Model-driven Transformation for Optimizing PSMs
A Case Study of Rule Design for Multi-device GUI Generation

David Raneburger, Roman Popp and Hermann Kaindl

Institute of Computer Technology, Vienna Universtity of Technology, Gusshausstrasse 27-29, Vienna, Austria

Keywords:

Abstract:

Platform-specific Model, Transformation Rules, Rule Design, GUI Generation, Optimization.

Software design and implementation, in general, have to take many alternatives into account for decision
making. Still, current approaches to Model-driven Architecture (MDA) typically transform in one and only
one thread from Platform-independent Models (PIMs) to Platform-specific Models (PSMs). Also in the special
case of automatically generating graphical user interfaces (GUIs) according to MDA, in most approaches one
thread derives a Final User Interface Model from some higher-level model(s). We think that this is one reason
for less than optimal usability of automatically generated GUIs.

Our transformation approach (as implemented for GUI generation) allows exploring different design alterna-
tives and evaluating the resulting PSMs according to given optimization objectives. Such a search approach
leads to optimal PSMs according to these objectives. In this way, resulting GUIs can be tailored for different
devices such as tablet PCs and smartphones. In this context, we design transformation rules for optimizing
PSMs independently from concrete device properties, which are given in separate device specifications (Plat-
form Models). We present a related case study for multi-device GUI generation and show that this approach
facilitates the automated optimization of PSMs for several devices.

1 BACKGROUND AND formations® (QVT) have been developed to support
INTRODUCTION the specification of transformation rules. These lan-

The Object Management Group’s Model Driven Ar-
chitecture’ (MDA) proposes a generic concept to
refine models over different levels of abstraction
to source code. Between these levels, MDA pro-
poses the use of transformation rules that trans-
form a certain source model to a certain target
model, as illustrated in Figure 1 for a transformation
from Platform-independent Model (PIM) to Platform-
specific Model (PSM). Important promises of MDA
are, e.g., faster time-to-market and easier mainte-
nance (Truyen, 2006).

guages can reference any meta-model specified in an
appropriate modeling language (typically Meta Ob-
ject Facility* (MOF) compliant languages like the
Unified Modeling Language® (UML) or Ecore) and
are thus also applicable for model-driven Ul genera-
tion.

Each of these languages comes with its own trans-
formation engine, which supports the execution of the
specified transformation rules. These engines do not
contain conflict resolution mechanisms, thus they al-
low for exactly one rule to match a certain pattern in
the source model. In effect, each source model can
be transformed to exactly one target model, as illus-
trated in Figure 1 for a transformation from PIM to

PIM PSM PSM according to MDA.

® Transformation O We consider this a major restriction, since soft-

ware design (and implementation), in general, have

Figure 1: Standard Model-driven Transformation. to take many alternatives into account (Eramo et al.,

2012). Ideally, the “best” design resulting from all

Transformation Ia;nguages like the Atlas Transfor- possible alternatives should be taken. While software
mation Language (ATL) or Query / View / Trans-

Shttp://ww.omg.org/spec/QVT/1.1/

Lhttp://ww.omg.org/mda/ 4http://ww.omg.org/mof/
2http://ww.eclipse.org/atl/ Shttp://ww.uml .org/

496 Raneburger D., Popp R. and Kaindl H..
Model-driven Transformation for Optimizing PSMs - A Case Study of Rule Design for Multi-device GUI Generation.
DOI: 10.5220/0004490104960503
In Proceedings of the 8th International Joint Conference on Software Technologies (ICSOFT-PT-2013), pages 496-503
ISBN: 978-989-8565-68-6
Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

Model-driven Transformation for Optimizing PSMs - A Case Study of Rule Design for Multi-device GUI Generation

design as specified in practice may typically suggest
that there is only the documented solution, many al-
ternatives are typically considered and discussed.

Automated generation of graphical user interfaces
(GUIs) can also apply MDA, typically starting from
high-level interaction models (e.g., Task Models ac-
cording to (Paternd et al., 1997) and UsiXML® or
Discourse-based Communication Models (Falb et al.,
2006; Popp and Raneburger, 2011)) and transforming
them over different levels of abstraction to the source
code of a GUI. Such approaches also apply transfor-
mation rules to transform the corresponding models
between different levels of abstraction (Calvary et al.,
2003).

For automatically generated GUIs according to
such an approach, the restriction through a single-
threaded transformation is even more obvious, since
it is-a major reason for the less than optimal usabil-
ity visible to and experienced by the end-user. Multi-
device GUI generation from a single source model ob-
viously needs at least alternatives for each generated
GUI, e.g., for a PC, a tablet PC and a smartphone.

While several GUIs may be achieved through a
specific set of transformation rules for each GUI, we
strive for a single set of transformation rules for all
supported devices. They should define a kind of
search space, where a heuristic search can find op-
timal PSMs according to given optimization crite-
ria and constraints posed by a given device (Plat-
form). Figure 2 sketches this approach of model-
driven transformation with alternatives, where the
Optimal PSMs correspond to different Platforms. The
optimization happens in the course of the Transforma-
tion indicated through the rounded box, which Fig-
ure 3 zooms into for further illustration of this opti-
mization approach to be explained below. A trans-
formation engine that allows for matching more than
one rule for the same source model pattern as required
for this kind of optimization was developed by (Popp
et al., 2012). While this engine is specific to GUI
generation, we think that this optimization approach
is generally applicable to model-driven software gen-
eration.

This paper presents our approach to model-driven
transformation including PSM optimization. A case
study investigates the important aspect of designing
transformation rules in such a context. In particu-
lar, we show characteristics that need to be consid-
ered when designing transformation rules that support
multi-device GUI generation, where device specifica-
tions are given as separate Platform Models. In this
way, the transformation rules can be defined indepen-

6USer Interface eXtensible Mark-up Language — http:
//www _usixml _eu/

Optimal PSMs

Transformation /O
PIM PSM 1

PSM 2

Figure 2: Model-driven Transformation with Alternatives
for Optimization.

dently from concrete device properties.

The remainder of this paper is organized in the fol-
lowing manner. First, we discuss the state of the art,
followed by a presentation of our new conceptual ap-
proach to PSM optimization. Then we provide some
background material for our case study in the context
of GUI generation, in order to make this paper self-
contained. Based on that, we elaborate on our case
study on rule design for multi-device GUI generation
and include lessons learned.

2 STATE OF THE ART

The currently available transformation engines for
ATL and QVT support only matching one rule per
source model pattern. (Wagelaar et al., 2010) present
a solution for this problem called Module Superim-
position. Their approach is based on ATL and sup-
ports overriding transformation rules. By overriding,
they mean replacing the original rule with a new one,
whereby it is not possible to refer to the original rule
anymore. Using module superimposition in our con-
ceptual approach, however, has the drawback that the
rule set would need to be changed during the transfor-
mation process. If the rule set is modified before the
transformation, there is no difference to the standard
approach, because there would be exactly one rule for
each source model pattern.

A GUI generation framework that supports multi-
device GUI generation using ATL is UsiComp
(Garcia Frey et al., 2012). This Framework sup-
ports transformation rule design at run- and design-
time through the designer. Thus, the device informa-
tion is encoded manually in the transformation rules
before the transformation is performed. Another Ul
generation framework supports semi-automatic multi-
device Ul generation based on ConcurTaskTree Mod-
els (CTT) (Paterno et al., 1997) (Paternd and San-
toro, 2002). Semi-automatic means that the high-
level CTT model, which is a Computation Indepen-
dent Model, is tailored manually to a system-task
model that already takes device characteristics like

497

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

Optimization Objectives @ Platform Model 1

for Platform 1

Optimal PSMs

Optimizing (GUI-) Transformation

GUI-Transformation

Rules

PIM
GUI-
.—> Transformation
Engine

(GUIs)

Possible
" PSMs (GUIs) -~

Tailored for
Platform 1

Tailored for
 Platform 2

Optimization Objectives @
for Platform 2

Platform Model 2

Figure 3: Model-driven Transformation including PSM Optimization.

screen size into account. Other GUI generation ap-
proaches specify their transformations in Groovy’ or
Java as part of their transformation tool (Pastor et al.,
2008), which makes the madification of the transfor-
mations for device-tailoring or GUI beautification dif-
ficult (Aquino et al., 2009).

So, multi-device GUI generation typically relies
on manual creation of device-dependent transforma-
tion rules or manual device-tailoring of the source
model, which makes subsequent transformations with
ATL or QVT sufficient.

Declarative user interface specifications are used
as input for multi-target Ul generation in (Gajos and
Weld, 2004). The user interface adaption is treated as
an optimization problem based on a user- and device-
specific cost function. Compared to such user inter-
face specifications, our interaction models are on a
higher level of abstraction.

3 CONCEPTUAL APPROACH TO
PSM OPTIMIZATION

To allow such a PSM optimization, a new and ex-
tended transformation approach is required. In gen-
eral, some of the objectives can only be evaluated on
the whole PSM as already generated, and not on a
target pattern of a single rule. Therefore, in contrast
to traditional model transformations, it is necessary
to allow the generation of different PSMs out of one
PIM. This is the case even for a single Platform. From
these resulting PSMs, the one fitting best the given
optimization objectives is selected.

In addition, our approach covers multi-device op-
timization. For each Platform, an optimal PSM is gen-

"http://groovy.codehaus.org/

498

erated and selected. This actually happens for one de-
vice at a time, and one after the other.

Figure 3 illustrates the new conceptual approach.
Let us focus on the case of a single Platform first. The
PIM shown on the left side is transformed into sev-
eral PSMs to be evaluated through an objective func-
tion for optimization according to given optimization
objectives. This is illustrated inside the rounded box
for “Optimizing Transformation” through “Possible
PSMs”. In addition, also the concrete values of at-
tributes specified in the Platform Model are taken into
account. Some of these attributes constrain the space
for optimization. One of the generated PSMs high-
est ranked by the objective function that fulfills the
constraints is selected as the output of the optimizing
transformation and is an optimal PSM, shown at the
right side of Figure 3.

Our optimization objective for GUI Generation
is to fit as much information as possible in a given
amount of screen space. Our optimization search em-
ploys branch-and-bound techniques and does, there-
fore, not really explore the whole search space de-
fined by the transformation rules. For more details
on our optimization approach for GUI generation see
(Raneburger et al., 2011).

For other Platforms, there are other Platform mod-
els, and there may also be different objective func-
tions with the purpose of tailoring for different Plat-
forms, so that several optimal PSMs may arise as in-
dicated on the right side of Figure 3.

Note, that all these optimizations are being per-
formed using a single set of transformation rules, even
though this happens for one Platform after the other.
In order to make this possible, the rules must not
specifically depend on any single Platform. More pre-
cisely, the rules have to be defined independently of
the concrete values of the attributes specified in the

Model-driven Transformation for Optimizing PSMs - A Case Study of Rule Design for Multi-device GUI Generation

various Platform Models, at least for those attributes
taken into account for the optimization.

As indicated for the optimization approach, dif-
ferent transformations need to be possible for a single
given PIM, in the course of each single optimization
run. This is in contrast to traditional MDA transfor-
mations. So, the rule set has to provide several rules
for a given source pattern in the PIM, at least for some
of these patterns. Otherwise, no search space can be
generated for optimization. In order to implement the
actual firing of several rules for a single pattern, a
transformation engine like the one presented in (Popp
etal., 2012) is necessary.

Much as in the traditional approach, however, care
must be taken that no illegal PSMs are generated,
with characteristics not supported by the correspond-
ing Platforms (e.g., widgets not supported by a certain
toolkit). For this reason, the transformation rules are
usually filtered before their execution. Since our ap-
proach optimizes for one Platform at a time, the sin-
gle rule set for all Platforms can still be filtered for the
Platform at hand as usual.

4 CASE STUDY BACKGROUND

For an investigation on how transformation rules
should be designed in such a context, we employed
our own transformation engine, which allows for
more than one rule to match the same source pat-
tern (Popp et al.,, 2012). It is part of our Uni-
fied Communication Platform Ul Generation Frame-
work8 (UCP:UI). This engine has its own transfor-
mation language and supports the transformation of
Discourse-based Communication Models (Falb et al.,
2006; Popp and Raneburger, 2011) to Structural Ul
Models (Kavaldjian et al., 2008). UCP:UI further-
more allows the optimization of the resulting Struc-
tural Ul Models according to optimization objectives
(Raneburger et al., 2011) and so we selected the do-
main of GUI generation for our case study and imple-
mented our transformation rules using UCP:UI. We
present background information on Discourse-based
Communication Models, Structural Ul Models, and
the Unified Communication Platform GUI Generation
Module, in order to make this paper self-contained.

4.1 Discourse-based Communication
Models

Discourse-based Communication Models specify
high-level communicative interaction of the user with

8http://ucp.ict.tuwien.ac.at

the application, primarily based on discourses in the
sense of dialogues. For the purpose of this paper,
these models are PIMs in the sense of MDA and do
not consider any device or modality characteristics. A
small excerpt of a Communication Model of a simple
hotel booking application is shown in Figure 4. This
excerpt models the interaction between the user and
the system during the collection of payment data (i.e.,
contact person details, billing address and credit card
information). The interacting agents (User and Sys-
tem) are depicted in the upper left corner of Figure 4.

The basic building-blocks of Discourse-based
Communication Models are Communicative Acts
(CAs), depicted as rounded rectangles in Figure 4.
Each CA is assigned to an agent, represented through
its fill color (green/dark for User, and yellow/light
for System). Adjacency Pairs model typical turn-
takings in a conversation (e.g., Question-Answer or
Offer—Accept/Reject). Such Adjacency Pairs are rep-
resented through diamonds as shown in Figure 4 and
relate one opening and zero to two closing CAs.

Additional Discourse Relations, like the Ordered-
Joint relation, can be used to link such Adjacency
Pairs and to model more complex discourse struc-
tures. The OrderedJoint relation, as depicted in Fig-
ure 4 links two or more Adjacency Pairs and spec-
ifies that all Adjacency Pairs may be executed con-
currently. If all branches are performed in the same
presentation unit (i.e., a screen) the order is used to
identify the order of presentation (i.e., the position of
the branches on a single screen). In the case it is not
possible to perform all branches concurrently, i.e., the
screen is too small to display all branches together, the
relation defines the order for displaying the branches,
e.g., the order of screens of a GUI.

Discourse-based Communication Models refer to
a Domain-of-Discourse Model, which specifies the
concepts that the two interacting agents can “talk
about”. A Domain-of-Discourse Model can be spec-
ified by an Ecore or UML class diagram. For the
HotelBooking Excerpt it needs to specify a Person,
an Address and a CreditCard concept. The con-
nection between the Discourse and the Domain-of-
Discourse Model is established through the proposi-
tional content specified for a Communicative Act (for
details see (Popp and Raneburger, 2011)).

4.2 Structural Ul Models

For our case study, Structural Ul Models are the
PSMs. The Structural Ul Models are used to de-
fine the screens of a GUI on the level of a Concrete
User Interface according to the Cameleon Reference
Model (Calvary et al., 2003). Each of these models is

499

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

L
—
User System <+ rderedjnit

~¥ OpenQuestion () | Opening 7
P
s
get Contact Person Details //

.
. .
#" Closin
’ 9

I Answer

Closing

=1 Answer

. .
~. Openin
. Opening

S .
\ ~. Opening

Al
C¥ OpenQuestion () \
)

getBilling Address Y

C¥ OpenQuestion 0

get Credit Card Information
Clo:ing\‘

0 =L Answer

Figure 4: HotelBooking Excerpt.

Platform-specific, but independent of the used graph-
ical toolkit and consists of widgets. As a widget is
independent of the used toolkit here, it‘is an abstrac-
tion of an implemented “real world” widget. Such a
widget can either be a container, grouping some other
widgets, or a simple widget, like a textbox or a label.
We distinguish between two types of containers, one
displaying its contained widgets together and one dis-
playing each contained widget at a time. The second
one is used to define multiple screens of a GUI. An
example for the second one is a TabControl, which is
used to define a separation into multiple screens in the
case that the screen does not provide enough space for
displaying all of them together on one screen.

4.3 The Unified Communication
Platform GUI Generation Module

The GUI generation module of the Unified Communi-
cation Platform UCP:UI transforms Discourse-based
Communication Models to device-tailored, toolkit-
independent Structural Ul Models (Raneburger et al.,
2011), using the transformation engine developed by
(Popp et al., 2012). Thus, we used the corresponding
transformation language for the implementation of a
complete transformation rule set.

The left-hand-side (LHS) of these transformation
rules is a Communication Model Pattern and the right-
hand-side (RHS) is a Structural Ul Model pattern.
The UCP:UI transformation engine has the unique
feature that it allows for more than one rule with the
same LHS to match. The selection of which rule is
matched for which element depends on target device
characteristics (i.e., the Platform Model) and an ob-
jective function.

500

The transformation engine in UCP:UI builds each
possible Structural Ul Model step by step, controlled
by the optimization engine. The optimization engine
further evaluates the generated Structural Ul Models
and selects the highest ranked one. So the two parts
of the UCP:UIl module together implement such an
optimizing transformation. Let us emphasize again,
that the optimization search implemented here em-
ploys branch-and-bound techniques and does, there-
fore, not really explore the whole search space defined
by the transformation rules.

5 CASE STUDY OF RULE DESIGN

Now let us present our case study of rule design for
multi-device GUI generation. In the given context,
we designed transformation rules for allowing PSM
optimization according to our conceptual approach.
Instead of creating Platform-specific transformation
rules or tailoring the input model manually to the
Platform, we developed and implemented a rule set
that supports the transformation of one PIM to several
PSMs. These rules are per se not tailored to any spe-
cific Platform. Which of these PSMs is optimal only
depends on the given optimization objectives, which
tailor the PSM to the Platform, and the corresponding
constraints specified in the Platform Model.

As usual, the transformation rules enrich the mod-
els with information while concretizing them over
various levels of abstraction. Normally the transfor-
mations are filtered before the transformation accord-
ing to Platform characteristics, so that exactly one rule
matches each source pattern. Thus, they already con-
tain Platform-specific aspects and have to be created

Model-driven Transformation for Optimizing PSMs - A Case Study of Rule Design for Multi-device GUI Generation

initative
ser System
i) i
Py Question !
|
Screen1l < Answer |
________________________ 9:

Figure 5: System Initiative.

anew or at least adapted for a new Platform.

A key challenge was to design a “minimal” set of
transformation rules that supports the generation of at
least one PSM for each compliant PIM. This means
that the PIM is compliant to its metamodel (e.g., spec-
ified in UML or Ecore) and satisfies all constraints
that are specified in addition for this metamodel (e.g.,
in OCL).

Another key challenge regarding the design of
transformations for our new conceptual approach as
explained above was to design “additional” transfor-
mation rules that match the same source model pat-
tern to enable the transformation of one PIM into sev-
eral PSMs. An example is whether a rule splits the
resulting screen or not, which relates to an optimiza-
tion objective that a minimum number of clicks shall
be achieved. More on such optimization objectives
can be found in (Raneburger et al., 2011).

5.1 Towards Completeness of the Rule
Set

While it is hard to formally define completeness of
such a rule set, we tried to design the rule set in such
a way, that no rules are obviously lacking. Our first
consideration was about the granularity of units to be
transformed. This led us to identifying atomic trans-
formation units. In addition, we had to make sure that
there were alternative transformations possible.

5.1.1 Identifying Atomic Transformation Units

To ensure that each PIM can be transformed with the
available rules, it is important to identify the atomic
transformation units, like in traditional transforma-
tions. The elements in Discourse-based Communi-
cation Models (PIMs) are CAs, Adjacency Pairs and
Discourse Relations. We distinguish between rela-
tions whose metamodel element has a defined number
of child links and relations whose metamodel element
has an undefined number of links.

Both the metamodels of the Discourse-based
Communication Model (the PIM in our case study)
and of the Structural Ul Model (the PSM) define these

initative

User System

Question

Answer

Figure 6: User Initiative.

atomic transformation units. Every Discourse Rela-
tion is itself an atomic transformation unit, because
it can be mapped to a combination of some container
widgets.

For Adjacency Pairs, such a definition is more
difficult. ~ Let us look at the Adjacency Pair
OpenQuestion—Answer at the left side of Figure 4. In
this case the System asks the User a question and the
User has to answer it. In a GUI the widgets for the
two Communicative Acts are usually combined and,
therefore, the PSM defines the atomic transformation
unit as the whole Adjacency Pair (see Figure 5). In
the case the User requests something from the Sys-
tem, the situation is different: the widgets for send-
ing the request and for the response of the System are
usually displayed on different screens (see Figure 6).
Therefore, it is possible to transform each CA on its
own, so that in such a case the CA is the atomic trans-
formation unit. So, the definition of an atomic trans-
formation unit depends here on the initiative in the
Adjacency Pair.

5.1.2 Taking Platform Restrictions into Account

In addition, it was necessary to take Platform restric-
tions into account, since not all the Platforms have
the same characteristics, e.g., not all devices have the
same widget set. Since the GUI generation (including
optimization) will be done for each Platform at a time,
we looked into each Platform Model separately for its
restrictions as related to the rule set. Before a gen-
eration run, rules will be filtered out that would not
lead to a legal PSM. In the course of the rule design,
therefore, we had to make sure that for each such case
still at least one remaining rule exists for each atomic
transformation (see above).

Another example for such a restriction is the input
method to be used on a given device. On a touch-
screen to be used with finger pointing, for instance,
widgets too small for that are not to be used. There-
fore, all rules generating such widgets will be filtered
out, and other rules need to be available (for each
compliant PIM, in principle).

501

ICSOFT 2013 - 8th International Joint Conference on Software Technologies

5.2 Transformations with Alternatives

As described above, we designed a “minimal” rule set
first, for transformations to one PSM per given Plat-
form Model. Table 1 shows the numbers of rules of
this set, broken down in subcategories. For optimiz-
ing PSMs according to our approach, however, it was
necessary to provide additional rules for generating
alternatives.

Table 1: Numbers of Transformation Rules.

Category Name Minimal | Additional
Rules Rules
Communicative Act Rules 28 -
Relation Rules 23 10
Adjacency Pair Rules 52 4
Domain-of-Discourse Rules 19
| 1 122 | 14]

Table 1 also shows numbers of such additional rules
for generating alternatives that we created. We de-
fined ten more rules having the same source pattern
for Relations as already defined rules, and four more
rules having the same source pattern for Adjacency
Pairs as already defined rules. In the following, we
elaborate on these additional rules.

5.2.1 Additional Relation Rules

Relation rules typically create containers for their
children. According to the behavior definition of a
given Relation, its children are either displayed con-
currently, leading to a Panel, or in different screens,
leading to a Choice element (e.g., a TabControl). All
the ten additional Relation Rules for alternative trans-
formations match Relations whose children may, in
principle, be displayed concurrently, but these addi-
tional rules split the screen. Thus, their respective
RHSs have different impact on the resulting PSM
(i.e., Structural Ul Model) than the one of the rule in
our “minimal” rule set. In fact, a split screen means
at least one additional click but reduces the amount of
scrolling.

Let us illustrate this with a small example, tak-
ing the OrderedJoint relation from our Hotelbook-
ing Communication Model. All children of an Or-
deredJoint may be displayed concurrently, in princi-
ple. Figure 7 shows the basic rule that matches an
OrderedJoint relation and creates a Panel containing
the OrderedJoint children. Thus, the resulting GUI
will show them concurrently.

Figure 8 shows another rule that matches an Or-
deredJoint relation, but creates a TabControl, which
contains its children instead. So, less space is required
in the resulting GUI than in the one generated with the

502

4 = Rule Basic Ordered Joint
Mapping
4 |£" Discourse Basic Ordered)oint Discourse
4 Ordered Joint .*
& Link orderedloint
|| Panel Ordered)oint

Figure 7: OrderedJoint Rule Large.

rule above, as the screen is split. How much space is
saved in the end depends on the children and, there-
fore, on the Communication Model.

4 = Rule Basic Ordered)oint small
Mapping
4 lﬁ Discourse Basic Ordered)oint Small Discourse
4 Ordered Joint .*
& Link ordered)oint small
Tab Control Ordered)aint small

Figure 8: OrderedJoint Rule Small.

5.2.2 Additional Adjacency Pair Rules

For the additional four Adjacency Pair Rules with
LHSs matching the same PIM pattern as some other
rule each, the approach was analogous. In particular,
these rules generate drop-down lists that show only
one list entry per default instead of displaying more
than one entry at the same time, using radio buttons
for their selection. It is important to note that these
rules do not discard any information (which would be
another way to save space).

As an example, we used the presented rule set to
generate GUIs for a simple flight booking application
for different devices (available at http://ontoucp.
ict.tuwien.ac.at/Ul/FlightBooking).

5.3 Lessons Learned

Now let us present a few lessons learned that we gen-
eralize from our concrete experience gained in the
course of this case study:

Adding additional rules to the “minimal” rule set
allows optimization, even when adding a small
number of rules (compared to the number of rules
in the “minimal” rule set).

The design of rules independent of a concrete
Platform allows the optimization of several PSMs
with the same rules.

When such a rule set works for a certain PSM (for
a smartphone), it can at least to a large extent be
reused for a similar PSM (for a tablet PC).

Model-driven Transformation for Optimizing PSMs - A Case Study of Rule Design for Multi-device GUI Generation

6 CONCLUSIONS

In this paper, we propose an approach for optimizing
PSMs using model-driven transformations. Since this
approach selects from several generated PSMs (ac-
cording to given optimization objectives), it requires
an engine supporting that more than one transforma-
tion rule can fire on the same source pattern. Of
course, it also requires that at least some rules exist
where this actually happens.

In a case study in the context of model-driven gen-
eration of graphical user interfaces, we studied rule
design for such an approach. Such a rule design has
its own intricacies, but we even found possibilities
for reuse of rules for generating several PSMs (for
GUIs on several devices). On an existing platform
that supports this approach, optimization for several
such GUIs was actually possible with the rule set de-
signed.

ACKNOWLEDGEMENTS

Part of this research has been carried out in the
GENUINE project (No. 830831), another part in the
ProREUSE project (No. 834167), both funded by the
Austrian FFG.

REFERENCES

Aquino, N., Vanderdonckt, J., Valverde, F., and Pastor, O.
(2009). Using profiles to support model transforma-
tions in the model-driven development of user inter-
faces. In Lopez Jaquero, V., Montero Simarro, F.,
Molina Masso, J. P., and Vanderdonckt, J., editors,
Computer-Aided Design of User Interfaces VI, pages
35-46. Springer London.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. (2003). A unifying refer-
ence framework for multi-target user interfaces. Inter-
acting with Computers, 15(3):289 — 308. Computer-
Aided Design of User Interface.

Eramo, R., Malavolta, 1., Muccini, H., Pelliccione, P., and
Pierantonio, A. (2012). A model-driven approach to
automate the propagation of changes among architec-
ture description languages. Software & Systems Mod-
eling, 11(1):29-53.

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., and
Arnautovic, E. (2006). A discourse model for inter-
action design based on theories of human communi-
cation. In Extended Abstracts on Human Factors in
Computing Systems (CHI ’06), pages 754-759. ACM
Press: New York, NY.

Gajos, K. and Weld, D. S. (2004). SUPPLE: Automatically
generating user interfaces. In Proceedings of the 9th

International Conference on Intelligent User Interface
(U1 ’04), pages 93-100, New York, NY, USA. ACM
Press.

Garcia Frey, A., Céret, E., Dupuy-Chessa, S., Calvary, G.,
and Gabillon, Y. (2012). Usicomp: an extensible
model-driven composer. In Proceedings of the 4th
ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’12, pages 263-268, New
York, NY, USA. ACM.

Kavaldjian, S., Bogdan, C., Falb, J., and Kaindl, H. (2008).
Transforming discourse models to structural user in-
terface models. In Models in Software Engineer-
ing, LNCS 5002, volume 5002/2008, pages 77-88.
Springer, Berlin / Heidelberg.

Pastor, O., Espafia, S., Panach, J. I, and Aquino, N.
(2008).- Model-driven development. Informatik Spek-
trum, 31(5):394-407.

Paternd, F., Mancini, C., and Meniconi, S. (1997). Con-
curTaskTrees: A diagrammatic notation for specify-
ing task models. In Proceedings of the IFIP TC13
Sixth International Conference on Human-Computer
Interaction, pages 362-369.

Paterng, F. and Santoro, C. (2002). One model, many in-
terfaces. In Proceedings of the 4th International Con-
ference on Computer-Aided Design of User Interfaces
(CADUI 2002), pages 143-154.

Popp, R., Falb, J., Raneburger, D., and Kaindl, H. (2012).
A transformation engine for model-driven Ul gen-
eration. In Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing sys-
tems, EICS 12, pages 281-286, New York, NY, USA.
ACM.

Popp, R. and Raneburger, D. (2011). A High-Level Agent
Interaction Protocol Based on a Communication On-
tology. In Huemer, C., Setzer, T., Aalst, W., Mylopou-
los, J., Sadeh, N. M., Shaw, M. J., and Szyperski,
C., editors, E-Commerce and Web Technologies, vol-
ume 85 of Lecture Notes in Business Information Pro-
cessing, pages 233-245. Springer Berlin Heidelberg.
10.1007/978-3-642-23014-1_20.

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., and
Falb, J. (2011). Optimized GUI generation for small
screens. In Hussmann, H., Meixner, G., and Zuehlke,
D., editors, Model-Driven Development of Advanced
User Interfaces, volume 340 of Studies in Computa-
tional Intelligence, pages 107-122. Springer Berlin /
Heidelberg.

Truyen, F. (2006). The Fast Guide to Model Driven Archi-
tecture - The basics of Model Driven Architecture.

Wagelaar, D., Van Der Straeten, R., and Deridder, D.
(2010). Module superimposition: a composition
technique for rule-based model transformation lan-
guages. Software and Systems Modeling, 9:285-309.
10.1007/s10270-009-0134-3.

503

