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Abstract: The ability to control the prosthetic ankle joints of below-knee amputees is a challenging problem due to the 
lack of adequate mathematical models, the variations in the gait in response to the environment, sensor 
noise, and unknown intent of users. Artificial ankle joints are required to exhibit variable stiffness based on 
the gait and aid in locomotion as well as stability of the individual. It is desirable for control strategies for 
such ankle joints to adapt in real-time to any variations in the gait, have robust performance, and optimize 
specified performance indices relating to efficiency of the gait. In this paper, we investigate the potential of 
Direct Neural Dynamic Programming (DNDP) method for learning the gait in real-time and in generating 
control torque for the ankle joint. The residual limb is first represented by a link-segment model and the 
kinematic patterns for the model are derived from human gait data. Then augmented training rules are 
proposed to implement the DNDP-based control to generate torque which drives the prosthetic ankle joint 
along the designed kinematic patterns. Numerical results show that the DNDP controller is able to maintain 
stable gait with robust tracking and reduced performance cost in spite of measurement/actuator noises and 
variations in walking speed.  

1 INTRODUCTION 

Current ankle/foot prostheses are primarily passive 
devices whose performance cannot be adapted or 
optimized to meet the requirements of different 
users. Further, such devices cannot provide the 
rigidity, as well as the flexibility and power similar 
to that of a human foot. The adverse consequences 
of wearing less functioning prosthetic feet include 
asymmetric gait, increased metabolic consumption, 
limited blood flow, instability, and pain. In the long-
term, the amputees, especially ones with diabetes, 
might have to undergo hip replacement procedure 
and use wheel-chair on a daily basis. 

The lack of an active prosthetic joint that can 
dynamically adapt to changing terrain and gait needs 
is a limiting factor in attaining adequate comfort and 
mobility in below-knee amputees. Powered ankle 
prostheses can adapt to some extent, but the rigidity 
and power required during the gait are usually 
varying depending on the activity pursued by the 
individual. Such unknown, varying requirement 
cannot be addressed through standard control 
techniques. One of the key steps in the development 
of these active prosthetic feet is the generation of 
adaptive torque profiles to drive the ankle joint in 

response to variations in the human locomotion. The 
design should also provide necessary energy return 
to significantly reduce the metabolic energy 
consumption during locomotion (Versluys et al., 
2009). In an effort to achieve these goals, bionic feet 
such as Proprio Foot (Össur), BiOM (iWalk, 2012), 
SPARKy (Hitt et al., 2009), PPAMs (Versluys et al., 
2008) have been equipped with active components 
that can modify the dynamic characteristics of the 
prosthetic ankle joints. It is noted that the ankle 
joints currently available are typically controlled 
using classical control techniques. Once the 
controller is tuned, its parameters are usually fixed 
irrespective of any changes in gait. Adaptive control 
strategies can account for changes in gait. However, 
such adaptive strategies have to overcome the 
challenges due to lack of information on gait and 
interaction between the foot and the ground as well 
as the interaction between the prosthetic socket and 
the residual limb. In the absence of such 
information, optimization of the performance of the 
controller becomes a very challenging task and 
requires the use of new design strategies such as 
learning-based control. 

Mathematical models and experimental data can 
be effectively combined to generate forward 
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simulation of both normal and pathological gaits 
(Millard et al., 2008; Peasgood et al., 2007; Thelen 
and Anderson, 2006).  

Figure 1 shows the diagram of the control-based 
approach which concentrates on generating suitable 
control signals to drive the model dynamics along 
desired trajectories obtained from the analysis of 
human gait (Xiang et al., 2010). In this framework, 
different methods of generating the joint torque can 
be analytically evaluated and the overall 
performance can be improved by feedback 
modification. Similarly, simulation frameworks 
which combine mathematical gait model and 
experimental data can be used to study the effect of 
prosthesis on kinematic behaviours and other aspects 
of amputee locomotion (Pejhan et al., 2008; Brugger 
and Schemiedmayer, 2003). Such simulation enables 
a quick evaluation of the performance of the 
prosthetic device under different operating 
conditions and extend the understanding of the 
prosthetic ankle-foot systems (Hansen, 2005). 
However, due to the complex interaction between 
the gait and the ground and the unknown intent of 
the user, it is not easy to guarantee efficient gait or 
robustness in performance. Therefore, a suitable 
control strategy that permits online adaptation to 
variations in gait while guaranteeing robust 
performance and improved efficiency has to be 
developed. 

 

Figure 1: Control-based approach to the modelling and 
control of human gait. 

In this paper, the use of Direct Neural Dynamic 
Programming-based control (Si and Wang, 2001) of 

an active prosthetic ankle joint is evaluated. DNDP 
has been shown to be suitable for control of complex 
nonlinear systems with unknown dynamics and 
disturbances (Lu et al., 2008; Enns and Si, 2003). 
Furthermore, this approach also tries to minimize the 
long-term cost function in the sense of Bellman‘s 
principle of optimality (dynamic programming). 
With these properties, DNDP appears to be a good 
candidate for a challenging task such as control of a 
prosthetic ankle. In order to apply this control 
technique, this paper addresses issues such as gait 
dynamics formulation, desired behaviours of the 
ankle joint during gait, control strategies, and long-
term gait-related performance indices. In addition, 
augmented training rules are proposed to provide 
robustness against the foot-ground interaction 
disturbance. This is the first attempt in applying such 
a real-time adaptation scheme in learning the gait 
parameters and adjusting the control output to 
improve the gait and eliminate the asymmetry in gait 
between the amputated and the intact sides of the 
individual while enabling the individual to have a 
more active lifestyle. This will have enormous 
impact on the quality of life as well as the long-term 
health of people with below-knee amputation. 

The rest of this paper is organized as follows. 
Section 2 describes the system models which include 
the dynamics of the gait and ground-foot interaction. 
Section 3 and 4 gives detailed information on 
kinematic pattern generation and control structures, 
respectively. Simulation setup with result 
discussions are presented in Section 5 and the 
conclusions of the investigation are presented in 
Section 6. 

2 DYNAMICAL MODELS 

2.1 Gait Model 

The dynamic model in the sagittal plane of the 
residual limb of a unilateral below-knee amputee is 
considered in this study. This link-segment model 
includes 3 revolute joints: the hip joint connecting 
the biological thigh with the upper part of the human 
body; the knee joint connecting the biological thigh 
with the residual limb/artificial shank, and the 
prosthetic ankle joint connecting the artificial shank 
with the prosthetic foot. The action of the human 
muscles and ligaments that control the hip and knee 
joints are represented by the torques at those 
biological joints. At the prosthetic ankle joint, an 
externally powered actuator generates a torque to 
manipulate the angular position of the ankle.  

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

18



 

The kinematic and dynamic relationship of the link-
segment model in Figure 2 is obtained using the 
Euler-Lagrange formulation (Amirouche, 1992) 
following assumptions similar to those in Section 
5.0.1 and Section 8.0.1 of (Winter, 2009). The 
interaction between the residual limb and the socket 
to which the prosthetic foot is connected is ignored 
and the residual-biological-artificial shank is 
considered rigid. The equations that govern the 
dynamics of the overall human-prosthetic system 
can be expressed as follows: 

       , H GRFM V G F a DF               (1)

where  1 2 3

T    are joint angles (rad),

1 2 3

T
      
     are joint angular velocities 

(rad/s), and 1 2 3

T
      
    are joint angular 

accelerations (rad/s2);  TH H Ha x y   are the hip 

acceleration (m/s2),  1 2 3

T     are 

components    of     joint      torques      (Nm),      and 

 

Figure 2: Link-segment representation of the residual limb 
with a prosthetic ankle joint. 

 TGRF X ZF F F  are horizontal and vertical 

components of the ground reaction force (N). The 
nonlinear terms in (1) include the inertia matrix

 M  , the Coriolis and Centripetal term  ,V   , 

the gravity term  G  , the coefficient matrix  F   

representing the translation of the hip, and the 

coefficient matrix  .D  that represents the effect of 

the ground reaction force on the dynamic of each 
joint. Among these components, the ground reaction 
forces play a very important role and will be 
described in the subsequent section. 

2.2 Ground Reaction Force 

According to Winter (Winter, 2009), there are three 
forces acting on the link-segment model of the 
human gait: gravitational force, ground reaction 
force, and muscle and ligament forces. In the 
depicted gait model, the gravitational force is 

represented by the nonlinear term  G  whereas the 

force generated by the muscles and ligaments are 
replaced by the torque applied at the biological hip 
and knee joints. The ground reaction forces are 
generated during the gait as the result of interaction 
between the foot and the ground. Such reaction 
forces are then transferred up to the ankle, knee, and 
hip joints with the effect of altering the joint angular 
positions. Because the interaction between the foot 
and the ground is very complicated, it is very hard, if 
not impossible to exactly measure the ground 
reaction force without using carefully designed gait 
lab and force transducers (Winter, 2009). On the 
other hand, the ground reaction force (GRF) cannot 
be ignored during the simulation of the human gait 
(Wojtyra, 2003; Peasgood et al., 2007). Therefore, 
the following widely used model is selected to 
represent the ground reaction force for the 
experimental simulations used in this study 
(Peasgood et al., 2007; Millard et al., 2008). 

   max max,0,0, ,
e

Z PEN PENF k z Step y d c z    (2)

 sgnX Z COPF F x   (3)

In this GRF model, ZF and XF are vertical and 

horizontal force components (N); ,PEN PENz z are the 

penetration (m) and penetration rate (m/s); ,k e are 

spring coefficient (N/m) and spring exponent; maxc is 

the maximal damping coefficient (N/(m/s)); maxd is 

the maximal damping penetration (mm);  is the 

friction coefficient; and COPx is the horizontal 

velocity of the contact point with respect to the 
ground (m/s). Detailed descriptions of the parameters 
of this model can be found in (Peasgood et al., 2007). 

The use of this ground reaction force model is 
more realistic than the rigid contact approach 
because it can simulate the viscous-elastic behaviour 
of the foot-ground interaction (Bruneau and 
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Ouezdou, 1997). The penetration of the foot into the 
ground is modified from (Marhefka and Orin, 1999). 
Because the ground reaction force can neither be 
measured exactly nor be ignored, the ground 
reaction force is treated as external disturbance to 
the gait dynamics during the simulation of the 
control strategy. 

3 KINEMATIC PATTERN 
GENERATION 

In order to study the effectiveness of the DNDP-
based control strategy, the behaviour of the overall 
human-prosthetic system under different gait 
conditions has to be investigated. The different gaits 
are represented by kinematic patterns of angular 
positions, velocities, and accelerations of each of the 
joints. These quantities are obtained from the gait 
lab database (Winter, 1991) from real human 
subjects and are widely used in simulation of  human 
gait. From the gait lab database, the analytical forms 
of the desired joint trajectories in time domain are 
generated to allow multi-step simulation of the 
model (Millard et al., 2008). 

The desired joint trajectories of the hip, knee, 
and ankle joints, and the vertical Cartesian trajectory 
of the hip joint are approximated by five-term 
Fourier series as in equation below. The horizontal 
Cartesian trajectory of the hip joint is approximated 
by the sum of a first order polynomial (linear) and 
five-term Fourier series as in equation below. Given 
these analytical form trajectories, the required first 
and second order derivatives can be calculated 
without introducing any discontinuities in the model 
during simulation. 

4 CONTROL STRUCTURE 

Figure 3 shows the structure of the controller used in 
this study. The control structure can be divided into 
the control for the biological joints (hip and knee 
joints), and control for the prosthetic ankle joint. 

4.1 Control of the Hip and Knee Joints 

For the biological hip and knee joints, it is assumed 
that below-knee amputees are able to adjust their 
muscle activities to generate enough torques to 
manipulate these joints and maintain normal gait 
despite possible control efforts at the prosthetic 

ankle joint. For that reason, ideal computed torque 
control is applied at the hip and knee joints. These 
ideal torques are computed assuming that the (noisy) 
joint angles, angular velocities, and angular 
accelerations, as well as the nonlinear terms in (1) 
are known. Such control inputs have the same 
structure as the ideal computed torque control for 
robot manipulators (Lewis et al., 1999). 

Equations (8) and (9) describe the ideal 
computed torque control applied at the biological hip 
and knee joints during simulation of the model, in 

which  i ir ie    and  i ir ie     are tracking 

errors of each joint, ir is a desired angular 

acceleration of each joint, 0, 0Di PiK K  are 

design parameters. 

 

Figure 3: Control structure with ideal computed torque 
control at hip and knee joints, and approximation-based 
control at the prosthetic ankle joint. 

4.2 Control of the Ankle Joint 

The angular position of the prosthetic ankle joint can 
be controlled by an external actuator. In this model, 
the dynamics of the actuator are ignored and only 
the torque produced at the prosthetic joint is 
considered. In contrast to the ideal joint controllers 
used for the biological hip and knee joints, the 
actuator  at  the prosthetic  ankle  joint is  assumed to 
have access to only the actual ankle angle and 
angular velocity. Such quantities could be measured 
by using a rotational encoder and gyroscope 
mounted on the prosthetic foot. Therefore, the torque 
produced by an external actuator could be a function 
of the ankle angle, the ankle angular velocity, and 
the tracking error between these quantities and their 
desired kinematic patterns as follows: 

 1 1 1 1 1, , ,f e e      (4)

where 1 1ande e are tracking errors of the ankle angle 

and ankle angular velocities as defined above. 
The filtered tracking error is used as in (Lewis et 

al., 1999):  

1 1 1 1r e e   (5)
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            
5

3 2 1 0
1

, , , cos sinr r r Hr i i
k

t t t z t a a kwt b kwt  


    (6)

     
5

0 0 0
1

cos sinHr i i
k

x t k t m c c kwt d kwt


      (7)

     2 21 1 1 1 1 1 22 2 2 2 2 2 23 3 3 3 3 3

21 1 22 2 23 3 2 21 22 21 22

r D P r D P r D P

H H X Z

M K e K e M K e K e M K e K e

V V V G F x F z D F D F

   

  

        

       

    

    
 (8)

     3 31 1 1 1 1 1 32 2 2 2 2 2 33 3 3 3 3 3

31 1 32 2 33 3 3 31 32 31 32

r D P r D P r D P

H H X Z

M K e K e M K e K e M K e K e

V V V G F x F z D F D F

   

  

        

       

    

    
 

(9)

 

in which 1 0  is the design parameter. 

With the introduction of the filtered tracking 
error, the dynamics of the ankle joint  

11 1 12 2 13 3 11 1 12 2 13 3

1 11 12 1 11 12H H X Z

M M M V V V

G F x F z D F D F

     


    

     

     

 
 (10)

can be written in term of the filtered tracking error 
as follows: 

 11 1 11 1 1 1M r V r f x      (11)

with the nonlinear term  1f x is given as: 

     
   
   

1 11 1 1 1 12 2 2 2 2

13 3 3 3 3 11 1 1 1

12 2 2 2 2 13 3 3 3 3

1 11 12 11 12

r r

r r

r r

H H X Z

f x M e M r e

M r e V e

V r e V r e

G F x F z D F D F

   

   

   

     

    

     

   

   

  

 

 

(12)

This nonlinear term, especially the contribution of 
the acceleration of the hip joint ( 11 12H HF x F z  ) and 

the moments generated by the ground reaction force 
( 11 12X ZD F D F  ), is unknown and difficult to 

compute. The nonlinearity of this function is further 
increased in multi-step simulation due to the fact 
that the ground reaction forces only affect the gait 
dynamics during the stance phases when the residual 
limb is contacting the ground. However, these forces 
are not present during the swing duration. To 
overcome these difficulties, this nonlinear function 
will be approximated in the DNDP-based 
framework. 

Given the approximation of the nonlinear term

 1f x , the approximation-based control signal will 

be selected as follows: 

 1 1 1 1
ˆ

Vf x K r    (13)

with  1̂f x is an approximation of  1f x and 1 1VK r is 

a Proportional-Derivative (PD) control term, and 1r  

is the filtered tracking error in (5). 

4.2.1 DNDP-based Control Structure 

The DNDP-based control structure comprises of two 
neural networks: critic network and action network. 
The critic network is responsible to generate an 
approximate of the long-term cost function which 
satisfies the Bellman’s principle of optimality. The 
action network is responsible for generating a 
control signal which leads to the optimization of the 
approximated long-term cost (or output of the critic 
network). Figure 4 presents the two-network 
configuration of the DNDP-based control. The next 
section will provide detailed information about 
elements in Figure 4. 

 

Figure 4: DNDP-based control of the prosthetic ankle 
joint. 

4.2.2 Detailed Implementation 

The critic network approximates the discounted 
long-term cost which is represented as the weighted 
sum of the short-term (instantaneous) cost as 
follows: 
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       
   

21 2 3

1 1

L t S t S t S t

S t L t

 



      

   


(14)

with  is the discount factor. 
Because the critic network is responsible for 

calculation of the quantity  J t as an approximation 

of the long-term cost function  L t , the 

backpropagation error is defined as: 

       1C

CURRENTTARGET
OUTCOME

e t J t S t J t      
 

(15)

where  S t is the instantaneous cost at time t (short 

term cost). 
Inputs to the critic network are: 

 1 1 1 1 1
ˆ T

C Ax e e f x    
  (16)

and the critic network output is the approximation of 
the long-term cost function defined in equation (14): 

 

     
1 1

ˆ ˆˆ

ˆ ˆˆ1, , ,1
C C

T T
C C C C

L N
T T

C C C C
i j

J W V x

W i V i j x j




 



 
 
 
 

 
 (17)

with CL is the number of nodes in the hidden layer, 

and 5CN  is the number of inputs to the critic 

network. 
Weights of the critic network are trained as 

follows: 

2
ˆ ˆˆC C C C C C C CW F e k F e W  


 (18)

2
ˆ ˆ ˆˆT
C C C C C C C C C CV G e x W k G e V   


 (19)

in which  is the discount factor, , ,C C CF G k are 

design parameters, and ˆC  is the Jacobian matrix 

defined as: 

 
 

ˆˆ
ˆ

ˆ

T
C C C

C T
C C

V x

V x





 


 

In this design, the action network approximates 

the unknown nonlinear function  1f x . In general, 

the action network is responsible for generating a 
control which results in the optimization of the long-
term cost function, i.e. the output of the critic 
network. Therefore, the backpropagation error of the

action network is given as follows: 

     
A C

CURRENTTARGET
OUTCOME

e t U t J t 


 
(20)

where  CU t is an ultimate control goal, or the 

target for the long-term cost approximate  J t . 

Inputs to the action network are: 

1 1 1 1

T

Ax e e     
  (21)

and structure of the action network is as follows: 

 

     

1

1 1

ˆ ˆ ˆˆ

ˆ ˆˆ1, , ,1
A A

T T
A A A A

L N
T T
A A A A

i j

f W V x

W i V i j x j




 



 
 
 
 

 
 (22)

in which AL is the number of nodes in the hidden 

layer, and 4AN  is the number of inputs to the 

action network. 
Weights of the action network are trained as 

follows: 

1

2

ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ

T
A A A A CA C C A A A A

A A A A

W F e V W F V x r

k F e W

    





 (23)

2
ˆ ˆ ˆ ˆ ˆˆ ˆT
A A A A CA C C A A A A A AV G e x V W W k G e V   


(24)

in which ĈAV is obtained from ĈV to map from 

 1
ˆ

Af x to the hidden node output, , ,A A AF G k are 

design parameters, and ˆ A  is the Jacobian matrix 

defined as: 

 
 

ˆˆ
ˆ

ˆ

T
A A A

A T
A A

V x

V x





 


 

Compared to the weight updating rules in (Si and 
Wang, 2001), it is noted that the last terms in (18), 
(19), (23), and (24)  provide robustness against the 
disturbances generated by the ground reaction forces 
which affect the gait dynamics during stance phase of 
the gait cycle. Finally, the DNDP-based control is 
given as in (13).

 

4.2.3 Selection of the Short-term 
(Instantaneous) Performance Index 
(Cost) and the Ultimate Control Goal 

The short-term (or instantaneous) cost at each time 
step is calculated as follows: 
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where     1 1,t t  ,     1 1,r rt t  and  1 1,M M 

are actual, desired, and maximal values of the ankle 
joint angular position and velocity. This selection 
relates to the gait efficiency in the way that if the 
prosthetic ankle joint can perform as closed as 
possible to the biological ankle, then the hip and 
knee joints will not have to modify their behaviours. 
As the result, the overall human-prosthetic system 
can provide normal gait. 

The ultimate control goal is selected as 

  0CU t  which implies the maximization of the 

long-term cost function which is the weighted sum 
of the short-term cost. 

5 NUMERICAL STUDY 

In this section, the performance of the DNDP-based 
control is evaluated through simulation of the 
developed link-segment model with the presence of 
measurement/actuator noises and variations in 
walking speed.  

5.1 Simulation Setup 

Kinematic data collected from human subjects 
during walking with different cadences (natural, fast, 
slow) in the gait lab (Winter, 1991) is converted to 
represent the kinematic patterns for the human-
prosthetic dynamic model in corresponding gaits 
with normal, fast, and slow walking speed. For 
multi-step simulation of the gait dynamic (1), the 
kinematic patterns are approximated by using 
equations (6) and (7).  

Design parameters for the ideal computed torque 
controls at the hip and knee joints are 10PK  and

5DK  . At the ankle joint, the DNDP-based 

control is generated by an action network with 4 
nodes at the input layer, 8 nodes in the hidden layer, 
and 1 node in the output layer. The critic network 
has 5 nodes at the input layer, 10 nodes at the hidden 
layer, and 1 node at the output layer. Both networks 
use sigmoid activation functions and are fully 
connected with randomly initialized weights in the 

range  1 ,1 . Other design parameters include the 

discount factor .95  and PD control with 1 5VK 
and 1 10  . The unknown nonlinear function 

 1f x  is approximated by (22). The critic network 

and action network weights are updated using (18)-
(19) and (23)-(24), respectively. Equation (25) is 
used to calculate the short-term cost at each time 
step. 

 

Figure 5: Tracking performance of the DNDP-based 
control during normal speed under ideal conditions. 

5.2 Ideal Condition 

In this ideal condition, the model is simulated during 
a gait including 20 steps of normal speed without 
any measurement and actuator noises. The tracking 
performance of the ankle joint and DNDP-based 
torque action for 5 steps are shown in Figure 5. It is 
observed that both the ankle position and angular 
velocity can follow their desired trajectories with 
small errors. More interestingly, the DNDP-based 
ankle torque generated during simulation of the 
model is very similar to the biological ankle torque 
measured from human subjects during gait lab 
testing (Winter, 1991).   

5.3 Effect of Measurement  
and Actuator Noises 

Uniformly distributed measurement noises are added 
to the ankle position and angular velocity. Torque 
output generated for the ankle joint is also added 
with uniformly distributed actuator noise as follows: 
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where 
1 ,

1
  , and 

1 are in the range  2% ,2%

(or  5% ,5% ). The model is simulated with 20 
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steps of normal walking speed and increasing 
measurement and/or actuator noises (see Table 1). 

Table 1: Long-term cost during 20 steps of normal 
walking speed and increasing measurement/actuator 
noises. 

Noise PD FLNN DNDP 
2% measurement noise 0.715 0.239 0.075 
5% measurement noise 3.96 2.003 0.118 
5% measurement noise 
and 2% actuator noise 

3.961 2.079 0.120 

5% measurement noise 
and 5% actuator noise 

3.966 2.336 0.130 

PD – Proportional-Derivative control 
FLNN –Feedback Linearization Neural Network control 

For the comparison purpose, the model is 
simulated with other types of control at the ankle 
joint, including Proportional-Derivative control (PD) 
and direct Feedback Linearization-based multilayer 
Neural Network control (FLNN). Ideal computed 
torque controls are still used at the hip and knee 
joints given the assumption on the human ability in 
generating normal gait. The average long-term cost 
function as calculated by (14) is reported in Table 1. 
It can be seen that as the measurement/actuator 
noises increase, the DNDP-based control 
outperforms other control methods by producing 
robust tracking performance with lower long-term 
cost. 

5.4 Effect of Variations in Walking 
Speed 

Similar setups to Section 5.3 are repeated here to 
evaluate the performance of the DNDP-based 
control in the presence of variations in walking 
speed. The model is simulated with 5% 
measurement noise, 5% actuator noise, and 4 
different walking setups (see Table 2).  

Table 2: Long-term cost with 5% measurement noise, 5% 
actuator noise, and combinations of different walking 
speeds. 

Number of steps PD FLNN DNDP 
10 normal + 10 fast 2.140 0.567 0.100 
10 normal + 10 slow 3.910 1.915 0.106 

10 normal + 5 fast + 5 slow 2.233 0.461 0.082 
10 normal + 5 slow + 5 fast 2.206 0.490 0.084 

Again, despite the variations in walking speed, 
the DNDP-based control is still able to provide 
lower long-term performance cost compared to other 
control strategies.  

6 CONCLUSIONS 

The performance of a model-free Direct Neural 
Dynamic Programming-based controller for a 
prosthetic ankle joint was investigated in this paper. 
Issues such as gait dynamics formulation, desired 
ankle joint behaviours, control strategies, and long-
term gait-related efficiency were addressed in order 
to implement the DNDP-based control approach. We 
augmented the original training rules with additional 
terms to provide robustness against the disturbance 
generated by the ground reaction force. Results of 
the simulation study indicate that the DNDP-based 
control is stable, robust to measurement/actuator 
noises and variations in walking speeds, and 
improves the overall performance of the prosthetic 
ankle. It is also observed that the generated ankle 
torque is similar to the torque measured from 
biological ankle during gait testing. The results of 
this study serve as a starting point for the 
development of intelligent ankle prosthesis. The 
authors are currently pursuing research on adaptive 
determination of gait using biofeedback signals 
measured from below-knee amputees and 
implementation of the DNDP-based control strategy 
on actual prosthetic ankle joint. 
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