A Versatile and Scalable Everything-as-a-Service Registry and Discovery

Josef Spillner and Alexander Schill
Faculty of Computer Science, Technische Universitat Dresden, 01062 Dresden, Germany

Keywords:

Abstract:

Service Registry, Service Model, Service Description, Matchmaking.

Networked humans and autonomous systems rely increasingly on service-oriented architectures. Conventional

systems often focus on digitally delivered web services or on business services with varying degrees of formal-
isation. According to service integration principles, the service registry as the pivotal point between providers
and consumers determines the types of services which can be found and delivered. With the growing impor-
tance of cloud computing topics in research and industry, more generic service models, description languages
and registry architectures are proposed to extend the breadth towards truly reusable Everything-as-a-Service
(XaaS) registration entries. Despite the proposals, there is a shortage of capable and extensible Xaas registries.
In this paper, we present such a system and share our experience in using it for service-related experiments.

1 INTRODUCTION

Everything-as-a-Service (XaaS) describes a spectrum
of functionality which can be uniformly described,
negotiated and brokered through uniform means, and
executed and delivered through non-uniform ways.
The term has been increasingly popular in service-
oriented architectures, cloud computing and service
science circles (Banerjee et al., 2011; Didoné and
de Queiroz, 2011; Ferrario et al., 2011). It encom-
passes several delivery-related service classes. In
particular, software- and hardware-provided web ser-
vices, data and human services, as well as further
emerging service classes such as gamification or elec-
tricity services which are all somehow incorporated
into or orchestrated by information systems. Beside
the service class, each service belongs to a certain
functional domain. Hotel booking, e-car charging,
text mining, data storage and many more services can
thus be expressed as a combination of service class
and service domain. Finally, each service of a par-
ticular combination can be distinguished with non-
functional properties. Service pricing, location, qual-
ity, safety and security are among the vast possible
properties.

Researchers have been concerned with service se-
lection and substitution problems based on required
properties or dynamic composition based on service
functions and coincidence for some time (Cavalcante
et al.,, 2012). In order to find the best suitable ser-
vice for a certain demand, service registries have been

Spillner J. and Schill A..

A Versatile and Scalable Everything-as-a-Service Registry and Discovery.

DOI: 10.5220/0004373301750183

established as pivotal systems between providers and
consumers. Based on those, service offering and dis-
covery workflows have been proposed to guide the
user from having a service idea to offering a ser-
vice and from expressing the demand to achieving
the desired result through matchmaking, respectively
(Guinard et al., 2010). Yet, despite having existed for
a long time, there are several shortcomings in how the
current generation of registries work, scale and fit the
XaaS spectrum.

In this paper, we argue analytically about the
shortcomings in existing service models and descrip-
tion languages, registration models and registry and
discovery systems. We then use this knowledge to de-
rive a suitable problem statement and present our so-
lution approach which results in a versatile and scal-
able XaaS registry. Finally, we evaluate this registry
experimentally with thousands of imported services
from various domains and service classes.

2 EXISTING WORK

Previous research about service registration and dis-
covery focuses on three disjoint and yet closely re-
lated topics: description languages, registration mod-
els, and realised registry and discovery systems. The
state of the art in these topics will be summarised in
the following paragraphs. For extensive reviews and
surveys, we refer to (D’Mello and S., 2010) and (Nair
and Gopalakrishna, 2010).

175

In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER-2013), pages 175-183

ISBN: 978-989-8565-52-5

Copyright ¢ 2013 SCITEPRESS (Science and Technology Publications, Lda.)

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

2.1 Existing Description Languages

A service description contains valuable information
about a service. It is produced by the service provider
and inspected by prospective and actual service con-
sumers. Therefore, it needs to be uniform, precise,
correct and complete (D’Mello and S., 2010). Typi-
cal descriptions convey information about the service
class and domain, interfaces to access the service, the
behaviour along with input and output parameters,
preconditions and effects (IOPEs), as well as arbitrary
non-functional properties about pricing, service qual-
ity (QoS), security and other distinguishing factors.
Table 1 gives a comprehensive overview about ap-
proaches to describe services with various domain
and technology assumptions. Not included are com-
plementary languages to describe message structures,
agreements, guarantees and policies about the ser-
vice usage. The language characteristics encom-
pass completely domain-independent services (e.g.
OWL-S (Solanki et al., 2004), WSML (de Bruijn
et al., 2006), USDL (Barros et al., 2012)), domain-
independent services with a restriction to a certain
interaction paradigm (e.g. WSDL and WADL (Pau-
tasso et al., 2008), RIDDL (Mangler et al., 2009)) as
well as mostly domain-dependent ones, with permis-
sible subdomains for specialisation, without any spe-
cific requirement on the format of the interaction (e.g.
MSDL, IDNL (Ghijsen et al., 2012), CoCoOn (Zhang
etal., 2012), DEMODS (Vu et al., 2012) and the Text
Mining Service Ontology (Pfeifer and Schill, 2012)).
OCCI is a special case because it mandates a certain
RESTful protocol to obtain the descriptive elements
and is hence restricted to both a domain and an in-
teraction protocol. The description languages have a
varying degree of suitability for any given use case,
maturity and adoption. Hence, it becomes clear that
a generic XaasS registry should accomodate arbitrary
combinations of instances of these languages.

2.2 Existing Registration Models

Registration models define how declarative service
artefacts are mapped onto the structures present in
service registries. In particular, they mandate the ac-
ceptable artefacts, certain granularities — e.g. full or
partial updates — and cardinalities of documents per
registration entry. Universal Description, Discovery
and Integration (UDDI) is a service registry spec-
ification which mandates both a registration model
and a registry system with web service interfaces.
The registration model encompasses technical mod-
els, the so-called tModels, to represent unique con-
cepts (Paolucci et al., 2002), along with industry tax-

176

Table 1: Overview about service description languages.

Acronym [Name [Service Types [Adoption

WSDL Web Service Descrip- | SOAP and | huge

tion Language REST web
services

WADL Web Application De- | REST web ser- | academic
scription Language vices

RIDDL RESTful Interface | REST web ser- | academic
Definition and Decla- | vices
ration Language

UsDL Unified Service De- | web and hu- | small
scription Language man services

OWL-S Web Ontology Lan- | generic academic
guage for Services

WSML Web Service Mod- | generic academic
elling Language

OCClI Open Cloud Comput- | infrastructure small
ing Interface services

INDL Infrastructure and | infrastructure academic
Network Description | services
Language

CoCoOn Cloud Computing On- | infrastructure academic
tology services

MSDL Mobilis Service De- | collaboration academic
scription Language services

DEMODS | Description Model for | dataset ser- | academic
Data as a Service vices

- Text Mining Service | information academic
Ontology services

onomies and enterprise models. Models are shared
between entries of the same type of service. For in-
stance, a WSDL description would be split into its ab-
stract (interface description) and concrete (provision-
ing) parts, with only the former relating to the model
and the latter being mapped onto a businessService
entry. Going beyond web services, the ebXML Reg-
istry Information Model (Hofreiter et al., 2002) con-
trols which content and metadata types can be regis-
tered in an appropriate registry. Each entry is called
a Repositoryltem whereas metadata on it is called
RepositoryObject. While the UDDI model is fo-
cusing on web services as a subset of XaaS, and
ebXML manages content as a superset of XaaS arte-
facts, the Dragon registration model supports sev-
eral service-related documents. Specifically, WS-
Agreement SLA documents can be registered along-
side informative WSDL descriptions. Further artefact
types such as policies are not supported.

Table 2 summarises our analysis of registration
models. It becomes obvious that the specialisation of
Dragon is too limited to cater for new developments
(e.g. security policies) whereas the generalisation of
UDDI and ebXML makes it ambiguous how exactly
multi-artefact services are to be registered.

A Versatile and Scalable Everything-as-a-Service Registry and Discovery

Table 2: Overview about service registry models.

[Name [Service Descriptions [Characteristics]
UDDI various through tModels focus on web ser-
vices
ebXML any for any content
Dragon WSDL, WS-Agreement focus on web ser-

vices

2.3 Existing Registry Systems

Architectures and software systems to register and
find services are layered as follows: the storage area
(repository) to persist submitted service descriptions,
the programmatic interface (registry) to perform the
registration and retrieval operations, and the user-
centric interface (marketplace) which appears as bro-
ker, portal or other user interface to let the user
perform the offering and discovery processes. The
systems can further be classified as centralised, de-
centralised (peer-to-peer) or federated architectures.
Some are freely available or have hosted instances.
Our analysis compares representative systems with-
out the claim for completeness given the multitude of
systems available.

UDDI and ebXML registries implement the afore-
mentioned UDDI and ebXML registration models.
Apache jUDDI and OpenUDDI are open-source im-
plementations of UDDI. Commercial UDDI products
are available from many companies, including Ora-
cle Service Registry, Novell UDDI Server and SAP
NetWeaver. While the former UDDI-based Univer-
sal Business Registry (UBR) has not survived, some
publicly operated registries still support the UDDI
specification, including xmethods.net. UDDI reg-
istries have been found to not be a sufficient basis for
dynamic service selection. The reasons include the
lack of a sophisticated full-text search for unstruc-
tured content, the lack of support for non-functional
properties, the assumption about the services being
offered by an enterprise and the asymmetric require-
ments specification, among others (Field and Hoffner,
2002). Nevertheless, researchers are attracted by its
standard nature and have proposed distributed UDDI
flavours such as Ad-UDDI (Du et al., 2005).

The USDL Marketplace contains a registry ded-
icated to the exchange of USDL artefacts. It is
business-oriented in a way that it recommends ser-
vices for business scenarios and allows for business
value network creation based on contracts and sub-
contract relationships. The marketplace is built as a
J2EE application with various Java frameworks (Hi-
bernate, Spring, Seam) connected to a SQL database.
It has been designed taking into account experiences
from previous USDL registries such as Agora (Car-

doso et al., 2010). There is no known public installa-
tion. The Membrane SOA Registry and the Service-
Finder are registries dedicated to WSDL-described
services. Both are active registries which monitor
the service availability. The Service-Finder even
actively crawls the web for additional descriptions
and meta-data to enrich the entries (Steinmetz et al.,
2009). Public instances with convenient human in-
vocation interfaces run at service-repository.com
and webservices.seekda.com, respectively. The
IBM Dynamic Matchmaking Engine has support for
functional and non-functional properties which can
be either fixed or dynamic so that their value will
be determined in the procurement process (Field and
Hoffner, 2002). As such, this registry takes over con-
tract negotiation tasks which in other architectures
are performed in separate components. Depot (Abu-
Jarour, 2010) has been proposed to increase the qual-
ity of service descriptions in a registry. It pro-actively
crawls information sources for new descriptions sim-
ilar to the Service-Finder.

A fully decentralised architecture based on peer-
to-peer hashtables and gradient topologies has been
proposed to keep deployment costs low and to handle
high scalability (Sacha et al., 2007).

All architectures and software systems for the reg-
istration and discovery of services are summarised in
Table 3. The variety regarding the status and free
availability of the implementation, the existence of
a hosted instance and the architectural choices is re-
markably high.

Table 3: Overview about service registries.

[Name [Characteristics
juDDlI centralised; available
Ad-UDDI decentralised; architecture pro-

posal; monitoring

centralised; available

centralised; available; hosted
centralised; proprietary; hosted;

USDL Marketplace
Membrane SOA Registry
Service-Finder

crawling
IBM Dynamic MME centralised; proprietary
Depot centralised; proprietary; crawling

P2P Registry decentralised; architecture proposal

2.4 Problem Definition

Existing registration models and registry systems are
inadequate for the exchange of information about
XaaS. All of the analysed models were too specific or
too general regarding the possible and the customary
declarative service artefact types. The analysis of reg-
istries reveals a lack of easily usable, freely available,
versatile, extensible and scalable systems: Just three
out of the analysed eight systems are freely available.

177

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

Out of the three (jJUDDI, USDL Marketplace, Mem-
brane SOA Registry), only one (the USDL Market-
place) targets versatile services ranging from human
to web services. However, its extensibility is lim-
ited by the highly capable and yet quite complex ser-
vice model, its scalability is unknown and its usability
is severely restricted by the lack of easily installable
software packages. Furthermore, it doesn’t ship with
service domain definitions. Today’s requirements of
research projects and pilot studies in enterprise ser-
vice and cloud environments are thus best fulfilled
with a novel kind of Xaa$S registry beyond the scope
of just web services.

3 SOLUTION APPROACH

We propose a three-concerns solution consisting of an
appropriate open and extensible description language
for services covering as many XaaS domains as possi-
ble, a registration model and a system to perform the
registration and subsequent service discovery.

3.1 Description Model and Language

Description languages for services capture all aspects
of fundamental service models. The service classes
and domains shown in Figure 1 represent both fully
automated virtual and cyber-physical services as well
as human services. A requirement for a truly versatile
Xaa$S registry which operates in an open Internet of
Services, and hence a requirement for a correspond-
ing description language, is to unify these services
as much as possible while restricting the domain-
specific service characteristics as little as possible.

Everything-as-a-Service (XaaS)
Digital Assets [Physical Assets
Cloud C i | [cyber-Physical Systems

Software (Saas) | |

Data (DaaS) | [Resources (Raas) | [Labour, Material, ...

(Command Line) [tech]
(VM Appliance) [tech]

lsset Exchange: Personal Clouds, Marketplaces, Spot Markets, Social Service Networks, Solidarity Economy|

Figure 1: Scope of Everything-as-a-Service (XaaS) in an
Internet of Services.

Following the analysis of existing service de-
scription languages, we conclude that semantic lan-
guages are very suitable for XaaS due to their sep-
aration of language and extensible vocabulary. On
the other hand, the lack of vocabulary in the lan-
guages themselves leads to the requirement of intro-
ducing a specific catalogue of vocabulary and con-
cepts on top of the languages. We have chosen

178

WSML as the unintrusive modelling language of
choice due to its strong support for non-functional
properties and general service orientation. WSML is
a syntactical representation of the Web Service Mod-
elling Ontology (WSMO) (de Bruijn et al., 2006).
Hence, we propose a specific WSML ontology cat-
alogue, called WSMO for the Internet of Services
- WSMO4lIoS, as XaaS vocabulary collection which
covers both reusable domain-independent base con-
cepts and domain-specific concepts. WSML can
be transformed to OWL so that the modelling and
reasoning support among the semantic service tools
should be high enough for all use cases. Figure 2
demonstrates the scope of WSMOQ4I0S for both base
and domain ontologies. The term unintrusive refers
to the fact that a service doesn’t need to be described
in WSML prior to the registration into our registry.
In such a case, appropriate minimal descriptions can
be generated automatically based on information ex-
tracted from the present artefacts.

1 L, .

ContextBase QoSBase

ResourceBase

Disk, Memory,
CPU, Architecture

ReputationBase

Location Metrics time, space Reputation
Device Depenc, Perform* (=Credibility)
Correctness. User ratings

v

.
‘ ContractBase RemoteQoSBase SystemQoSBase BusinessBase
[“Address, Tax no. Availability Execution time Price per period
+ Online Accounts Throughput System load Price per use
~ ’ -
Ml Domain Ontologies ... |
Subdomain Ontologies ... Instance Ontologies ...
File Conversion Hotel Reservation DropBox Wikipedia Currency Converter|
[
Cloud Storage + Computation Printing HRS Haircutter RackSpace|

Figure 2: WSMOA4loS: Ontologies for the Internet of Ser-
vices and Everything-as-a-Service

WSMO4I0S is maintained as a growing versioned
catalogue of both base and domain ontologies as
well as corresponding imaginary and real instance
services. The catalogue is made available publicly
alongside its specification document (Spillner, 2013).
The subsequent sections assume the use of the Jan-
uary 2013 version with 10 base and 13 domain on-
tologies. The domain-specific modelling complexity
ranges from two concepts for social services to nine
concepts for Cloud storage services. The latter one is
described in detail in (Spillner et al., 2013).

3.2 Registration Model

The Tradeable Services Model introduces the notion
of logical service packages which can be exchanged
and traded through open markets. Service providers
and potential consumers meet through these markets
for search and subsequent matchmaking. Registries

A Versatile and Scalable Everything-as-a-Service Registry and Discovery

as core elements of markets support the search and
matchmaking with registration models which allow
for a precise evaluation of service functionality and
non-functional properties. In the Tradeable Services
Model, declarative service description artefacts are
combined with executable implementation artefacts.
The implementation artefacts are however considered
external to the registry and typically would be stored
in a service execution container or repository, whereas
the description artefacts are stored by the registry it-
self. Figure 3 shows one possible structure of a ser-
vice package. It can be seen that services can be com-
plex entities with heterogeneous descriptions of dif-
ferent cardinality. Some descriptions are related to
others.

Service implementation

0.1 Service descriptions Service interface descr. 0.1
WSML, USDL, CQML+ WSDL, WADL, OccCl
0.1 raphical representatio Distrib. client applet 0.x
PNG, JPEG JAR, Shoes, Plasmoid
0.% SLA templates GUI annotations 0.1
WSAG, WSLA GUIDD, ServFace
0.1 Runtime reports

‘ Prediction models ‘ 0.1

meta-quality, ratings PerfPred

Service package

Figure 3: Service package according to the Tradeable Ser-
vices Model.

A generic registry must therefore accomodate cer-
tain hierarchies. For instance, web services often
mandate different technical interfaces, ports and pro-
tocols, whereas business services often can be deliv-
ered with varying guarantees based on the same tech-
nical implementation. Figure 4 proposes a two-level
artefact registration model where both on the top level
and within each interface descriptive artefacts can be
registered. There can also be references between the
artefacts themselves, for instance a SAWSDL refer-
ence from a WSDL file to an ontology.

Top-level entry
WSML (always)
usDL
OWL-S
Interface entry
WSDL
WADL
Interface entry
WSDL
WSAG

Figure 4: Structure of entries in the registry.

No strong assumption is made about the artefact
types. The model allows for generic artefacts of ei-
ther single or multiple occurrence at each level. It is
the registry’s concern to govern which artefact types

can be registered with which multiplicity. Table 4
contains a suitable configuration which has developed
over time in several research projects with our in-
volvement. It should be noted that even in the case
of single occurrence, the artefact type may itself be
structured in a way that multiple entries be present.
For example, an Agents description lists multiple soft-
ware agents which autonomic service integration sys-
tems use to interact with the service.

Table 4: Tradeable Services Model permissible artefact
configuration.

Artefact Type

Multiplicity|

WSDL service description
WADL service description
USDL service description
RDF resource description
UISDL user interface service
GUIDD deployment descriptor
WSAG agreement template multiple
Applet for interaction multiple
Clients descriptor

Agents descriptor
Source/Implementation package
Manual page

Resource locator

Dependency reference

Icon

[e T S TS TS

N

3.3 Registry and Discovery System

Service registries should themselves be services in
order to streamline their integration into service-
oriented landscapes and the Internet of Services. In
terms of complete service platforms built around
registries, each platform component acts as a plat-
form service with multiple role-specific program-
matic and interactive interfaces. Typical roles are
service providers, consumers and platform operators,
among others. The ConQo semantic service reg-
istry is such a platform service. It has initially been
proposed to facilitate the discovery of context- and
quality-tagged web services (Stoyanova et al., 2008).
We have fully implemented and extended ConQo sig-
nificantly towards a generalisation regarding the ser-
vice classes, functional service domains and non-
functional properties. All properties can be dynami-
cally updated through a monitoring submission end-
point (ConQoMon) beyond the coarse-grained up-
dates of complete service artefacts. This evolution has
turned ConQo into a versatile XaaS registry whose
behaviour is controlled by the deployed artefact con-
figuration and base and domain ontologies. Fur-
thermore, we have refactored the code and substi-
tuted some algorithms for a much higher scalabil-
ity. In particular, the former purely centralised ar-

179

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

chitecture has been extended into a passively master-
slave-replicable/federated architecture in which en-
tries from several registries can be downstreamed into
another instance. Two WS-* extensions to ConQo’s
SOAP interface have been developed for this purpose:
WS-DiffTransfer allows for a differential transfer of
only modified entries instead of all entries, and WS-
Paging adds a pagination similar to browsing results
known from web search sites. The evaluation section
refers to this current version of ConQo.

Figure 5 outlines the high-level architecture of
the registry components, the artefact repository, and
the web service interfaces to the registry. ConQo
is not a pro-active (crawling, self-updating) registry
like Service-Finder or Depot. However, additional
tools exist which make use of ConQo’s interfaces to
achieve an equivalent functionality. In particular, a
service crawler registers services and a monitor su-
pervises them (Spillner, 2010).

WSML
goal

S0AP 1
List of ¢
WSML ‘
links i

‘ Discovery Component }4—)

: |

‘ Ranking Component ‘

M-

i Web Service Repository

Requester Web Service Interface ‘
|

‘ Service Management

WSML
description

y

A

SOAP Provider/Management Web Service Interface

Statusg
of success

Figure 5: Architecture of the ConQo registry and discovery.

ConQo has several unique features not found in
other registries, such as the ability to save searches for
subsequent reverse auctions of providers who want to
more precisely target the needs of the prospective ser-
vice consumers, and the ability to assign reputation
scores to the advertised service features. The search
can be initiated from both full-text queries and de-
scending domain browsing, with refinements through
subdomain and non-functional property filters. An se-
lected overview of the role-specific service interfaces
to perform discoveries, rate services and update non-
functional properties is given in Table 5. In total, there
are 28 web service methods. Access to the methods is
not protected, because this concern is better handled
by platform services which authenticate and redirect
requests.

180

Table 5: Some of the web service methods offered by
ConQo.

[Method Name and Signature [Role]
initMatchmaker() Admin
getAllMonitors() Admin
addServiceComplete(wsml,img,user) Provider
addInterfaceDocument(iri,doctype,doc) Provider
getSearches() Provider
getWebServices(domain) Consumer
getinterfaceDocuments(iri) Consumer
getReputationParameters(iri) Consumer
achieveGoal Text(wsml) Consumer

4 EVALUATION

We evaluate our work by first presenting the resulting
registry system as implementation of the proposed ar-
chitecture and an ecosystem of tools around it. Then,
we look at integration perspectives, measure the sys-
tem’s scalability and take a look at its usability.

ConQo has been implemented as a Java Servlet,
called Matchmaker, which runs in an application
container and offers service interfaces for graphical
user interfaces. It uses the DIP QoS-Enabled Ser-
vice Discovery Component as described in (Stoy-
anova et al., 2008), the WSML2Reasoner frame-
work with a choice of reasoning engines, WSMO4J
to parse WSML descriptions and a JDBC connector
to a relational database such as MySQL for storing
all service description concepts, service instance en-
tries and artefacts. The registry is made available as
open source software from http://serviceplatform.org
to promote its wide use in academic and industrial re-
search.

Over time, the ConQo matchmaker has been
used in a number of scenarios and hence been in-
tegrated into various marketplaces and tools. Fig-
ure 6 summarises these efforts. The ConQo Cock-
pit is the native web interface for service discov-
ery based on functional domain selection and subse-
quent non-functional property filtering. Specialised
web interfaces exist for scenarios like application-
like service stores and user interface services. Social
service networks such as Servomat (Spillner, 2011)
and Crowdserving (Spillner, 2010) combine service
trading with professional service offers in social net-
works. A desktop data provider enhances the KDE
desktop environment with services in addition to local
applications in the user’s application selection menu.
Finally, command line applications exist to interact
with the matchmaker and to register both WSML
descriptions and other artefacts which are converted
to WSML based on templates. For experience re-

A Versatile and Scalable Everything-as-a-Service Registry and Discovery

ConQo CRUISe
Cockpit
>

PN
Co.Noo. | Social Service
Updater Network

/ N —

- > SPACEmart | PHP o
— web application

loS desktop KDE/Qt
data provider dialogue

JSP web
application

Ruby on Rails
web application

Java servilet w/
SOAP interface \

Command-line
utilities

loud Resource

JSP web
Spot Market

application

Figure 6: Usage and integration scenarios for the ConQo
service registry.

ports about combinations of the ConQo matchmaker
with its interfaces, we refer to the publications of the
BMWi THESEUS/TEXO, BMBF CRUISe and EU-
/ESF/SAB FlexCloud research projects which have
contributed significant feedback for the continuous
development.

In order to determine the scalability and suitability
of ConQo for Xaa$, it has been evaluated in experi-
ments which involve thousands of existing and artifi-
cally generated service descriptions. Figure 7 shows
the effect of the differential synchronisation exten-
sion (WS-DiffTransfer). Compared to the reference
baseline of synchronising the entire contents of one
ConQo instance into another one, WS-DiffTransfer
causes a 20X overhead in the worst case, which is
quickly offset by both a high number of entries and a
low number of modifications. In most practical cases,
there are even extreme performance gains due to the
near-O(1) complexity of WS-DiffTransfer. The im-
plementation improvements are summarised in Figure
8. One of the most-used methods, the parametrised
discovery entry point getWebServicesFiltered(),
has been improved to a point where a ConQo in-
stance with 4000 entries only requires 2s instead of

Differential sync - Modification of entries

100000

10000 /
_//

Time [ms]

1 10 100 1000 Number of
services
——Reference 47 187 1408 34874 |in ConQo

—#—Changes in all services 864 1062 3027 45214
~#—Changes in 2 services 888 876 881

Changes in 30 services 1484 1626

Figure 7: Scalability measured during a differential master-
slave transfer of modified entries.

ConQo - getWebServicesFiltered()

1000000

V= 717543+ 20050x

200000 25477

800000

700000

600000

500000

Time [ms]

400000

300000

200000 /
100000 / y¥=377,9x7-1365%
| +1891

]]])

1000 | 2000 | 3000 annn‘snnn 6000 | 7000 | 8000 | 5000 | 10000 Number of
services

in ConQo

0

[—o—Reference 1000 | 45568 57003 [17027 |

|-m—optmised ses | 1037 | 1538 | 2046 | 26051

Figure 8: Increased scalability after combined refactoring
and code improvements.

17sand higher service counts such as 10000 become
even possible with tolerable timing.

Finally, we have integrated the optimised reg-
istry into an experiment in which about 30000 ser-
vice descriptions were collected from catalogues and
crawlers, inserted into a scientific data repository, and
injected into ConQo (Spillner, 2010)." Given that
30000 is about the upper bound of unique publicly
accessible services, this stresses the registry’s scala-
bility and fitness for real-world use cases.

The usability of ConQo is best demonstrated
through screenshots of its user interfaces. Figures 9,
10 and 11 contain screenshots of the administrative
service listing, discovery result and service browsing,
respectively. The first two screenshots are taken from
the ConQo Cockpit, whereas the third one is a na-
tive desktop dialogue on KDE connected to a remote
ConCo instance. In both clients, selected services can
be either just used or, in case a service level agreement
template is found, used with contract protection after
a negotiation in case the service platform supports this
capability.

5 CONCLUSIONS

Service registries are essential pivotal elements in
service-oriented architectures. With a clear trend to-
wards marketplaces in an Internet of Services and
Everything-as-a-Service (XaaS), the existence of ver-
satile, scalable and yet simple registries becomes cru-
cial. Our research motivates a three-concerns de-
coupling of registry systems implemented in soft-
ware, abstract registration models supported by them,
and concrete service description artefacts bound to
registration entries following the models. The reg-
istry ConQo, with its role-oriented service interfaces
and efficient query and synchronisation mechanisms,

181

CLOSER 2013 - 3rd International Conference on Cloud Computing and Services Science

Web Services
Manage registered web services
Web services in repository: 6

AlldVideo
IRI: http:/flocalhost:80B0/Matc hmakerfontelogies/Convert/Service Lwsm|#Al 4Video

Interfaces:

» AlldVideo A3_All4Video [show details
» AlldVideo Al_All4Video [show details
» AlldVideo A2 All4Video [show details

ClusterConverter
IRI: http:flocalhost:80B0/Matc hmakerfontelogies/Convert/Serviced.wsmi#ClusterConverter

Interfaces:

» ClusterConverter Al Cluster [show details|
» ClusterConverter A2 Cluster [show details|
» ClusterConverter A3 Cluster [show details|

Figure 9: Screenshot of a service listing in the ConQo Cock-
pit administration menu.

Result
Result of semantic discovery.

Service candidates: 17
Rejected by functional discovery: 2
Rejected functional di y: 0

Ra;'tked services: 15

ClusterConverter: A3 Cluster
Ranking: 1.0

IRI: http:/flocalhost:B080/Matchmaker/ontologies/Convert/Serviced. wsml#A3_Cluster
WSDL: http://example org/ClusterConverter/services/GeoldConvertfwsal

Goal requirements:

7 SystemLoad 0.3 Percentage

';"‘ RespenseTime B0.0 MilliSecond
CPULcad

'Jf Availability 1.0 Percentage

+" MaxDownTime 5000.0 MilliSecond

‘Jﬂ ConvertingPasses 2.0 Pass

'J-ﬂ VideoBitrate 1.6384E7 Bps

Envircnment requirements:
-

+ NetworkBandwidth
+ HostingPrice

Figure 10: Screenshot of the weighted result listing follow-
ing a query in the ConQo Cockpit discovery menu.

W Get New Services - loS Get New Services 2 Qe ®

10S Get New Services Add-On Installer i:f

Domain: | Any v | Orderby: Name v | [Enter search phr

Any ~
Videoconverting 0
File transfer 3

Lo [¥ instal
Pre Printer
b Rating: 36
PrinterRUs + Install
mpws_411toppm # Install >
& ¢ € Close

Figure 11: Screenshot of the KDE Get Hot New Services
dialogue.

avoids the overhead and complexity of fully dis-
tributed registries while still achieving suitable scal-
ability. Our future work concentrates on the specifi-
cation of additional domain ontologies to accomodate
more XaaS use cases.

182

ACKNOWLEDGEMENTS

This work has received funding under project num-
ber 080949277 by means of the European Regional
Development Fund (ERDF), the European Social
Fund (ESF) and the German Free State of Saxony.
Many ConQo improvements have been contributed by
Thomas Muckwar and Aleksander Heimrath based on
the initial implementation by Bastian Buder.

REFERENCES

AbuJarour, M. (2010). A Proactive Service Registry With
Enriched Service Descriptions. 9th Retreat of the HPI
Research School. Neuruppin, Germany.

Banerjee, P., Bash, C., Friedrich, R., Goldsack, P., Huber-
man, B. A., Manley, J., Patel, C., Ranganathan, P., and
\eitch, A. (2011). Everything as a Service: Powering
the New Information Economy. Computer, 44(3):36—
43.

Barros, A., Oberle, D., Kylau, U., and Heinzl, S. (2012). An
Overview of USDL. In Barros, A. and Oberle, D., edi-
tors, Handbook of Service Description - USDL and its
Methods, pages 185-215. Springer Berlin Heidelberg.

Cardoso, J., Barros, A., May, N., and Kylau, U. (2010). To-
wards a Unified Service Description Language for the
Internet of Services: Requirements and First Develop-
ments. In Proceedings of the IEEE International Con-
ference on Services Computing (SCC), pages 602—
609. Miami, Florida, USA.

Cavalcante, E., Batista, T., Lopes, F., Rodriguez, N.,
de Moura, A. L., Delicato, F. C., Pires, P. F., and
Mendes, R. (2012). Optimizing Services Selection in
a Cloud Multiplatform Scenario. In 1st Latin Amer-
ican Conference on Cloud Computing and Commu-
nications (LatinCloud), pages 31-36. Porto Alegre,
Brazil.

de Bruijn, J., Lausen, H., Polleres, A., and Fensel,
D. (2006). The Web Service Modeling Language
WSML: An Overview. In Proceedings of the 3rd Eu-
ropean Conference on The Semantic Web: Research
and Applications (ESWC), pages 590-604. Budva,
Montenegro.

Didong, D. and de Queiroz, R. J. G. B. (2011). Forensic
as a Service - FaaS. In Proceedings of the Sixth In-
ternational Conference on Forensic Computer Science
(ICoFCS), pages 202-210. Florianopolis, Brazil.

D’Mello, D. A. and S., A. V. (2010). A Review of Dynamic
Web Service Description and Discovery Techniques.
In First International Conference on Integrated Intel-
ligent Computing (ICIIC), pages 246-251. Bangalore,
India.

Du, Z., Huai, J., and Liu, Y. (2005). Ad-UDDI: An Active
and Distributed Service Registry. In Proceedings of
the 6th International Conference on Technologies for
E-Services (TES), volume 3811 of LNCS, pages 58—
71. Trondheim, Norway.

Ferrario, R., Guarino, N., Janiesch, C., Kiemes, T., Oberle,
D., and Probst, F. (2011). Towards an Ontological

A Versatile and Scalable Everything-as-a-Service Registry and Discovery

Foundation of Services Science: The General Service
Model. In 10. Internationale Tagung Wirtschaftsinfor-
matik, page P47. Zurich, Switzerland.

Field, S. and Hoffner, Y. (2002). In search of the right part-
ner. In Collaborative Business Ecosystems and Virtual
Enterprises, chapter 7, pages 55-62. Kluwer.

Ghijsen, M., van der Ham, J., Grosso, P., and de Laat,
C. (2012). Towards an Infrastructure Description
Language for Modeling Computing Infrastructures.
In 10th IEEE International Symposium on Parallel
and Distributed Processing with Applications (ISPA),
pages 207-214. Madrid, Spain.

Guinard, D., Trifa, V., Karnouskos, S., SpieB, P., and Savio,
D. (2010). Interacting with the SOA-Based Internet of
Things: Discovery, Query, Selection, and On-Demand
Provisioning of Web Services. IEEE Transactions on
Services Computing, 3(3):223-235.

Hofreiter, B., Huemer, C., and Klas, W. (2002). ebXML:
Status, Research Issues, and Obstacles. In Proc. of
12th International Workshop on Research Issues on
Data Engineering (RIDE), pages 7-16. San Jose, Cal-
ifornia, USA.

Mangler, J., Schikuta, E., and Witzany, C. (2009). Quo
Vadis Interface Definition Languages? Towards a In-
terface Definition Language For RESTful Services. In
IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), pages 1-4.
Taipei, Taiwan.

Nair, M. K. and Gopalakrishna, D. V. (2010). Look Be-
fore You Leap: A Survey of Web Service Discovery.
International Journal of Computer Applications, 7(5).

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K.
(2002). Importing the Semantic Web in UDDI. In Web
Services, e-Business and the Semantic Web, volume
2512 of LNCS, pages 225-236. Toronto, Canada.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
Restful Web Services vs. "Big" Web Services: Making
the Right Architectural Decision. In Proceedings of
the 17th international conference on World Wide Web
(WWW), pages 805-814. Beijing, China.

Pfeifer, K. and Schill, A. (2012). Semantic Description of
Text Mining Services. In Second International Con-
ference on Advances in Information Mining and Man-
agement (IMMM). Venice, Italy.

Sacha, J., Biskupski, B., Dahlem, D., Cunningham, R.,
Dowling, J., and Meier, R. (2007). A Service-Oriented
Peer-to-Peer Architecture for a Digital Ecosystem. In
2007 Inaugural IEEE International Conference on
Digital Ecosystems and Technologies (DEST), pages
205-210. Cairns, Australia.

Solanki, M., Martin, D., Paolucci, M., Mcllraith, S.,
Burstein, M., McDermott, D., McGuinness, D., Par-
sia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan,
N., , and Sycara, K. (2004). Bringing Semantics to
Web Services: The OWL-S Approach. In First In-
ternational Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), volume 3387
of LNCS, pages 26—42. San Diego, California, USA.

Spillner, J. (2010). Methodik und Referenzarchitektur zur
inkrementellen Verbesserung der Metaqualitét einer
vertragsgebundenen, heterogenen und verteilten Di-

enstausfiihrung. PhD thesis, Technische Universitét
Dresden. Faculty of Computer Science.

Spillner, J. (2011). An Environment for Educational Ser-
vice Communities. International Research Journal of
Telecommunication Sciences, 2(2):22-27.

Spillner, J. (2013). WSMO4l10S Specification and Ontology
Catalogue. Online: http://serviceplatform.org/ spec/
wsmod4ios/.

Spillner, J., Miller, J., and Schill, A. (2013). Creat-
ing Optimal Cloud Storage Systems. Future Gen-
eration Computer Systems, 29(4):1062-1072. DOI:
http://dx.doi.org/10.1016/j.future.2012.06.004.

Steinmetz, N., Lausen, H., and Brunner, M. (2009).
Web Service Search on Large Scale. In Service-
Oriented Computing: 7th International Joint Con-
ference, ICSOC-ServiceWave, volume 5900 of LNCS,
pages 437-444., Stockholm, Sweden.

Stoyanova, G., Buder, B., Strunk, A., and Braun, . (2008).
ConQo — A Context- and QoS-Aware Service Discov-
ery. In Proceedings of IADIS International Confer-
ence WWW/Internet. Freiburg, Germany.

Vu, Q. H., Pham, T.-V,, Truong, H.-L., Dustdar, S., and
Asal, R. (2012). 'DEMODS: A Description Model
for Data-as-a-Service. In Proceedings of the 26th
IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA), pages 605—
612. Fukuoka, Japan.

Zhang, M., Ranjan, R., Haller, A., Georgakopoulos, D.,
Menzel, M., and Nepal, S. (2012). An Ontology based
System for Cloud Infrastructure Services Discovery.
In 8th IEEE International Conference on Collabora-
tive Computing: Networking, Applications and Work-
sharing (CollaborateCom). Pittsburgh, Pennsylvania,
USA.

183

