTIFACT KIND or
ORGANIZATION ARTIFACT RELATION KIND
at meta-model level consists of capital letters and
words are separated by underscore. For example, the
wiki page for representing a «transaction kind» fact
type should be «TRANSACTION_KIND». A wiki
page representing an instance of a
ORGANIZATION ARTIFACT is a little different. It
consists of a capital letter followed by an order
number, and then a hyphen, followed by the name of
the fact, where words are lower cased and separated
by underscore. For example, the wiki page «A01-
rental_starter» is defined by the capital letter «A»
(standing for ELEMENTARY ACTOR ROLE)
followed by the number «01», and then a hyphen

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

458

followed by the actor name “rental_starter”, both of
these are ORGANIZATION ARTIFACT
PROPERTY VALUES, used here together to form
an identifier of the page. On another example, the
wiki page «CA02-driver» is defined by the capital
letters «CA» (standing for COMPOSITE ACTOR
ROLE) followed by the number «02» and then a
hyphen followed by the composite actor name
“driver”.

Figure 8: Semantic box for CA02-driver_shape.

Properties also have a simple standard
nomenclature. Any property consists of lowercase
words separated by underscore. Examples of valid
properties are: «actor_id», and
«initiating_actor_role». Every class represented in
the UEAOM will have their own set of properties
that need to be implemented (given values) for the
creation of instances of such class. There is no
typical SMW page for the classes of our UEAOM,
these are specified in the implementation as
templates and forms that we will explain in greater
detail in section 3.4. As an example, Figure 8 depicts
the semantic box that shows the properties for the
wiki page «CA02-driver_shape», an instantiation of
the class SHAPE.

The instances of OARK and OAR are a
particular case when it comes to the nomenclature.
Here we are dealing with composed OAKs and OAs
with multiple elements, and as such this has to be
considered in the naming. For example in an Actor
Transaction Diagram we have two kinds of OARKs,
the «ACTOR_ROLE.is_an_initiator_of.
TRANSACTION_KIND» and «ACTOR_ROLE.is_
the_executor_of.TRANSACTION_KIND». As
previously, and maintaining the coherence, at the
meta-model level the OARKs consist of capital
letters separated by underscore, but here composed
with possible a prefix, an infix and/or a suffix, in
lower case, also separated by underscore to create
the full name of the OARK. At model level the
principle is also the same, the nomenclature used is
the names used of the relating OAs (in lower case)

as previously explained separated by underscore,
again with a possible prefix, infix and/or suffix. An
example of an OAR is «A01-rental_starter.is_
an_initiator_of.T02-car_drop-off».

To help on the task of remembering all the names
of the fact types, the Halo extension used. It is an
extension to SMW and has been developed as a part
of Project Halo in order to facilitate the use of
Semantic Wikis for a large community of users. The
focus of the development was to create tools that
increase the ease of use of SMW features and
advertise the immediate benefits of semantically
enriched contents. We decided to use Halo due to its
auto-completion feature that is a great help for the
task of defining and reusing organization artifacts.
This happens as, for example, actor roles and
transactions names are frequently changed and Halo
extension allows us to prevent inconsistencies in the
specification and interpretation of the artifacts and
their names. With Halo it's possible to define
properties in a very clear manner to connect pages
and create semantic relations between them.

Figure 9: DIAGRAM TEMPLATE page view.

3.4 Semantic Forms

Semantic MediaWiki offers us countless extensions,
one of them being the Semantic Forms. Semantic
Forms are of a substantial value in maintaining the
correctness and the structure of the whole wiki
pages. Semantic Forms allow for a full structural
definition for all the pages of the same kind using
three constructs; properties, templates and forms.

Properties are the elementary “construct” of
semantic forms, and, for every piece of information
in a SMW page, a property should be created. For
example in the page «CA02-driver_shape» on
SMW, we would have properties such as
«actor_name» or «actor_id» as represented in Figure
8.

These properties are then grouped in Templates.
Templates are in a basic way structuring the allowed
properties for each page. In a concrete
implementation of the UEAOM, there is the need for
a template for each of the represented classes in the
model in order for structured instances of those
classes to be created. For example for the Object

Implementing�Organizational�Self�Awareness�-�A�Semantic�Mediawiki�based�Enterprise�Ontology�Management�Approach

459

Class Diagram, a template would list the
«diagram_id», the «diagram_name», the
«is_instance_of», the «represented_model_kind»,
the «diagram_description», the «represented_
shapes» and the «represented_connectors» as shown
in Figure 9.

One would notice that in Figure 9, the names are
not accordingly to our previously defined
nomenclature nor the properties just mentioned. This
is because the list in the Template page are not the
properties themselves but instead, the label names
we decided to give to each of them when creating
the template. These labels are useful to maintain the
pages user friendly but one could had simply used
the same name. In the “edit page” option in the
«DIAGRAM TEMPLATE» page we can find the
corresponding properties to each label as shown in
Figure 10. Although this Template is used to create
instantiations of DIAGRAM, this is not the same
thing as the class DIAGRAM KIND, such class still
needs to exist as a page and with a template of its
own. The template pages for the UEAOM classes
can be seen as the SMW page implementation of the
classes themselves.

The Forms are the implementations for the
templates. For instance in a «DIAGRAM FORM»
one would fill all the listed properties in the
«DIAGRAM TEMPLATE», but this task is intended
to also be allowed by creating a diagram using SVG
that would automatically generate the template,
leaving no need to use the forms for such creation.
Forms however are still useful in an editing
perspective, as one can edit the pages using the form
instead of the visual editor, while keeping the data
structured.

Figure 10: DIAGRAM TEMPLATE edit view.

4 CONCLUSIONS

With our SMW implementation presented in this
paper we take advantage of semantic web
technology to model and represent organizations.
We were able to create wiki pages containing
semantic properties, capable of storing in a formal
and precise way, not only organizational knowledge
in the form of structured organization artifacts, but
also their representations, enabling also user friendly
creation and change of models and diagrams by a
Javascript GUI developed for this purpose. All
diagrams are dynamically generated in run time,
using stored semantic properties in the organization
artifacts pages and in the SVG format, allowing easy
visualization of all kinds of organization diagrams
and also import/export to other tools. Using the
SMW gives a huge versatility to our solution as
semantic queries and sub queries allow us to detect
and inform users on any violation of meta-model
rules and to generate and endless pool of valid and
interesting information regarding the organizational
self. By using a wiki as a base, our solution
inherently allows a community based effort of
knowledge management regarding all kinds of
aspects of organizations, not only using DEMO
language but also any other modeling language,
allowing also evolution and migration of existing
models. Although already modeled conceptually in
our UEAOM, the implementation of the
specification of new versions of languages and
model migration is currently still undergoing. As
other future developments we expect to allow
concurrent change in organization artifacts by
multiple collaborators in a coherent and consistent
way. We also expect to implement a semantic
validation tool for runtime compliance checking
with abstract syntax rules specified at meta-model
level, informing the user of errors allowing an
informed and user-friendly correction of models and
diagrams.

REFERENCES

Aveiro, D. & Pinto, D., 2013. Universal Enterprise
Adaptive Object Model.

Bunge, M. A., 1979. Treatise on basic philosophy, vol. 4,
a world of systems, Reidel Publishing Company.

Dietz, J. L. G., 2005. A World Ontology Specification
Language. Em S. B. / Heidelberg, ed. On the Move to
Meaningful Internet Systems 2005: OTM Workshops.
pp 688–699. Available at: http://dx.doi.org/
10.1007/11575863_88.

KEOD�2013�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

460

Dietz, J. L. G., 2006. Enterprise Ontology - Understanding
The Essence Of Organizational Operation. Em C.-S.
Chen et al., eds. Enterprise Information Systems VII.
Springer Netherlands, pp 19–30. Available at:
http://link.springer.com/chapter/10.1007/978-1-4020-
5347-4_3 [Acedido Fevereiro 18, 2013].

Dietz, J. L. G., 2008. On the Nature of Business Rules.
Advances in Enterprise Engineering I, pp.1–15.

Dietz, J. L. G. & Albani, A., 2005. Basic notions regarding
business processes and supporting information
systems. Requirements Engineering, 10(3), pp.175–
183.

Halpin, T., 1998. Object-Role Modeling: an overview. Em
In http://www.orm.net/pdf/ORMwhitePaper.pdf.

Hommes, B.-J., 2013. ModelWorld,
Magalhaes, R., Zacarias, M. & Tribolet, J., 2007. Making

Sense of Enterprise Architectures as Tools of
Organizational Self-Awareness (OSA). Proceedings of
the Second Workshop on Trends in Enterprise
Architecture Research (TEAR 2007), June, 6, pp.61–
70.

Microsoft, 2010. Visio 2010, Microsoft.
MPRISE, 2010. Xemod,
Op’ t Land, M., 2008. Applying Architecture and Ontology

to the Splitting and Allying of Enterprises. TU Delft.
Saastamoinen, H. & White, G. M., 1995. On handling

exceptions. Proceedings of conference on
Organizational computing systems, pp.302–310.

Yoder, J. W., Balaguer, F. & Johnson, R., 2001.
Architecture and design of adaptive object-models.
SIGPLAN Not., 36(12), pp.50–60.

Zacarias, M. et al., 2007. Towards Organizational Self-
Awareness: An Initial Architecture and Ontology. Em
P. Rittgen, ed. Handbook of Ontologies for Business
Interaction. Information Science Reference, pp 101–
121.

Implementing�Organizational�Self�Awareness�-�A�Semantic�Mediawiki�based�Enterprise�Ontology�Management�Approach

461

