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Abstract: A three dimensional localisation algorithm for a swarm of underwater vehicles is presented. The proposed 
approach is grounded on an extended Kalman filter (EKF) scheme used to fuse some proprioceptive data 
such as the vessel’s speed and some esteroceptive measurement such as the time of flight (TOF) sonar 
distance of the companion vessels. The results of several simulations are presented. Some considerations 
about the available underwater bandwidth and the communication needed by the approach are discussed. 

1 INTRODUCTION 

The exploration of the oceans both for scientific and 
economic purposes is becoming more and more 
important. Out of the limitations of our biological 
characteristics, underwater robotics has gained an 
essential role in the study and exploitation of the 
seas. Its more promising branch is that of the 
autonomous underwater vehicles (AUV), i.e. those 
vehicles that are capable of performing the required 
tasks without human supervision, coping with the 
mission unknowns.  

In the latest years the research on AUVs has 
broadened towards the simultaneous use of more 
vessels, i.e. the implementation of multi robot 
configurations all the way to full swarms of 
underwater vehicles. 

Whether a single or more AUVs are considered, 
one of the focal points of autonomy is the reliable 
knowledge of the vessel position and orientation. 
Unfortunately an underwater system suffers because 
of the limiting characteristics of its environment. 
Water, especially salted one, blocks electromagnetic 
waves, inhibiting the use of positioning systems 
such as the GPS. At the same time this implies a 
difficult communication between an AUV and 
another or a remote operator. The available means to 
localise a single AUV are thus the exploitement of 
inertial sensors, velocity ones and/or gyroscopes 
combined in dead reckoning. 

However, in the framework of an underwater swarm, 
the localisation of a single vehicle can profit from 
the gathering of information pertaining to the other 
fellow vessels. The key issue of all the swarm 
localisation methods is the best possible 
combination of proprioceptive measures (dead 
reckoning) and exteroceptive sensor readings, the 
main difference being the employed estimator. The 
localisation of swarms of robots has been 
extensively studied for packs of terrestial surface 
robots. In this case it is possible to use GPS, if 
outdoors, or different methods for indoor teams. In 
addition the communication of information among 
the robots is unproblematic over the radio link. 

An approach is based on the subdivision of the 
swarm in subgroups one of which, in turn, is kept at 
a fixed position and acts as a set of landmarks for the 
moving others (Kurazume et al., 1994, 1996) and 
(Rekleitis et al., 2002). (Fox et al., 1999; Fox et al., 
2000) and (Thrun et al., 2000) have successfully 
employed belief functions combined with a 
Montecarlo approach and particle filtetring 
optimization. The work of (Roumeliotis, 2000) and 
(Roumeliotis and Bekey, 2002) employs a Kalman 
filter where the proprioceptive measures are used to 
estimate the future state of the system and the 
exteroceptive ones are used to correct and update the 
estimate. In (Martinelli et al., 2005) this approach is 
extended by considering the most generic relative 
observations between two robots. More recently the 
work of Olfati-Saber, see e.g. (Olfati-Saber, 2007), 
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has addressed the problem of decentralized Kalman 
filtering in sensor networks through consensus 
algorithms for the swarm controlling strategies. 
(Huang et al., 2011) have investigated the 
consistency of EKF based cooperative localisation 
considering observability. The typical operative 
environment considered in these works is a two 
dimensional terrestrial one. 

In the following a three dimensional algorithm 
for the global positioning of a swarm of underwater 
robots is presented, the problem addressed is not that 
of swarm control, but the mutual and absolute 
positioning of elements composing an underwater 
group of robots. A simple kinematic model of the 
AUV is considered, capable of measuring its own 
velocity and to communicate over an ultrasonic 
acoustic link with the other vessels. Through the 
measurement of the time of flight (TOF) of the 
ultrasound transmission the AUVs can measure one 
another their relative distance. All the available 
information is then combined with an extended 
Kalman filter distributed among the vessels. 

In the second section of the paper the problem is 
stated in a three dimensional environment. In the 
third section the multi robot Kalman based algorithm 
is described. In the fourth section some experimental 
results are presented relative to different swarm 
trajectories. In the fifth section some consideration 
on the presented algorithm are discussed especially 
concerning the communication issues and the swarm 
size. 

2 PROBLEM STATEMENT 

The key point for a cooperative localisation in a 
swarm of robots is viewing the group as a single 
entity that can access the information of a large 
number of proprioceptive and exteroceptive sensors. 

In the following all the vessels are described by 
the same motion equations and each robot possesses 
proprioreceptive sensors for the motion estimate. 
Each AUV possesses also an ultrasound 
communication link, which can collect the 
information from the other vessels in the swarm 
(among these the transmitter ID and the 
communication starting time) and through the TOF 
measure the estimated inter vessel distance. The 
measurement noise is considered as Gaussian. 

At first the localisation has been tackled 
considering as available the relative position and 
orientation measurements, this is helpful to check 
the overall reliability of the framework development. 
In a second phase only the relative distances and the 

absolute values of depth and heading has been 
considered, this second case being similar to the 
actual underwater conditions. As above described 
the relative distance can be easily measured with the 
sonar communication while heading can be read 
from the compass and depth from a pressure gauge 
on board the vessels. 

Let us consider the global dynamical state X of 
the whole swarm, it will be a vector composed of 
MxN items where M is the number of robots and N is 
the number of variables describing the single 
vehicle, i.e. a vector composed of the poses ix


 of all 

the robots. 
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The mathematical model describing the time 
evolution of the single vessel of the swarm is: 
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where f is generally a non linear function of the state 
at the preceding time step  1kix


, of the input  kui
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and of the noise  kwi


. The vessels can also measure 

all the other ones and this can be described by the: 
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here h is the measurement function linking the state 
of the i-th robot with the state of the measured one 
(the j-th) and the measure noise  kni . 

 

Figure 1: The coordinate system. 

An extended Kalman filter estimates the state of 
this dynamical system fusing data coming from 
proprioceptive sensors and exteroceptive ones. The 
proprioceptive sensors are used to compute the 
kinematic time evolution of the system and the 
esteroceptive to reset periodically the time evolution 
estimate with an external ground truth. 

The vessel coordinate system is centred in the 
centre of the vehicle and its x axis is longitudinally 
directed from stern to bow, the y axis is towards 
starboard and the z one downward, see Figure 1. 

The kinematic model of the single robot uses a 
linear velocity parallel to the x axis (thrust) and the 

ICINCO�2013�-�10th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

216



 

possibility to change all the three Euler angles 
through appropriate angular velocities. 

3 MULTI-ROBOT KALMAN 
LOCALIZATION 

The Kalman filtering is a well known strategy that 
yields an estimate of a dynamical process using a 
feedback control. It foresee the process state at a 
given time and it employs a measurement feedback 
to update the state through a better estimate. It is an 
iterative process that loops through two different 
phases: on one side it predicts the state of the system 
and the error covariance, on the other it computes 
the so called Kalman gain to correct both the state 
estimate and the error covariance on the grounds of 
some kind of measure. Since the time evolution 
function (equation 2) may be not linear, an extended 
version of the filter has been here employed. The 
EKF basically behaves as the standard procedure but 
uses a local linearization of the functions. A very 
interesting characteristic of this filter is its iterative 
aspect. The results of a iteration of the filter is used 
as input for the successive step; in this way the filter 
retains memory of the history of the system. 

Let us consider the whole swarm, the EKF cycles 
between the two phases of prediction and update. 

3.1 Prediction 

Each robot, at a given time step, estimates its state at 
the successive time step on the grounds of the 
kinematic model and the available proprioceptive 
measures (linear and angular velocities) and their 
null average Gaussian noise.  
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here equation (4) is the state time evolution and 
equations (5) and (6) describe the time evolution of 
the cross correlation matrix P in the diagonal and off 
diagonal terms;  is the system propagation matrix, 
G is the system noise input matrix and W is the noise 
input covariance. The minus sign stands for a priori 
and the plus one for a posteriori.  

In order to perform a distributed EKF it is 
convenient to process the a posteriori estimated 
cross correlation matrix (equation 6) through a 
singular value decomposition (SVD). In this way 
each robot can compute its own term multiplying the 

SVD term by its dynamical matrix, see (Roumeliotis 
and Bekey, 2002).  

3.2 Update 

Every time a robot measures something, an update 
can be performed. The here considered measures are 
the heading (compass) and the depth (pressure 
gauge) of the measuring vessel and the TOF distance 
of another vessel. The non linear measuring function 
h is shown in equation (3) and the noise is a null 
average Gaussian one. It is now possible to compute 
the a posteriori state estimate 
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where the index r describes the vessel Mr ,...,1 , 
)(kKr is the so called Kalman gain with S the 

residual covariance, and the last term is the residual. 
The H terms are the Jacobians of the measuring 
function h w.r.t. the two state vectors ix  and jx : 
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and 2222 zyxr  . 
Finally the a posteriori covariance matrix 

estimate is: 
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with the indexes Mr ,...,1 and Ms ,...,1 . 
The problem of the localization of multiple 

robots can be approached in two different ways: in a 
centralised or in a distributed way. In the first there 
is a central supervisor collecting all the data from all 
the vehicles and performing the multi robot system 
state estimation. The second paradigm can be split 
into two further classes: uncooperative or 
cooperative algorithms. The first class simply tries 
to localise each robot as if it was alone in the world, 
i.e. counting on its own estimate and measures 
alone, without gathering further information from 
the  others   in  the   swarm.  The   second  class   can  
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Figure 2: Average and 3σ error for x, y, z and yaw as a function of time, linear trajectories. 

exploit the information coming from the companions 
and performing a local algorithm for the pose 
estimation. 

Regardless of the employed approach the basic 
issue is the extremely limited bandwidth that is 
available underwater. Two or more AUV can 
communicate one another through different means, 
but the only one that allows long distance data 
exchange is the ultrasound transducer. Naturally 
there is a trade off between bandwidth and distance 
travelled by the ultrasound wave. All this points to a 
severe limitation on data circulation among the 
swarm vessels. In other words transmissions should 
be kept to a minimum with respect to the algorithm 
performance. 

Unfortunately the Kalman approach needs to 
distribute a large quantity of data. In order to limit 
the communication problem in the swarm a 
distributed-centralized approach has been tested. 
The idea is as follows. Whenever a measurement is 
done, the measuring robot performs the EKF for the 
whole swarm, gathering the states from all the 
vessels and broadcasting the new matrices to the 
companions. It is obviously a centralised algorithm 
but it is distributed in time, at each time step only 
the measuring robot is computing, and at the next 
time step it will probably be a different one. 

This scheme may limit the communication 
among the swarm members. The amount of 
exchanged data will be the same of a fully 
centralized approach, but since only one robot is 
actually broadcasting its results, there will be much 
less problems arising from the communication 
overheads and possible multipaths deriving from 
multiple robots trying to communicate all at the 
same time. 

4 EXPERIMENTAL RESULTS 

In the experiments, the vehicles are considered as 
kinematic objects, i.e. without the computation of 
their dynamics, and are able to exchange 
information instantaneously. All the simulations 
have been performed under Matlab. A first series of 
2D simulations have been carried out to assess the 
overall correctness of the algorithm implementation. 

In the 3D algorithm version the due kinematic 
model has been considered and a more realistic suite 
of sensors for the single vessel has been considered 
as well. As said, each AUV is equipped, besides the 
sonar for communication and distance estimation, 
with a compass for the absolute orientation and a 
pressure gauge for the depth measure (z coordinate). 
The introduction of these sensors and data are of 
basic importance since they improve the 
observability of the system. In a three dimensional 
environment each vessel possesses six degrees of 
freedom, thus the overall system can be considered 
as unbalanced towards non observability. 

Let us consider a set of M=10 vessels moving in 
parallel along a straight trajectory. The standard 
deviation on linear and angular speed is 0.1 m/s and 
0.05 rad/s respectively. The standard deviation on 
the TOF distance measure is 0.05 m, on the heading 
is 1° and 0.07 m on the depth. All these values are 
consistent with low cost sensors commonly available 
on the market. 

In Figure 2 are shown the average error (on the 
whole swarm of ten) and the 3σ error relative to the 
x, y, z coordinates and the yaw angle. For clarity the 
roll and pitch ones are not showed. The average 
position  error  after  50  meters  is  of  about  0.35%, 
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Figure 3: Average and 3σ error for x, y, z and yaw for the periodical exteroceptive measures. 

 

Figure 4: Average and 3σ error for x, y, z and yaw for the sinusoidal trajectory test case. 

while the 3σ error is of about 1%. The same 
quantities considering dead reckoning alone are 8% 
and 30%. 

As above mentioned the underwater realm is 
quite a difficult one and the communications should 
be kept at a minimum, hence it has been 
experimented a situation in which the vessels do not 
measure continuously the distance of fellow robots 
but perform an exteroreceptive measure once every 
100 time steps. The results are presented in Figure 3. 

It is evident the saw tooth shape due to the 
periodical correction of data. In this case after 50 m 
the average and 3σ errors are respectively 0.46% and 
1.8%, slightly larger than the continuous case, as it 
could have been expected. 

In Figure 4 is shown the algorithm performance 
in the case of sinusoidal trajectories, i.e. with a 

constant linear velocity but an angular one slowly 
varying in time as a sinusoid. Also in this case the 
measures are periodic as in the previous experiment 
and the number of time steps is doubled and the 
average and 3σ errors are 0.28% and 1%. 

Figure 5 and 6 present the trial in which the 
vessels are made follow a circular trajectory for 
1300 m, still with periodic exteroceptive measures. 
In this case the two errors are respectively 0.05% 
and 0.2%. In Figure 5 only x and y are shown for 
better intelligibility. 

In  Figure 7  it  is shown  the  dependence  of  the 
average position error as a function of the number of 
vehicles in the swarm. It is clear that “union is 
strength”: the more the vessels the better the 
estimate, until an asymptote is reached. 
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Figure 5: Average and 3σ error for x and y in the circular test case. 

 

Figure 6: Vessels trajectories in the circular case. 

5 DISCUSSION  
AND CONCLUSIONS 

This work has presented the results of a three 
dimensional Kalman based localisation algorithm for 
a swarm of underwater vehicles.  

In a three dimensional environment each vessel 
possesses six degrees of freedom, thus the overall 
system is heavily undetermined, i.e. the covariance 
on the system state quickly diverges. The 
introduction of real world measures such as the yaw 
angle (compass) and the z coordinate (pressure 
gauge) greatly improves the Kalman filter 
performance, enhancing the system observability. 

It is here important to recall that the presented 
scheme greatly relies on communication among the 
members of the swarm. During the Kalman 
computation the various vehicles must distribute to 
the others their own estimates and covariance and all 
the cross correlations. This heavy communication 
scheme suggested the periodical exteroceptive 
measures in order to reduce the number of Kalman 
updates. Notwithstanding a reduced set of measures, 
the system is able to assure a good localisation. 

In the actual physical swarm, presently under 
development,   there  will   be   two   possible   sonar 

 
Figure 7: Average position error versus the swarm 
numerosity. 

communication channels, one around 300 Kbit/s and 
a second at a higher frequency but at a smaller 
range, around 1 Mbit/s. Let us now assume for the 
sake of simplicity that all the transmission band can 
be allocated to the Kalman 3D localisation. It is 
possible to compute the total number of bytes to be 
transmitted if only one robot makes a periodical 
observation (one every 100 time steps as above) and 
consider this as a lower bound. If all the vehicles 
measure, this quantity should be multiplied by the 
number of robots. These two functions are plotted in 
Figure 8 where the two bounds are shown together 
with the two possible transmission rates. 

The diagram should be read as follows. If the 
available transmission link is the lower, this 
localisation system may work for a swarm smaller 
than 25 members, if only one observer is allowed at 
a time or with less than 13 if everybody can 
measure. With the higher throughput these figures 
rise to 47 and 19. 

The devised algorithm strategy is based on a 
mixed distributed-centralised approach. Each robot 
computes the Kalman filter for all of the system 
elements and it distributes its results to all the 
community, since a different robot will be the next 
to observe and compute the system state. 
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Figure 8: Needed throughput as a function of the swarm 
robot number.  

In conclusion it is possible to affirm that the 
presented 3D Kalman based localisation system can 
be employed for a swarm of underwater robots, 
yielding accuracy in the computed positions, but 
with a limited swarm numerosity. Nevertheless 
further work is needed in order to reduce the so 
precious communication bandwidth in underwater 
environments and or allow more numerous swarms. 
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