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Abstract: In this paper we propose a methodology to classify Power Quality for feeders, based on sags and by the use 
of KDD technique, establishing a quality level printed in labels. To support the methodology, it was applied 
to feeders on a substation located in Curitiba, Paraná, Brazil, based on attributes such as sag length, duration 
and frequency (number of occurrences on a given period of time). In the search for feeders quality 
classification, on the Data Mining stage, the main stage on KDD process, three different techniques were 
used in a comparatively way for pattern recognition: Artificial Neural Networks, Support Vector Machines 
an Genetic Algorithms. Those techniques presented acceptable results in classification feeders with no 
possible classification using a simplified method based on maximum number of sags. Thus, by printing the 
label with information and Quality level, utilities companies can get better organized for mitigation 
procedures, by establishing clear targets. 

1 INTRODUCTION 

Currently, is growing the consumer demand for 
quality in both products & services provided, 
because businesses in various industries have been 
using high-sensitivity computerized equipment that 
must rely on good Power Quality (PQ), and this has 
been fostering several studies about PQ. 

Many disturbances occur in the electric system, 
usually called “events”, which can be either 
accidental (tree branch fall, atmospheric discharges) 
or programmed (preventive maintenance); such 
events have a direct influence on PQ. 

These events generate some PQ indicators or 
continuity indicators (both individual and 
collective), currently presented by Brazilian 
concessionaires, who are related to Power outages, 
but not present indicators concerning voltage sag. 

In this context, this paper proposes a 
methodology that could be considered an alternative 
to the requirement made by Aneel (2008) that does 

not define performance standards for the voltage sag 
event but indicates that “concessionaires should 
follow up and make available, on an annual basis, 
the performance of monitored bus bars”. This 
information could be a benchmark for bar 
performance of consumer units serviced by the 
Medium and High Voltage Distribution System with 
sensitive loads and short-duration voltage variations.  

The classification proposed hereby considers 
only three attributes: voltage sag magnitude, 
duration and frequency (number of events during a 
certain period); this classification led to the creation 
of a PQ label that classifies feeders according to a 
six-color scale, where each color stands for a quality 
level (from A to F, where A is the highest quality 
and F is the lowest quality). In this paper, we 
decided to present an illustration of the methodology 
applied to feeders of a substation in the municipality 
of Curitiba, Paraná, Brazil, which could be 
generalized and applied to other issues (Góes, 2012). 

The inspiration to create a quality label for 
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voltage sags came after a literature review of the 
researches of Casteren et al., (2005) and Cobben and 
Casteren (2006), who outlined a PQ classification, 
however, without presenting a methodology or 
techniques to make the PQ effective for voltage 
sags.  

Thus, as there seems to be no other studies 
addressing PQ (only PQ-related events) in literature, 
some topics in the studies by Casteren et al., (2005) 
and Cobben and Castaren (2006) are analyzed here:  
1. How to use real data in order to create a quality 

label?  
2. How to define what is “regular quality”, based 

on real data?  
3. How to classify an element/pattern that fits none 

of the classification levels in the quality label?  

The methodology present in this paper brings in its 
context the Knowledge Discovery in Data bases 
(KDD) to answer the questions above. 

In the first question, we used a historical data 
base of an electric power company from a substation 
during a four-month period (February to May, 
2008). The second question is answered by 
achieving the upper limit of the “C” range, presented 
throughout the paper. Finally, in order to answer the 
third question, we used three pattern recognition 
techniques: Artificial Neural Networks (ANN), 
Support Vector Machines (SVM) and Genetic 
Algorithm (GA), at the Data Mining stage (main 
stage of the KDD process). 

This paper is organized in five sections, 
including the introduction. The literature review 
indicating related studies to this theme. The problem 
is described in section 3; section 4 presents the 
methodology applied to a real problem addressed 
here and, finally, section 5 presents the conclusions.  

2 LITERATURE REVIEW 

The research studies related to power network 
disturbances (voltage sags, overvoltage, Total 
Harmonic Distortion, frequency, unbalanced 
circuits, among others) reunite many research 
studies that use Operational Research techniques 
aiming at their identification, location, classification 
and prediction. Some of these research studies were 
developed by Trindade (2005), Oleskovicz et al., 
(2006), Adepoju et al., (2007), Kaewarsa, 
Attakitmongcol and Kulworawanichpong (2008), 
Caciotta, Giarnetti and Leccese (2009), Gencer et 
al., (2010), Kappor and Saini (2011) and Dash et al., 
(2012). However, most of them do not directly 

address PQ classification; instead, as mentioned 
above, they address disturbances affecting quality.  

On the other hand, the literature has at least two 
studies outlining PQ classification. One of them was 
developed by Cobben and Castaren (2006) and it 
presents three methods for PQ classification based 
on: small voltage variations, voltage swings and 
voltage drops; however, without clarifying the 
methodology, thus leaving many gaps. These 
classification methods match transparency and 
simplicity once they use a classification system 
based on a quality label as illustrated in Figure 1. 
This illustration is from Casteren et al., (2005) – the 
other study, which seeks to classify voltage sags as 
to allow pointing the accountability (consumer, 
equipment manufacturer or concessionaire) for the 
cause of the event and its mitigation measures by 
examining the duration and remaining value of such 
sags.  

 

  A  Very high quality 
  B High quality 
  C Regular quality 
  D Low quality 
  E Very low quality 
  F     Extremely low quality 

Figure 1: PQ label. Source: Casteren et al., (2005). 

With this data in hand, Casteren et al., (2005) 
outline a quality label according to frequency 
(occurrences number), in order to classify sags 
according to a table divided into nine different 
levels, as shown in Figure 2, grouped into three 
regions, where each region represents an 
responsibility area.  
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Figure 2: Voltage sag responsibility (duration x remnant 
voltage). Source: Casteren et al., (2005). 

The upper region (K0, M0, L0), with duration 
varying between 500 ms and 5 min and remnant 
voltage between 80% and 100%, is the 
manufacturer’s responsibility. The intermediate 
region (K1, M1, L1), with analogous interpretation, 
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is the consumer’s responsibility area. Finally, the 
lower region (K2, M2, L2) is the concessionaire’s 
responsibility. The authors do not have any detailed 
sag data, either measured or simulated; therefore, the 
numbers presented in the presented standard criteria 
are fictitious. Figure 3, for example, would indicate 
that a consumer could annually experience a 
maximum of five K1 sags, three M1 sags and L1 
sags; any number above these would result in 
penalties to the concessionaire. M2 sags are allowed 
only once every two years. 

The upper region (K0, M0, L0), with duration 
varying between 500 ms and 5 min and remnant 
voltage between 80% and 100%, is the 
manufacturer’s responsibility. The intermediate 
region (K1, M1, L1), with analogous interpretation, 
is the consumer’s responsibility area. Finally, the 
lower region (K2, M2, L2) is the concessionaire’s 
responsibility. The authors do not have any detailed 
sag data, either measured or simulated; therefore, the 
numbers presented in the presented standard criteria 
are fictitious. Figure 3, for example, would indicate 
that a consumer could annually experience a 
maximum of five K1 sags, three M1 sags and L1 
sags; any number above these would result in 
penalties to the concessionaire. M2 sags are allowed 
only once every two years.  
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Figure 3: Example of a sag characterization criterion. 

In order to facilitate communications between 
consumers and concessionaires, the authors prepared 
a PQ classification label (or quality label) based on 
the sag characterization criteria, as shown in Figure 
4. According to this classification, “A” indicates 
high power quality and “E” means low power 
quality.  

 

 

Figure 4: Power quality label. Source: Casteren et al., 
(2005). 

The PQ classification presented in Figure 4 must 

be linked to the sag characterization criteria (Figure 
3) and, therefore, the authors used the upper “C” 
level limit criterion as shown in Figure 5, below. 
Analogously, additional criteria tables can be created 
to define the upper A, B and D limits.  

The authors conclude that this classification 
method is simple and consistent, as it requires only 
multiplication factors, which are defined according 
to the concessionaires’ criteria. 
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Figure 5: PQ classification method (linking Figures 3 and 
4). 

However, some considerations made by the 
authors are not so obvious and it seems that the 
literature does not have other studies answering the 
questions made in section 1: how to use real data to 
create a quality label? How to define what is 
“regular quality” based on real data? How to classify 
an element that does not fit any classification range 
in the quality label such as, for example, K1, K2, 
M1 and L1 pertaining to the values in the “B” 
classification range, when M2 and L2 have values in 
the “D” classification range (Figure 6)?  
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Figure 6: Example of sag events that do not fit the 
framework of Figure 5. 

Thus, for element classification, as shown in 
Figure 6 above, we used the KDD process (Góes, 
2012). 
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3 PROBLEM DESCRIPTION 

With the purpose of achieving the first objective of 
the research, which consists in using real data to 
indicate the PQ, data were collected from a power 
company for application of the methodology 
developed. This company supplies 399 
municipalities and 1,114 localities (districts, small 
towns and villages) in the State of Paraná in Brazil. 
At the time of the survey, it had 378 substations (SS) 
in order to supply around four million consumers 
(households, industries and others); specifically in 
the capital city, there were 30 substations with 
around 300 feeders (approximately 10 feeders per 
SS). 

In 14 of the 378 substations, a device is installed 
to detect PQ-events also measuring voltage sags. Of 
these 14 devices, six devices are installed in 
substations in the capital city and its metropolitan 
area.  

The methodology proposed in the present study 
is applied to one of these substations, which is 
composed of 12 feeders. However, it should be 
noted that this methodology can be applied to any 
substation as long as it has a data collector to capture 
the information required.  

The historical records of events (voltage sags) 
required to develop the proposal of this study are 
stored in the concessionaire’s data bases. In the first 
data base, here called BD01, data are captured by the 
device installed in the bus bar of the substation. 
Each of these records contains 17 data (attributes), 
namely: “oscillographic identification”, which 
consists in record numbering by the concessionaire 
software;  “date and time of event start”, which 
indicates the initial time of the PQ-related event 
record; “type of event”, which indicates the PQ-
related phenomenon: voltage sag or voltage swell, 
among others; and “remnant voltage or root mean 
square (RMS)”, which indicates the remnant 
voltage, that is, the voltage “left” after the event 
occurrence at each of the voltage phases (Phase A, 
Phase B and Phase C).   

The records in the second data base, BD02, are 
captured by the concessionaire’s Distribution 
Operation System (DOS) and are related to the 
interruptions. These records, obtained through 
software developed by the concessionaire, supply 29 
attributes, among which: “feeder identification” – 
feeder name of the power grid where the interruption 
was generated; “data and time of event onset” – 
moment when the interruption occurred; “duration” 
– interruption duration; “type” - description of 
interruption type (accidental, programmed or 
voluntary) and “component affected” – description 

of the electrical component affected. 
The data used in the study was collected during a 

four-month period, between February and May 
2008; the BD01 was formed by 352 records and the 
BD02 was formed by 422 records. Thus, a procedure 
is necessary to analyze and explore this information, 
transforming it into knowledge. This will require the 
use of the KDD process aiming at data exploration 
that will ultimately produce the PQ label.  

4 METHODOLOGY 
APPLICATION 

The KDD process was used as the foundation of the 
methodology developed here to produce the PQ 
label. This process is composed for five steps: data 
selection; data preprocessing; data transformation; 
data mining and, finally, interpretation of the 
knowledge generated (Fayyad et al., 1996). But in 
this paper the KDD process that is basically 
composed of the following stages: data 
preprocessing (data cleaning and transformation); 
data association between data bases (BD01 and 
BD02) and, finally, the creation of the label itself. At 
the last stage, Data Mining techniques were used in 
order to achieve pattern recognition: ANN; AG and 
SVM, as already commented. (Góes, 2012) 

4.1 Data Pre-processing 

At this stage of the KDD process, the attributes 
relevant to the study were analyzed; eight attributes 
were removed from BD01 and nine attributes were 
left (described in the section 3 above). With regard 
to the BD02 preprocessing, the number of attributes 
was reduced to six for the same reason (also 
described above). 

Also, only the records where “Type” attributes 
were “Accidental” should be considered, for the 
others “Types” it is possible to monitor PQ 
disturbances. As this information is present 
exclusively in BD02, this data base was filtered 
again, after which only five attributes were left, thus 
also reducing the numbers of records from 422 to 
181.  

Transformation of attributes that indicate 
remnant voltage at each of the voltage phases was 
performed, called “aggregation of parameters”, that 
is, the remnant voltage of the event was defined as 
the lowest value among the values achieved by the 
three voltage phases – an alternative indicated by 
Aneel (2008). Event duration, in turn, is defined as 
the maximum duration between the three  
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Table 1: Some BD01 records after data transformation. 

Id. Osc. Start Date Start Time Final Date Final Time Duration Circuit RMS 
9 2008-02-06 07:28:35.034 2008-02-06 07:28:35.252 218 0 60.1 

10 2008-02-06 20:04:14.805 2008-02-06 20:04:14.990 185 1 35.9 
... ... ... ... ... ... ... ... 

Table 2: Examples of BD03 records (association between BD01and BD02). 

Id. 
Osc. 

Start Date Start Time Duration RMS Feeder Component Affected Start Date Start Time Duration 

117 28/04/2008 14:28:43 185 46.3 AC Fly tap 28/04/2008 14:30 135 

117 28/04/2008 14:28:43 185 46.3 AF AR actuation 28/04/2008 14:29 1 

117 28/04/2008 14:28:43 185 46.3 AF Fusible link act. 28/04/2008 14:42 41 

121 28/04/2008 18:07:50 202 42.6 AC Conductor - AT 28/04/2008 18:32 344 

121 28/04/2008 18:07:50 202 42.6 AI Conductor - BT 28/04/2008 18:16 403 

136 02/05/2008 7:13:10 705 28.7 AF Pole 02/05/2008 07:15 36 

139 08/05/2008 11:13:04 168 42.4 AI AR actuation 08/05/2008 11:14 0 

 
phase/neutral events. These values were recorded in 
the new “Remnant voltage” attribute, and the “RMS 
voltage phase A”, “RMS voltage phase B” and 
“RMS voltage phase C” attributes were excluded 
from BD01. 

The methodology proposed to create the PQ 
label of a feeder considers only three attributes: 
remnant voltage, duration and number of 
occurrences. The first two attributes are in BD01 
(Table 1); the third attribute is the result of a simple 
occurrence count. However, BD01 does not indicate 
the feeder that was affected by the event as data 
relative to feeders are present in BD02.  

Thus, it is necessary to associate BD01 records 
with BD02 records, according to a procedure 
presented in the next section. 

4.2 Data Association (BD01 and BD02) 

In order to associate the date contained in BD01 and 
BD02, attributes related to time were used. More 
specifically, “Start Date” and “Start Time” attributes 
in BD01 and “Start Date” and “Start Time” 
attributes in BD02 were used.  

This association generated a new data base, 
called BD03, containing 169 records. That is, of the 
352 records in BD01 and the 181 records in BD02, 
there are 169 records associated according to the 
criterion above. 

Table 2, with 10 columns, presents some 
examples/records of this association. The 
information in columns 1 to 5 is data from BD01 
while columns 6 to 10 are their respective 
associations found in BD02. In addition, as a means 
of identifying the 12 feeders in this substation, they 
will be generically called AA, AB, AC,..., AK, and 

AL. 
Table 2 shows that one record in BD01 may have 

more than one association with BD02, as in the case 
of the first three lines of the table, where the 
“Oscillography Identification” attribute is 117. This 
indicates that the event captured in the substation 
was also “captured” or was originated in two 
feeders, “AC” and “AF”, where “AF” has two 
records for different components affected: “Fly 
Tap”, “AR actuation”, or simply “AR” and “Fusible 
link actuation”. 

4.3 Creating the PQ Label for the 
Feeders 

The classification of each BD03 record started with 
the construction of a classification table (Table 3) 
inspired by the proposal made by Casteren et al., 
(2005), as shown in section 2.1, with the following 
attributes: remnant voltage, duration and number of 
events. The division proposed in this paper for the 
table was made as follows: two duration ranges were 
considered for the event: ≤ 500 and > 500 
milliseconds and five remnant voltage intervals: 
10% to 19%, 20% to 39%, 40% to 59%, 60% to 
79% and 80% to 90%. 

The connection between duration and remnant 
voltage can be better understood by observing Table 
3, where 10 possible classes, called C1, C2,... to 
C10,, are presented. It becomes evident that, the 
shorter the duration, the higher the remnant voltage 
of the event, and the better the PQ of that event will 
be. Thus, the PQ of events has the following 
hierarchy: C1 ≥ C2 ≥ ... ≥ C10. In order to typify 
such classification, records in Table 2 are duly 
classified, according to Table 3 and Table 4. 
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Table 3: Classification considering duration and remnant 
voltage in the records. 

RMS (%) 
Duration 

≤ 500 milliseconds > 500 milliseconds 

80 to 90% C1 C2 

60 to 79% C3 C4 

40 to 59% C5 C6 

20 to 39% C7 C8 

10 to 19% C9 C10 

Table 4: Classification of records in Table 2 according to 
Table 3. 

Duration 
(milliseconds) 

RMS 
(%) 

Feeder 
Record 

Classification  

185 46.3 AC C5 

185 46.3 AF C5 

185 46.3 AF C5 

202 42.6 AC C5 

202 42.6 AI C5 

705 28.7 AF C8 

 

By defining this classification for the 169 BD03 
records do BD03, the “AA” feeder record numbers, 
for example, are those presented in Table 5. Record 
classification is obtained similarly for the other 
feeders in the substation. Table 5 shows that the 
“AA” feeder has two events of the C5 type: one of 
the C7 type and one of the C8 type. Considering all 
the 169 records of all the 12 feeders in the 
substation, Table 6 shows that only three of those 
ranges have records: C5, C7 and C8. 

Table 5: Classification of voltage sags of the “AA” feeder. 

RMS (%) 
Duration 

≤ 500 milliseconds > 500 milliseconds 

80 to 90% 0 0 

60 to 79% 0 0 

40 to 59% 2 0 

20 to 39% 1 1 

10 to 19% 0 0 

 
In order to obtain the “average quality” of the 

substation under analysis, the number of events in 
Table 6 was divided by 12 (total feeders), obtaining 
the data in Table 7, already duly rounded.  

Therefore, in order to create the PQ label, the 
values of six ranges were established, where “Range 
A” is the best PQ and “Range F” is the worst one. 
For each range factors – defined in conjunction with 
the concessionaire’s engineers - were multiplied to 
determine the upper limit of each range.  Thus, 
Table 7 above represents the feeder average, that is, 

the upper limit of “Range C”. The upper bound of 
“Range A” (Table 8) was obtained by multiplying 
values in Table 7 by 0.25.  

Table 6: Classification of voltage sags in the substation 
analyzed considering all the records. 

RMS (%) 
Duration 

≤ 500 milliseconds > 500 milliseconds 

80 to 90% 0 0 

60 to 79% 0 0 

40 to 59% 149 0 

20 to 39% 15 5 

10 to 19% 0 0 

 
The upper bound of “Range B” was obtained by 

multiplying the values in Table 7 by 0.50. By 
multiplying the values in Table 7 by 1.5, the upper 
bound of “Range D” was obtained. The upper bound 
of “Range E” was obtained by multiplying the 
values in Table 7 by a 2.0 factor. Finally, the upper 
bound of “Range F” was obtained by verifying the 
highest value presented for the feeders under 
analysis. These values are presented in the PQ 
classification label (Figure 7). 

Table 7: Average classification of voltage sags in the 
substation analyzed.  

RMS (%) 
Duration 

≤ 500 milliseconds > 500 milliseconds 

80 to 90% 0 0 

60 to 79% 0 0 

40 to 59% 13 0 

20 to 39% 2 1 

10 to 19% 0 0 

Table 8: Upper bound of “Range A” in the PQ 
classification label of a feeder in a particular substation. 

RMS (%) 
Duration 

≤ 500 milliseconds > 500 milliseconds 

80 to 90% 0 0 

60 to 79% 0 0 

40 to 59% 4 0 

20 to 39% 1 1 

10 to 19% 0 0 

 

Once the label is created, the classification of 
each feeder only requires verifying which range 
interval presented in Figure 7 the feeder fits in.  
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Figure 7: PQ classification label of feeders in a particular 
substation. 

However, it becomes evident that such task is not 
so simple, as only five of the 12 feeders fit in these 
range of values, all of them with and “A” quality 
classification, namely: AA, AG, AJ, AK and AL. 
The five feeders present values for C5 pertaining to 
the [0, 4] interval and for C7 and C8, in the [0, 1] 
interval, as illustrated in Figure 8. 

 

 

Figure 8: Feeders classified directly from the PQ label.  

Other feeders could not be directly classified as, 
for example, for feeder AH the value of C5 equals 
16, which indicates that its classification would be 
D. However, in this feeder, C7 and C8 are outside D 
class intervals. Thus, in order to classify the other 
feeders, we used three Data Mining techniques, 
comparatively. 

4.4 Data Mining Techniques  

The DM stage is the most important stage in the 
KDD process, as it is the moment when pattern 
recognition techniques are applied, either through 
heuristic or through metaheuristic procedures. In this 
study, such procedures are applied aiming at the PQ 
classification of feeders in a substation.   

In this paper we present the application three 
techniques used to classify feeders that could not be 
directly classified. Her particularities can be seeing 
in Góes (2012).  

4.4.1 Artificial Neural Networks 

In the ANN (Haykin, 1999) application, the 
backpropagation learning algorithm was used, which 

was implemented in Visual Basic 6.0. Each ANN 
trained had three inputs (C5, C7 and C8) for the 
input layer, hidden layer (with number of neurons 
varying between “1” and “20”) and one neuron in 
the output layer (to indicate the class). The sigmoid-
logistic function is the activation function for all 
(hidden and output layers). 

The network was trained five times; the initial 
weight set varied at random in the (-1,1) interval. 
There were 1,500 tests in total (3 stages x 5 initial 
weight sets x 20 quantities of neurons in the hidden 
layer x 5 classification ranges). The training was 
completed when one of the following conditions was 
met: 1,000 iterations; mean square error less than or 
equal to 10-4; or a number of records incorrectly 
classified as equal to zero. Regarding the problem 
approached here, the percentage of correctness in the 
training of this technique was 99.88%, considering 
the three stages of the three-fold method, and 
99.67% in the test. Table 9 below presents the feeder 
classification results achieved with the application of 
this technique. In Table 9, as well as with the others 
to be presented, the “Voting Classification” column 
(last column) indicates the classification with 
highest occurrence in the former columns, that is, 
the statistical mode. 

In spite of the fact that AA, AG, AJ, AK and AL 
feeders already have their classification defined, as 
they were directly classified in the quality label, they 
were also introduced to the networks, thus 
confirming classifications. Therefore, six feeders 
had “A” classification, one feeder had “B” 
classification, two feeders had “C” classification, 
one feeder had “D” classification, one feeder had 
“E” classification and one feeder had “F” 
classification.  

Table 9: Feeder classification results – ANN. 

Feeder
Stratified Three-fold Procedure 

1st stage 2nd  tage 3rd stage Voting Classificat. 
AA A A A A 

AB C C C C 

AC D D D D 

AD C C B C 

AE B B B B 

AF F F F F 

AG A A A A 

AH A A A A 

AI E E E E 

AJ A A A A 

AK A A A A 

AL A A A A 
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Define P1 = [X(1) X(2) X(3)];    P2 = [X(4) X(5 X(6)];      P3 = [X(7) X(8) X(9)]. 
Determine the plane  equation that contains P1, P2 and P3. 
For each element k 

Replace variables in plane   equation with k values, obtaining the variable Value.  
Calculate the Euclidian distance between k and , obtaining the variable Dist. 
If kCL1, then 

If Value < 0, then correct = correct+1; 
If Dist01 > Dist, then Dist01= Dist; 

If kCL2, then 
If Value > 0, then correct = correct+1; 
If Dist02 > Dist, then Dist02 = Dist; 

z1= correct / number of examples k; 
z2=module (Dist01 – Dist02) * penalty; 
Fitness of X = z1 - z2. 

 
 

Figure 9: Pseudocode for fitness calculation. 

4.4.2 Support Vector Machines 

As to the SVM (Vapnik, 1995); (Burges, 1998) at 
first the svmtrain function of Matlab 7.9.0 was used 
with two matrices in the arguments: Examples and 
Answers, according to the equation (1). 

 

Training = svmtrain(Examples,Answer) (1)
 

The “Examples” matrix has in their columns the Ci 
values and the “Answers” matrix has only one 
column with the range value that each pattern 
(“Examples” matrix line) has as its answer. 
Subsequently, the test set was used, described here 
in the form of matrix, named “New”, and the result 
of “Training” with the svmclassify function, 
equation (2), with the purpose of verifying the 
percentage of correct classification of the new data. 
 

Classification = svmclassify(Training,New) (2)
 

It should be noted that the arguments used in the 
training for the svmtrain function are default for 
Matlab 7.9.0, as the range sets of the quality label 
are linearly separable by a plane. In this technique, 
15 tests (3 training stages x 5 classification ranges) 
were carried out. The percentage of correctness in 
the training of this technique was 100%, considering 
the three stages of the three-fold procedure, and it 
was 99.55% in the test. Table 10 below presents the 
result of feeder classification achieved with the 
SVM application. 

Table 10 indicates that the feeder voting 
classification is: seven with “A” classification, none 
with “B” classification, and three with “C” 
classification, none with “D” classification, one with 
“E” classification and one with “F” classification. 
This technique also correctly classified AA, AG, AJ, 
AK and AL feeders, which were directly classified 
in the quality label. 

 

Table 10: Feeder classification results – SVM. 

Feeder 
Stratified Three-fold Procedure 

1st stage 
2nd  

stage 
3rd  

stage 
Voting 

Classificat. 
AA A A A A 
AB C C C C 
AC D C C C 
AD C C B C 
AE A A A A 
AF F F F F 
AG A A A A 
AH A A A A 
AI D E E E 
AJ A A A A 
AK A A A A 
AL A A A A 

4.4.3 Genetic Algorithm 

The GA (GOLDBERG, 1989) was used with the 
purpose of determining a plane so that each one of 
the resulting half-spaces contained only one of the 
sets of each application stage, according to aspects 
highlighted in the beginning of section 4.4. The 
value of the fitness functions is established by an 
algorithm that determines three points defining such 
plane, where the coordinates of each point are 
individuals’ alleles.  

Each individual is composed of nine alleles with 
values belonging to the set of real numbers. Thus, 
the first three alleles represent the coordinates of a 
P1 point, the next three alleles are coordinates of the 
P2 point, and the last three alleles are coordinates of 
the P3 point. There is also the fitness calculation that 
takes into account the difference of the distance 
between two points (in different sets) closer to the 
plane determined. The greater the difference 
between distances, the greater is the penalty in 
fitness. Therefore, Figure 9 presents this algorithm, 
where X is a vector in which each coordinate 
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represents an allele of the population’s individual; 
CL1 and CL2 are training sets and k is an element 
pertaining to CL1 CL2. 

In order to apply the GA, the 0.1 “penalty” and 
the Matblab 7.9.0 toolbox – gatool - were used. The 
arguments for the training were the default that 
achieved the best results. In one population type, the 
Double Vector - where each allele is a real number – 
was used.  

Table 11: Feeder classification result – AG. 

Feeder 
Stratified Three-fold Procedure 

1st stage 2nd stage 3rd stage Voting Classificat. 
AA A A A A 
AB E C C C 
AC E C C C 
AD B B C B 
AE A A A A 
AF F F F F 
AG A A A A 
AH E C C C 
AI E C C C 
AJ A A A A 
AK A A A A 
AL A A A A 

 

The percentage of correctness in the training was 
100%, considering the three stages of the three-fold 
method, and 99.11% in the test. Table 11 below 
presents the feeder classification result achieved 
through the application of this technique. Here, the 
AA, AG, AJ, AK and AL feeders also confirmed the 
classifications previously achieved. Thus, there are 
six feeders with “A” classification, one feeder with 
“B” classification, four feeders with “C” 
classification, no feeder with “D” classification, no 
feeder with “E” classification and one feeder with 
“F” classification.  

5 RESULT ANALYSIS AND 
CONCLUSIONS 

The analysis of results is the last stage in the KDD 
process and is performed here by comparing 
classifications obtained with the three techniques 
applied. Table 12 presents the classification result 
achieved (“voting classification” column in Tables 9 
to 11). In addition, in this table there is also a 
column named “voting classification” that indicates 
the result with the highest occurrence among the 
three techniques, which this analysis assumes as the 
most adequate to the problem. 

An analysis of Table 12 indicates that, among 

the 12 feeders, seven feeders (AA, AB, AF, AG, AJ, 
AK and AL) have the same classification under all 
the techniques. 

Table 12: Comparison between classifications achieved 
through ANN, SVM and AG. 

Feeder 
Stratified Three-fold Procedure 

ANN SVM AG Voting 

AA A A A A 

AB C C C C 

AC D C C C 

AD C C B C 

AE B A A A 

AF F F F F 

AG A A A A 

AH A A C A 

AI E E C E 

AJ A A A A 

AK A A A A 

AL A A A A 

 

After a comparison between each technique and 
the classification admitted as adequate (“voting 
classification” column), the GA technique presents 
three feeders (AD, AH and AI) with distinct 
classifications, in two non-neighbor ranges. 
According to this technique, the AD feeder has C 
classification and the adequate classification is A; 
the AI feeder was classified as C by AG, and E was 
adequate. For the latter, the result presented by AG 
is very distant from that of the other two techniques, 
which presented the same result as the adequate 
classification. 

In the classification presented by the ANN 
technique there are two feeders (AC and AE) with a 
classification different from that presented in the 
“voting classification”, but in neighbor 
classification. For the AC feeder, the adequate 
classification is C and ANN classified it as D, and 
the AE feeder was classified by ANN as being B and 
the adequate classification indicates A. Finally, the 
SVM technique yields a result that is identical to the 
“voting classification” column, which makes it the 
most adequate technique for this case study.  

Thus, the adequate feeder classification resulted 
in seven feeders with “A” classification, no feeder 
with “B” classification, three feeders with “C” 
classification, no feeder with “D” classification, one 
feeder with “E” classification and one feeder with 
“F” classification (Figure 10). 

In Figure 10, the values presented for each feeder 
express event occurrence in each of the C5, C7 and 
C8, classes in this order.  

The label presents non-explicit knowledge when 
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analyzing values such as, for example, classification 
of AI and AF feeders, as C5 and C7 values in AI 
area higher than in AF, which could indicate a lower 
quality in AI compared to AF but, as C8 has a lower 
value for AI, the techniques applied indicated that 
AF has lower quality than the AI feeder.  

 

 

Figure 10: Quality label with feeder classification. 

Thus, the methodology developed and applied in 
this study revealed non-explicit knowledge in the 
concessionaire’s data bases to an unprecedented real 
problem: the PQ considering voltage sags. 
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